2014届高考物理一轮复习_磁场对运动电荷的作用教学案
- 格式:doc
- 大小:475.00 KB
- 文档页数:4
磁场对运动电荷的作用教案一、教学目标1. 让学生了解磁场对运动电荷的作用原理,掌握洛伦兹力的概念。
2. 能够运用洛伦兹力公式分析磁场对运动电荷的作用。
3. 培养学生运用物理学知识解决实际问题的能力。
二、教学内容1. 磁场对运动电荷的作用原理2. 洛伦兹力的概念及公式3. 洛伦兹力方向的确定4. 洛伦兹力与电荷运动方向的关系5. 洛伦兹力在现实生活中的应用三、教学重点与难点1. 重点:磁场对运动电荷的作用原理,洛伦兹力的概念及公式。
2. 难点:洛伦兹力方向的确定,洛伦兹力与电荷运动方向的关系。
四、教学方法1. 采用讲授法,讲解磁场对运动电荷的作用原理、洛伦兹力的概念及公式。
2. 采用互动法,引导学生讨论洛伦兹力方向的确定和洛伦兹力与电荷运动方向的关系。
3. 采用案例分析法,分析洛伦兹力在现实生活中的应用。
五、教学步骤1. 引入:通过实例介绍磁场对运动电荷的作用,引发学生兴趣。
2. 讲解磁场对运动电荷的作用原理,阐述洛伦兹力的概念。
3. 推导洛伦兹力公式,解释各参数含义。
4. 分析洛伦兹力方向的确定,引导学生运用右手定则。
5. 讨论洛伦兹力与电荷运动方向的关系,引导学生运用物理学知识解决实际问题。
6. 总结本节课内容,布置课后作业。
7. 课堂小结,强调磁场对运动电荷的作用在现实生活中的应用。
8. 课后作业:(1)复习本节课内容,巩固知识点。
(2)运用洛伦兹力公式分析实际问题,如电子在磁场中的运动、质子加速器等。
(3)搜集相关资料,了解磁场对运动电荷的作用在其他领域的应用。
六、教学活动1. 小组讨论:让学生分组讨论洛伦兹力在现实生活中的应用,如粒子加速器、磁悬浮列车等,每组选一个案例进行详细分析。
2. 课堂展示:各小组派代表进行课堂展示,分享他们的讨论成果。
3. 教师点评:对各小组的展示进行点评,给予肯定和指导。
七、课堂练习1. 填空题:(1)洛伦兹力的公式为_______。
(2)洛伦兹力的方向由_______和_______决定。
高考物理一轮复习 磁场对运动电荷的作用教学案一.考点整理 基本概念 1.洛伦兹力:①磁场对运动电荷的作用力叫洛伦兹力;②洛伦兹力的方向判定用左手定则:关键词是“掌心”—— 磁感线 穿入掌心;“四指”—— 指向 运动的方向或 运动的反方向;“拇指” —— 指向洛伦兹力的方向.洛伦兹力方向特点:F ⊥B ,F ⊥v ,即F 垂直于B 和v 决定的 .③ 洛伦兹力的大小:v ∥B 时,洛伦兹力F = (θ = 0°或180°);v ⊥B 时,洛伦兹力F = (θ = 90°);v = 0时,洛伦兹力F = .④ 洛仑兹力对运动电荷 功.2.带电粒子在匀强磁场中的运动:① 若v ∥B,带电粒子不受洛伦兹力,在匀强磁场中做 运动;② 若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做 运动;半径和周期公式R = 、T = 2πR /v = . 3.质谱仪:① 构造:如图所示,由粒子源、加速电场、 和照相底片等构成.② 原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU = mv 2/2;粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB = mv 2/r ;由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷;r = 、m = 、m q =222rB U. 4.回旋加速器:① 构造:如图所示,D 1、D 2是半圆金属盒,D 形盒的缝隙处接交流电源.D 形盒处于 磁场中.② 原理:交流电的周期和粒子做圆周运动的周期 ,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB = mv 2/R ,得E km= ,可见粒子获得的最大动能由磁感应强度和D 形盒 决定,与加速 无关. 二.思考与练习 思维启动1.下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是( )2.试画出下图中几种情况下带电粒子的运动轨迹,并说出其运动性质.3.如图所示,一个质量为m 、电荷量为e 的粒子从容器A 下方的小孔S ,无初速度地飘入电势差为U 的加速电场,然后垂直进入磁感应强度为B 的匀强磁场中,最后打在照相底片M 上.则( )A .粒子进入磁场时的速率v = 2eU mB .粒子在磁场中运动的时间t = 2πmeBC .粒子在磁场中运动的轨道半径r =1B2mU eD .若容器A 中的粒子有初速度,则粒子仍将打在照相底片上的同一位置 三.考点分类探讨 典型问题 〖考点1〗洛伦兹力的特点及应用【例1】如图所示,在竖直绝缘的平台上,一个带正电的小球以水平速度v 0抛出,落在地面上的A 点,若加一垂直纸面向里的匀强磁场,则小球的落点( ) A .仍在A 点 B .在A 点左侧 C .在A 点右侧 D .无法确定【变式跟踪1】如图所示,ABC 为竖直平面内的光滑绝缘轨道,其中AB 为倾斜直轨道,BC 为与AB 相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB 上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则 ( ) A .经过最高点时,三个小球的速度相等 B .经过最高点时,甲球的速度最小C .甲球的释放位置比乙球的高D .运动过程中三个小球的机械能均保持不变 〖考点2〗带电粒子在匀强磁场中的运动【例2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角.现将带电粒子的速度变为v /3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( )A .12ΔtB .2ΔtC .13Δt D .3Δt 【变式跟踪2】如图(a )所示,在以直角坐标系xOy 的坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直xOy 所在平面向里的匀强磁场.一带电粒子由磁场边界与x 轴的交点A 处,以速度v 0沿x 轴负方向射入磁场,粒子恰好能从磁场边界与y 轴正半轴的交点C 处,沿y 轴正方向射出磁场,不计带电粒子所受重力. ⑴ ① 粒子带何种电荷;② 求粒子的比荷 q :m ;⑵ 若磁场的方向和所在空间的范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,粒子射出磁场时速度的方向相对于入射方向改变了θ角,如图(b )所示,求磁感应强度B ′的大小.〖考点3〗有界磁场中的临界问题【例3】如图所示,在0 ≤ x ≤ a 、0 ≤ y ≤ a /2范围内垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xOy 平面内,与y 轴正方向的夹角分布在0°~ 90°范围内.已知粒子在磁场中做圆周运动的半径介于a /2到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:⑴ 速度的大小.⑵ 速度方向与y 轴正方向夹角的正弦.【变式跟踪3】如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为 +q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ = 45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:⑴两板间电压的最大值U m;⑵CD板上可能被粒子打中的区域的长度s;⑶粒子在磁场中运动的最长时间t m.四.考题再练高考试题1.【2012·江苏卷】如图所示,MN是磁感应强度为B的匀强磁场的边界.一质量为m、电荷量为q的粒子在纸面内从O点射入磁场.若粒子速度为v0,最远能落在边界上的A点.下列说法正确的有()A.若粒子落在A点的左侧,其速度一定小于v0B.若粒子落在A点的右侧,其速度一定大于v0C.若粒子落在A点左右两侧d的范围内,其速度不可能小于v0–qBd/2mD.若粒子落在A点左右两侧d的范围内,其速度不可能大于v0 + qBd/2m【预测1】如图所示,在坐标系第一象限内有正交的匀强电、磁场,电场强度E = 1.0×103 V/m,方向未知,磁感应强度B = 1.0 T,方向垂直纸面向里;第二象限的某个圆形区域内有垂直纸面向里的匀强磁场B′(图中未画出).一质量m = 1×10-14 kg、电荷量q = 1×10-10 C的带正电粒子以某一速度v沿与x轴负方向成60°角的方向从A点进入第一象限,在第一象限内做直线运动,而后从B点进入磁场B′区域.一段时间后,粒子经过x轴上的C点并与x 轴负方向成60°角飞出.已知A 点坐标为(10,0),C点坐标为(– 30,0),不计粒子重力.⑴判断匀强电场E的方向并求出粒子的速度v;⑵画出粒子在第二象限的运动轨迹,并求出磁感应强度B′;⑶求第二象限磁场B′区域的最小面积.2.【2013上海高考】如图,足够长的直线ab靠近通电螺线管,与螺线管平行.用磁传感器测量ab上各点的磁感应强度B,在计算机屏幕上显示的大致图像是()【预测2】一个带正电的小球沿光滑绝缘的桌面向右运动,速度方向垂直于一个垂直纸面向里的匀强磁场,如图所示,小球飞离桌面后落到地板上,设飞行时间为t1,水平射程为s1,着地速度为v1.撤去磁场,其余的条件不变,小球飞行时间为t2,水平射程为s2,着地速度为v2.则下列论述正确的是()A.s1 > s2 B.t1 > t2 C.v1和v2大小相等 D.v1和v2方向相同五.课堂演练自我提升1.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将()A.可能做直线运动 B.可能做匀减速运动C.一定做曲线运动 D.可能做匀速圆周运动2.用绝缘细线悬挂一个质量为m,带电荷量为 +q的小球,让它处于图示的磁感应强度为B的匀强磁场中.由于磁场的运动,小球静止在图中位置,这时悬线与竖直方向夹角为α,并被拉紧,则磁场的运动速度和方向是()A.v =mgBq,水平向左 B.v =mgtan αBq,竖直向下C.v =mgtan αBq,竖直向上 D.v =mgBq,水平向右3.如图所示,圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B,一带电粒子(不计重力)以某一初速度沿圆的直径方向射入磁场,粒子穿过此区域的时间为t,粒子飞出此区域时速度方向偏转角为60°,根据以上条件可求下列物理量中的()A.带电粒子的比荷 B.带电粒子的初速度C.带电粒子在磁场中运动的周期 D.带电粒子在磁场中运动的半径4.质量和电量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示.下列表述正确的是()A.M带负电,N带正电 B.M的速率小于N的速率C.洛伦兹力对M、N做正功 D.M的运行时间大于N的运行时间5.如图甲所示是用来加速带电粒子的回旋加速器的示意图,其核心部分是两个D形金属盒.在加速带电粒子时,两金属盒置于匀强磁场中,两盒分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t的变化规律如图乙所示,忽略带电粒子在电场中的加速时间,则下列判断正确的是()A.在E k–t图中应有t4–t3 = t3–t2 = t2–t1B.高频电源的变化周期应该等于t n–t n-1C.粒子加速次数越多,粒子最大动能一定越大D.要想粒子获得的最大动能增大,可增加D形盒的半径参考答案:一.考点整理 基本概念1.垂直 正电荷 负电荷 平面 0 qvB 0 不做 2.匀速直线 匀速圆周 mv /qB 2πm /qB3.偏转磁场 qmUB 21 U B qr 2224.匀强 相等 q 2B 2R 2/2m 半径二.思考与练习 思维启动1.B ;根据左手定则,A 中F 方向应向上,B 中F 方向应向下,故A 错、B 对.C 、D 中都是v ∥B ,F = 0,故C 、D 都错. 2.如图所示3.AC ;在加速电场中由动能定理得eU = 12mv 2,所以粒子进入磁场时的速度v =2eUm,A 正确;由evB = mv 2/r 得粒子的半径r =mv eB = 1B 2mU e ,C 正确;粒子在磁场中运动了半个周期t = T 2 = πmeB,B 错误;若容器A 中的粒子有初速度,则粒子在磁场中做匀速圆周运动的半径发生变化,不能打在底片上的同一位置,D 错误.三.考点分类探讨 典型问题例1 C ;洛伦兹力虽不做功,但可以改变小球的运动状态(改变速度的方向),小球做曲线运动,在运动中任一位置受力如图所示,小球受到了斜向上的洛伦兹力的作用,小球在竖直方向的加速度a y = (mg – qvB cos θ)/m < g ,故小球平抛的时间将增加,落点应在A 点的右侧.变式1 CD ;设磁感应强度为B ,圆形轨道半径为r ,三个小球质量均为m ,它们恰好通过最高点时的速度分别为v 甲、v 乙和v 丙,则mg + Bv 甲q = mv 甲2/r 、mg - Bv 乙q = mv 乙2/r 、mg = mv 丙2/r ,显然,v 甲 > v 丙 > v 乙,选项A 、B 错误;三个小球在运动过程中,只有重力做功,即它们的机械能守恒,选项D 正确;甲球在最高点处的动能最大,因为势能相等,所以甲球的机械能最大,甲球的释放位置最高,选项C 正确.例2 B ;设带电粒子以速度v 进入磁场做圆周运动,圆心为O 1,半径为r 1,则根据qvB= mv 2/r ,得r 1 = mv /qB ,根据几何关系得R /r 1 = tan(φ1/2),且φ1 = 60°.当带电粒子以v /3的速度进入时,轨道半径r 2 = m (v /3)/qB = mv /3qB = r 1/3,圆心在O 2,则 R /r 2 = tan(φ2/2),即tan(φ2/2) =R /r 2 = 3R /r 1 = 3 tan(φ1/2) = 3,故φ2/2 = 60°,φ2=120°;带电粒子在磁场中运动的时间t = (φ/360°)T ,所以Δt 2/Δt 1 = φ2/φ1 = 2/1,即Δt 2 = 2Δt 1 = 2Δt ,故选项B 正确,选项A 、C 、D 错误.变式2 ⑴ ①粒子带负电;② 由几何关系可知,粒子的运动轨迹如图甲所示,其半径R = r ,粒子所受的洛伦兹力等于它做匀速圆周运动时所受的向心力即qv 0B = mv 02/R ,则q /m = v 0/Br .⑵ 粒子的运动轨迹如图乙所示,设其半径为R ′,粒子所受的洛伦兹力提供它做匀速圆周运动的向心力,即qv 0B ′ = mv 02/R ′,又因为tan(θ/2) = r / R ′,解得B ′ = B tan(θ/2).例3 ⑴ 设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R ,由牛顿第二定律和洛伦兹力公式,得qvB = mv 2/R ① 由①式得R = mvqB ②当a /2 < R < a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为O 3的圆弧,圆弧与磁场的上边界相切,如图所示.设该粒子在磁场中运动的时间为t ,依题意t = T /4,得∠OCA = π/2 ③ 设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系可得R sin α = R – a /2 ④ R sin α = a – R cos α ⑤ 又sin2α + cos2α = 1 ⑥由④⑤⑥式得R = ⎝ ⎛⎭⎪⎫2-62a ⑦ 由②⑦式得v = ⎝⎛⎭⎪⎫2-62aqB m ⑧ ⑵ 由④⑦式得sin α = 6-610变式3 .⑴ M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C点,如图所示,CH = QC = L ,故半径r 1 = L ,又因为qv 1B = mv 12/r 1,且qU m = mv 12/2,所以U m = qB 2L 2/2m .⑵ 设粒子在磁场中运动的轨迹与CD 板相切于K 点,此轨迹的半径为r 2,设圆心为A ,在△AKC 中:sin 45° = r 2/(L – r 2),解得r 2 = ( 2 – 1)L ,即KC = r 2 = ( 2 – 1)L .所以CD 板上可能被粒子打中的区域的长度s = HK ,即 s = r 1 - r 2 = (2 – 2)L .⑶ 打在QE 间的粒子在磁场中运动的时间最长,均为半个周期,所以t m = T /2 = πm /qB . 四.考题再练 高考试题1.BC ;带电粒子在磁场中做匀速圆周运动,qv 0B = mv 02/r ,所以r = mv 0/qB ,当带电粒子从不同方向由O 点以速度v 0进入匀强磁场时,其轨迹是半径为r 的圆,轨迹与边界的交点位置最远是离O 点2r 的距离,即OA = 2r ,落在A 点的粒子从O 点垂直入射,其他粒子则均落在A 点左侧,若落在A 点右侧则必须有更大的速度,选项B 正确;若粒子速度虽然比v 0大,但进入磁场时与磁场边界夹角过大或过小,粒子仍有可能落在A 点左侧,选项A 、D 错误;若粒子落在A 点左右两侧d 的范围内,设其半径为r ′,则r ′ ≥ (2r - d )/2,代入r = mv 0/qB ,r ′= mv /qB ,解得v ≥ v 0 – qBd /2m ,选项C 正确.预测1 ⑴ 粒子在第一象限内做直线运动,速度的变化会引起洛伦兹力的变化,所以粒子必做匀速直线运动.这样,电场力和洛伦兹力大小相等,方向相反,电场E 的方向与微粒运动的方向垂直,即与x 轴正向成30°角斜向右上方.由平衡条件有Eq = Bqv 得v = E /B = 103m/s .⑵ 粒子从B 点进入第二象限的磁场B ′中,轨迹如图.粒子做圆周运动的半径为R ,由几何关系可知 R = 10cos 30°cm = 203cm ,由qvB ′ = mv 2/R ,解得B ′ = mv 2/qvR = mv /qR ,代入数据解得B ′ =32T . ⑶ 由图可知,B 、D 点应分别是粒子进入磁场和离开磁场的点,磁场B ′的最小区域应该分布在以BD 为直径的圆内.由几何关系得BD = 20 cm ,即磁场圆的最小半径r = 10 cm ,所以,所求磁场的最小面积为S = πr 2 = 3.14×10-2 m 2. 2.C预测 2 ABC ;当桌面右边存在磁场时,在小球下落过程中由左手定则知,带电小球受到斜向右上方的洛伦兹力作用,此力在水平方向上的分量向右,竖直方向上分量向上,因此小球水平方向存在加速度,竖直方向上加速度a < g ,所以t 1 > t 2,s 1 > s 2,A 、B 对;又因为洛伦兹力不做功,C 对;两次小球着地时方向不同,D 错.1.C ;带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C 正确. 2.C ;根据运动的相对性,带电小球相对磁场的速度与磁场相对于小球(相对地面静止)的速度大小相等、方向相反.洛伦兹力F = qvB 中的v 是相对于磁场的速度.根据力的平衡条件可以得出,当小球相对磁场以速度v = mg tan α/qB 竖直向下运动或以速度v = mg /qB 水平向右运动,带电小球都能处于平衡状态,但题目中要求“绳被拉紧”,由此可以知道只有选项C 正确.3.AC ;由t = (θ/2π)T 和T = 2πm /qB 可知,根据题中已知条件可以求出带电粒子运动的周期,再将周期代入周期公式可以求出带电粒子的比荷.4.A ;由左手定则知M 带负电,N 带正电,选项A 正确;带电粒子在磁场中做匀速圆周运动且向心力F 向 =F 洛,即 mv 2/r = qvB 得r = mv /qB ,因为M 、N 的质量、电荷量都相等,且r M > r N ,所以v M > v N ,选项B 错误;M 、N 运动过程中,F 洛始终与v 垂直,F 洛不做功,选项C 错误; 由T = 2πm /qB 知M 、N 两粒子做匀速圆周运动的周期相等且在磁场中的运动时间均为 T /2,选项D 错误. 5.AD ;带电粒子在匀强磁场中做匀速圆周运动的周期与速度大小无关,因此,在E k - t 图中应有t 4 – t 3= t 3 – t 2 = t 2 – t 1,选项A 正确;带电粒子在回旋加速器中每运行一周加速两次,高频电源的变化周期应该等于2(t n – t n – 1),选项B 错;由r = mv qB =2mEkqB 可知,粒子获得的最大动能决定于D 形盒的半径,当轨道半径与D 形盒半径相等时就不能继续加速,故选项C 错,D 对.。
第二节磁场对运动电荷的作用一、洛伦兹力的大小和方向1.洛伦兹力的大小F=qv Bsin θ,θ为v与B的夹角,如图所示。
(1)v∥B,θ=0°或180°时,洛伦兹力F= 。
(2)v⊥B,θ=90°时,洛伦兹力F= 。
(3)v=0时,洛伦兹力F= 。
2.洛伦兹力的方向(1)判定方法:应用左手定则,注意四指应指向正电荷的运动方向或负电荷____________。
(2)方向特点:F⊥B,F⊥v,即F垂直于____决定的平面(注意B和v可以有任意夹角)。
由于F⊥v,所以洛伦兹力________。
二、带电粒子在匀强磁场中的运动若运动电荷在匀强磁场中除受洛伦兹力外其他力均忽略不计,则其运动有如下两种形式(中学阶段):1.当v∥B时,所受洛伦兹力____,粒子做匀速直线运动;2.当v⊥B时,所受洛伦兹力提供向心力,粒子做匀速圆周运动,公式表达为__________;轨道半径和周期分别为R=______,T=________。
1.在如图所示的各图中,匀强磁场的磁感应强度均为B,带电粒子的速率均为v,带电荷量均为q。
试求出图中带电粒子所受洛伦兹力的大小,并指出洛伦兹力的方向。
2.如图,没有磁场时,显像管内电子束打在荧光屏正中的O点,加磁场后电子束打在荧光屏O点上方的P点,则所加磁场的方向可能是( )A.垂直于纸面向内B.垂直于纸面向外C.平行于纸面向上D.平行于纸面向下3.(2012·北京理综)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动。
将该粒子的运动等效为环形电流,那么此电流值( )A.与粒子电荷量成正比B.与粒子速率成正比C.与粒子质量成正比D.与磁感应强度成正比4.易错辨析:请你判断下列表述正确与否,对不正确的,请予以更正。
(1)带电粒子在磁场中一定受洛伦兹力作用。
(2)带电粒子在磁场中一定做圆周运动。
(3)洛伦兹力永不做功。
一、对洛伦兹力的理解自主探究1有关洛伦兹力和安培力的描述,正确的是( )A.通电直导线处于匀强磁场中一定受到安培力的作用B.安培力是大量运动电荷所受洛伦兹力的宏观表现C.带电粒子在匀强磁场中运动受到的洛伦兹力做正功D.通电直导线在磁场中受到的安培力方向与磁场方向平行思考:带电粒子在磁场中所受的洛伦兹力不做功。
第八章 磁 场第2讲 磁场对运动电荷的作用 学案 第1课时田雷洛伦兹力、洛伦兹力的方向 (考纲要求 Ⅰ)洛伦兹力的公式 (考纲要求 Ⅱ)1.:磁场对运动电荷的作用力叫洛伦兹力.2.洛伦兹力的方向(1)判定方法:左手定则:掌心——磁感线垂直穿入掌心;四指——指向正电荷运动的方向或负电荷运动的 ; 拇指——指向的方向.(2)方向特点:F ⊥B ,F ⊥v ,即F 垂直于B 和v 决定的 . 3.洛伦兹力的大小(1)v ∥B 时,洛伦兹力F = .(θ=0°或180°) (2)v ⊥B 时,洛伦兹力F = .(θ=90°) (3)v =0时,洛伦兹力F = .带电粒子在匀强磁场中的运动 (考纲要求 Ⅱ ) 1,带电粒子不受洛伦兹力,在匀强磁场中做 运动.2.若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做 运动. 3.半径和周期公式:(v ⊥B )判断正误,正确的划“√”,错误的划“×”.(1)带电粒子在磁场中一定会受到磁场力的作用.( )(2)洛伦兹力的方向在特殊情况下可能与带电粒子的速度方向不垂直.( ) (3)洛伦兹力不做功,但安培力却可以做功.( )(4)根据公式T =2πrv ,说明带电粒子在匀强磁场中的运动周期T 与v 成反比.( )基 础 自测1.(单选)下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是( ).2.(单选)初速度为v 0的电子,沿平行于通电长直导线的方向射出,直导线中电流方向与电子的初始运动方向如图所示,则( ).A .电子将向右偏转,速率不变B .电子将向左偏转,速率改变C .电子将向左偏转,速率不变D .电子将向右偏转,速率改变 3. (单选)一个带电粒子,沿垂直于磁场方向射入一匀强磁场,粒子的径迹如图8-3-2所示,径迹上的每一段都可以看做圆弧,由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变),从图中的情况可以确定 ( ) A .粒子从a 到b ,带正电 B .粒子从b 到a ,带正电 C .粒子从a 到b ,带负电 D .粒子从b 到a ,带负电4.(单选)如图所示,竖直向下的匀强磁场穿过光滑的绝缘水平面,平面上一个钉子O 固定一根细线,细线的另一端系一带电小球,小球在光滑水平面内绕O 做匀速圆周运动.在某时刻细线断开,小球仍然在匀强磁场中做匀速圆周运动,下列说法一定错误的是( ) A.速率变小,半径变小,周期不变 B.速率不变,半径不变,周期不变 C.速率不变,半径变大,周期变大 D.速率不变,半径变小,周期变小5. (单选)在M 、N 两条长直导线所在的平面内带电粒子的运动轨迹示意图如图所示,已知两条导线中只有一条导线中通有恒定电流,另一条导线中无电流,关于电流、电流方向和粒子的带电情况及运动的方向,可能的是( )A .M 中通有自上而下的恒定电流,带正电的粒子从a 点向b 点运动B .M 中通有自上而下的恒定电流,带正电的粒子从b 点向a 点运动C .N 中通有自下而上的恒定电流,带负电的粒子从b 点向a 点运动D .N 中通有自下而上的恒定电流,带负电的粒子从a 点向b 点运动6.(单选)运动电荷在磁场中受到洛仑兹力的作用,运动方向会发生偏转,这一点对地球上的生命来说有十分重要的意义,从太阳和其他星体发射出的高能粒子流,称为宇宙射线,在射向地球时,由于地磁场的存在改变了带电粒子的运动方向,对地球上的生物起到了保护作用.如图所示为地磁场对宇宙射线作用的示意图.现有来自宇宙的一束质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时将( ) A .竖直向下沿直线射向地面B .相对于原直线运动方向向东偏转C .相对于原直线运动方向向西偏转D .相对于原直线运动方向向北偏转7.(单选)2010·重庆·21如题21图所式,矩形MNPQ 区域内有方向垂直于纸面的匀强磁场,有5个带点粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示。
《磁场对运动电荷的作用力》教案、教学设计人教版选修3一、教学目标【知识与技能】1.知道什么是洛伦兹力,会判断方向;2.明白安培力到洛伦兹力大小的推理过程;3.能够简单解释极光与电视显像。
【过程与方法】1.通过对安培力微观本质的猜测,培养联想和猜测能力;2.通过公式推导,培养逻辑推理能力。
【情感态度与价值观】通过激发好奇心和求知欲,学会科学的思维方式,体会到物理知识在实际中的应用,激发追求科学的热情。
二、教学重难点【重点】洛伦兹力方向的判断和大小计算【难点】洛伦兹力计算公式的推导过程三、教学方法探究法、讲授法、讨论法四、教学过程环节一:导入新课观看极光视频,思考极光原理,从而引出新课。
环节二:新课讲授我们猜想:磁场对通电导线的安培力可能是作用在大量运动电荷上的力的宏观表现,用阴极管射线实验验证。
1. 磁场对运动电荷存在作用力简单进行实验介绍,之后演示①在没有外磁场时,电子束沿直线运动,说明电子不受力的作用。
②将磁铁靠近电子射线管,发现电子束发生了偏转。
说明电子受到力的作用。
结论:磁场对运动电荷有力的作用,猜想成立。
磁场对运动电荷有力的作用叫洛伦兹力。
通电导线在磁场中所受的安培力是洛伦兹力的宏观表现。
2.洛伦兹力方向与大小由安培力猜想洛伦兹力的方向可以用左手定则判定。
(强调:四指指向是负电荷运动的反方向)实验验证:进一步观察电子束垂直进入磁场时的偏转,并改变磁场方向。
验证洛伦兹力的方向可以用左手定则判定。
接下来建立如教材图3.5—3的物理模型,通过一系列公式推导伦兹力的大小。
①时间t内的通过截面的粒子数②q与电流I的关系③匀强磁场中垂直导线受到的安培力④每个电荷所受的洛伦兹力公式F洛=qvB的适用条件(V⊥B),当v∥B时,F洛=0;v与B既不垂直,又不平行时,洛伦兹力的大小?(类比安培力得出F洛=qvBsinθ)特点:只改变力的方向,不改变大小,对运动电荷不做功。
3.应用极光:来自外太空的带电粒子在射向地球时,受到地磁场对它的作用,使这些带点粒子螺旋状地运动到了两极,与两极的高层大气发生作用,产生各种各样的光线。
[教学目标]1、通过本课时的学习使学生知道磁场对电流的作用(安培力)实质是磁场对运动电荷作用(洛仑兹力)的宏观表现。
2、理解洛仑兹力的方向由左手定则判定,能根据安培力的表达式F=BIL推导洛仑兹力的表达式f=qvB。
3、培养学生的思维能力、分析能力以及逻辑推理能力,使学生体会由宏观量描绘微观量的科学思想。
[教学重点]1、由安培力的方向导出判定洛仑兹力方向的判定方法———左手定则。
2、根据安培力的表达式(宏观量)导出洛仑兹力(微观量)的表达式。
[教学难点]建立相关物理模型,导出公式f=qvB。
[教学方法]启发、实验观察结合讲解、讨论。
[教学媒体]阴极射线管、学生低压电源、感应圈(高压)、蹄形磁体、导线和开关以及投影仪、投影片、投影屏幕。
[课时课型]一课时、新课。
[教学过程](40分钟)一、课题导入(5分钟左右)1、安培力的启示(导课):磁场对电流具有磁场力的作用(安培力),电流是由于电荷定向运动形成的,由此可猜想:磁场对电流的作用是磁场对运动电荷作用的体现。
2、演示实验、验证猜想:①介绍(简介)阴极射线管及工作原理。
②观察阴极射线(电子束)在磁场中发生明显的偏转现象。
教师提问:这一现象表明什么?师生总结:阴极射线(电子束)在磁场中偏转,说明电子束在磁场中确实受到某种力的作用,这个力就是今天我们要学习的洛仑兹力。
二、新课教学(30分钟左右)(一)洛仑兹力物理学中把磁场对运动电荷的作用力(磁场力)称为洛仑兹力(物理学家洛仑兹最先提出这一观点)。
(二)洛仑兹力的方向1、由安培力的方向导出洛仑兹力方向的特点(1)洛仑兹力的方向跟磁场方向垂直;(2)洛仑兹力的方向跟电荷运动方向垂直。
2、用左手定则确定洛仑兹力的方向(便于记忆)教师示范:伸开左手,使大拇指跟其于四个手指垂直,且处于同一水平面内,将左手放入磁场中,让磁感线从手心穿进,四指指向正电荷的运动方向,那么大拇指所指的方向就是正电荷受洛仑兹力的方向(在黑板上画出示意图)。
《磁场对运动电荷的作用力》教学设计方案(第一课时)一、教学目标1. 理解磁场的观点,以及磁场对运动电荷的作用力。
2. 掌握洛伦兹力的基本性质和规律,能够运用其解决实际问题。
3. 了解洛伦兹力在科技和生活中的实际应用。
二、教学重难点1. 教学重点:理解磁场的观点,掌握洛伦兹力的基本性质和规律。
2. 教学难点:运用洛伦兹力解决实际问题,以及理解磁场对运动电荷的作用机理。
三、教学准备1. 准备教学用具:黑板、白板、投影仪、示波器、磁铁等。
2. 准备实验器械:电流表、电压表、磁铁、导体棒等。
3. 准备教学视频:展示磁场对运动电荷的作用过程。
4. 设计问题清单,供教室讨论和思考。
四、教学过程:1. 引入课题教师起首向学生介绍磁场的观点,以及磁场对运动电荷的作用力。
接着,向学生展示一些磁场对运动电荷的影响实例,例如通电导线的运动方向、磁铁对小铁球的作用等。
让学生感受到磁场的重要性,并激发他们的学习兴趣。
2. 讲解基础知识在介绍了磁场的观点和作用力后,教师需要进一步讲解磁场的方向、强度和磁感应强度等基础知识。
同时,教师需要诠释磁场对不同形状的电荷的作用力的不同,例如点电荷和长棒电荷等。
3. 实验演示为了让学生更好地理解磁场对运动电荷的作用力,教师可以进行一些实验演示。
例如,应用电流计和磁铁进行实验,观察运动电荷在磁场中的偏转情况。
同时,教师也可以引导学生进行自主实验,让他们亲手操作并观察实验结果。
4. 探究讨论在实验演示结束后,教师可以组织学生进行探究讨论。
学生可以提出自己的疑问和思考,并与其他同砚分享自己的看法和结论。
教师可以在讨论中给予学生指导,帮助他们解决疑惑并激发他们的思考。
5. 教室总结最后,教师需要对本节课进行总结,强调本节课的重点和难点,并对学生的学习效果进行评判。
教师还可以鼓励学生总结自己在本节课中学到了什么,并让他们谈谈自己的感受和收获。
6. 课后作业在课后,教师可以为学生安置一些与本节课内容相关的作业,例如思考题、探究题等。
【重点知识梳理】 一、洛伦兹力 1.洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。
计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安=BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。
由以上四式可得F=qvB 。
条件是v 与B 垂直。
当v 与B 成θ角时,F=qvB sin θ。
2.洛伦兹力方向的判定在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
3.洛伦兹力大小的计算带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式: Bqm T Bq mv r π2,==二、带电粒子在匀强磁场中的运动带电粒子在磁场中的运动是高中物理的一个难点,也是高考的热点。
在历年的高考试题中几乎年年都有这方面的考题。
带电粒子在磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。
1、带电粒子在半无界磁场中的运动2.穿过圆形磁场区。
画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
偏角可由R r=2tan θ求出。
经历时间由Bqm t θ=得出。
注意:由对称性,射出线的反向延长线必过磁场圆的圆心。
3.穿过矩形磁场区。
一定要先画好辅助线(半径、速度及延长线)。
偏转角由sin θ=L /R 求出。
侧移由R 2=L 2-(R-y )2解出。
经历时间由Bqm t θ=得出。
注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同! 【高频考点解读】【例1】磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极?两板间最大电压为多少?解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。
高考复习--磁场对运动电荷的作用一.考点整理 基本概念1.洛伦兹力:①磁场对运动电荷的作用力叫洛伦兹力;②洛伦兹力的方向判定用左手定则:关键词是“掌心”—— 磁感线 穿入掌心;“四指”—— 指向 运动的方向或 运动的反方向;“拇指” —— 指向洛伦兹力的方向.洛伦兹力方向特点:F ⊥B ,F ⊥v ,即F 垂直于B 和v 决定的 .③ 洛伦兹力的大小:v ∥B 时,洛伦兹力F = (θ = 0°或180°);v ⊥B 时,洛伦兹力F = (θ = 90°);v = 0时,洛伦兹力F = .④ 洛仑兹力对运动电荷 功.2.带电粒子在匀强磁场中的运动:① 若v ∥B,带电粒子不受洛伦兹力,在匀强磁场中做 运动;② 若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做 运动;半径和周期公式R = 、T = 2πR /v = . 3.质谱仪:① 构造:如图所示,由粒子源、加速电场、 和照相底片等构成.② 原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU = mv 2/2;粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB = mv 2/r ;由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷;r = 、m = 、m q =222rB U. 4.回旋加速器:① 构造:如图所示,D 1、D 2是半圆金属盒,D 形盒的缝隙处接交流电源.D 形盒处于 磁场中.② 原理:交流电的周期和粒子做圆周运动的周期 ,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB = mv 2/R ,得E km= ,可见粒子获得的最大动能由磁感应强度和D 形盒决定,与加速 无关.二.思考与练习 思维启动1.下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是( )2.试画出下图中几种情况下带电粒子的运动轨迹,并说出其运动性质.3.如图所示,一个质量为m 、电荷量为e 的粒子从容器A 下方的小孔S ,无初速度地飘入电势差为U 的加速电场,然后垂直进入磁感应强度为B 的匀强磁场中,最后打在照相底片M 上.则( )A .粒子进入磁场时的速率v =2eU m B .粒子在磁场中运动的时间t = 2πmeBC .粒子在磁场中运动的轨道半径r = 1B 2mUeD .若容器A 中的粒子有初速度,则粒子仍将打在照相底片上的同一位置 三.考点分类探讨 典型问题 〖考点1〗洛伦兹力的特点及应用【例1】如图所示,在竖直绝缘的平台上,一个带正电的小球以水平速度v 0抛出,落在地面上的A 点,若加一垂直纸面向里的匀强磁场,则小球的落点( ) A .仍在A 点 B .在A 点左侧C .在A 点右侧D .无法确定【变式跟踪1】如图所示,ABC 为竖直平面内的光滑绝缘轨道,其中AB 为倾斜直轨道,BC 为与AB 相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB 上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则 ( ) A .经过最高点时,三个小球的速度相等 B .经过最高点时,甲球的速度最小C .甲球的释放位置比乙球的高D .运动过程中三个小球的机械能均保持不变 〖考点2〗带电粒子在匀强磁场中的运动【例2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC与OB 成60°角.现将带电粒子的速度变为v /3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A .12Δt B .2Δt C .13Δt D .3Δt 【变式跟踪2】如图(a )所示,在以直角坐标系xOy 的坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直xOy 所在平面向里的匀强磁场.一带电粒子由磁场边界与x 轴的交点A 处,以速度v 0沿x 轴负方向射入磁场,粒子恰好能从磁场边界与y 轴正半轴的交点C 处,沿y 轴正方向射出磁场,不计带电粒子所受重力. ⑴ ① 粒子带何种电荷;② 求粒子的比荷 q :m ;⑵ 若磁场的方向和所在空间的范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,粒子射出磁场时速度的方向相对于入射方向改变了θ角,如图(b )所示,求磁感应强度B ′的大小.〖考点3〗有界磁场中的临界问题【例3】如图所示,在0 ≤ x ≤ a 、0 ≤ y ≤ a /2范围内垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .坐标原点O 处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在0°~ 90°范围内.已知粒子在磁场中做圆周运动的半径介于a /2到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:⑴ 速度的大小.⑵ 速度方向与y 轴正方向夹角的正弦.【变式跟踪3】如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为 +q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角为θ = 45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求: ⑴ 两板间电压的最大值U m ;⑵ CD 板上可能被粒子打中的区域的长度s ; ⑶ 粒子在磁场中运动的最长时间t m .四.考题再练 高考试题1.【2012·江苏卷】如图所示,MN 是磁感应强度为B 的匀强磁场的边界.一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v 0,最远能落在边界上的A 点.下列说法正确的有 ( ) A .若粒子落在A 点的左侧,其速度一定小于v 0 B .若粒子落在A 点的右侧,其速度一定大于v 0C .若粒子落在A 点左右两侧d 的范围内,其速度不可能小于v 0 – qBd /2mD .若粒子落在A 点左右两侧d 的范围内,其速度不可能大于v 0 + qBd /2m【预测1】如图所示,在坐标系第一象限内有正交的匀强电、磁场,电场强度E = 1.0×103 V/m ,方向未知,磁感应强度B = 1.0 T ,方向垂直纸面向里;第二象限的某个圆形区域内有垂直纸面向里的匀强磁场B ′(图中未画出).一质量m = 1×10-14 kg 、电荷量q = 1×10-10 C 的带正电粒子以某一速度v 沿与x 轴负方向成60°角的方向从A 点进入第一象限,在第一象限内做直线运动,而后从B 点进入磁场B ′ 区域.一段时间后,粒子经过x 轴上的C 点并与x 轴负方向成60°角飞出.已知A 点坐标为(10,0),C 点坐标为(– 30,0),不计粒子重力. ⑴ 判断匀强电场E 的方向并求出粒子的速度v ;⑵ 画出粒子在第二象限的运动轨迹,并求出磁感应强度B ′; ⑶ 求第二象限磁场B ′ 区域的最小面积.2.【2013上海高考】如图,足够长的直线ab 靠近通电螺线管,与螺线管平行.用磁传感器测量ab 上各点的磁感应强度B ,在计算机屏幕上显示的大致图像是 ( )【预测2】一个带正电的小球沿光滑绝缘的桌面向右运动,速度方向垂直于一个垂直纸面向里的匀强磁场,如图所示,小球飞离桌面后落到地板上,设飞行时间为t 1,水平射程为s 1,着地速度为v 1.撤去磁场,其余的条件不变,小球飞行时间为t 2,水平射程为s 2,着地速度为v 2.则下列论述正确的是 ( ) A .s 1 > s 2 B .t 1 > t 2 C .v 1和v 2大小相等 D .v 1和v 2方向相同五.课堂演练 自我提升1.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将 ( ) A .可能做直线运动 B .可能做匀减速运动 C .一定做曲线运动 D .可能做匀速圆周运动2.用绝缘细线悬挂一个质量为m ,带电荷量为 +q 的小球,让它处于图示的磁感应强度为B 的匀强磁场中.由于磁场的运动,小球静止在图中位置,这时悬线与竖直方向夹角为α,并被拉紧,则磁场的运动速度和方向是 ( )A .v =mg Bq ,水平向左 B .v = mgtan αBq ,竖直向下 C .v = mgtan αBq ,竖直向上 D .v = mgBq,水平向右3.如图所示,圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B ,一带电粒子(不计重力)以某一初速度沿圆的直径方向射入磁场,粒子穿过此区域的时间为t ,粒子飞出此区域时速度方向偏转角为60°,根据以上条件可求下列物理量中的 ( ) A .带电粒子的比荷 B .带电粒子的初速度C .带电粒子在磁场中运动的周期D .带电粒子在磁场中运动的半径 4.质量和电量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示.下列表述正确的是 ( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间5.如图甲所示是用来加速带电粒子的回旋加速器的示意图,其核心部分是两个D 形金属盒.在加速带电粒子时,两金属盒置于匀强磁场中,两盒分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t 的变化规律如图乙所示,忽略带电粒子在电场中的加速时间,则下列判断正确的是 ( )A .在E k – t 图中应有t 4 – t 3 = t 3 – t 2 = t 2 – t 1B .高频电源的变化周期应该等于tn–tn-1C.粒子加速次数越多,粒子最大动能一定越大D .要想粒子获得的最大动能增大,可增加D 形盒的半径参考答案:一.考点整理 基本概念1.垂直 正电荷 负电荷 平面 0 qvB 0 不做 2.匀速直线 匀速圆周 mv /qB 2πm /qB3.偏转磁场 qmU B 21 U B qr 2224.匀强 相等 q 2B 2R 2/2m 半径二.思考与练习 思维启动1.B ;根据左手定则,A 中F 方向应向上,B 中F 方向应向下,故A 错、B 对.C 、D 中都是v ∥B ,F = 0,故C 、D 都错. 2.如图所示3.AC ;在加速电场中由动能定理得eU = 12mv 2,所以粒子进入磁场时的速度v =2eUm,A 正确;由evB = mv 2/r 得粒子的半径r = mv eB= 1B 2mU e ,C 正确;粒子在磁场中运动了半个周期t = T 2 = πmeB,B 错误;若容器A 中的粒子有初速度,则粒子在磁场中做匀速圆周运动的半径发生变化,不能打在底片上的同一位置,D 错误.三.考点分类探讨 典型问题例1 C ;洛伦兹力虽不做功,但可以改变小球的运动状态(改变速度的方向),小球做曲线运动,在运动中任一位置受力如图所示,小球受到了斜向上的洛伦兹力的作用,小球在竖直方向的加速度a y = (mg – qvB cos θ)/m < g ,故小球平抛的时间将增加,落点应在A 点的右侧.变式1 CD ;设磁感应强度为B ,圆形轨道半径为r ,三个小球质量均为m ,它们恰好通过最高点时的速度分别为v 甲、v 乙和v 丙,则mg + Bv 甲q = mv 甲2/r 、mg - Bv 乙q = mv 乙2/r 、mg = mv 丙2/r ,显然,v 甲 > v 丙 > v 乙,选项A 、B 错误;三个小球在运动过程中,只有重力做功,即它们的机械能守恒,选项D正确;甲球在最高点处的动能最大,因为势能相等,所以甲球的机械能最大,甲球的释放位置最高,选项C 正确.例2 B ;设带电粒子以速度v 进入磁场做圆周运动,圆心为O 1,半径为r 1,则根据qvB= mv 2/r ,得r 1 = mv /qB ,根据几何关系得R /r 1 = tan(φ1/2),且φ1 = 60°.当带电粒子以v /3的速度进入时,轨道半径r 2 = m (v /3)/qB = mv /3qB = r 1/3,圆心在O 2,则 R /r 2 = tan(φ2/2),即tan(φ2/2) =R /r 2 = 3R /r 1 = 3 tan(φ1/2) = 3,故φ2/2 = 60°,φ2=120°;带电粒子在磁场中运动的时间t = (φ/360°)T ,所以Δt 2/Δt 1 = φ2/φ 1= 2/1,即Δt 2 = 2Δt 1 = 2Δt ,故选项B 正确,选项A 、C 、D 错误.变式2 ⑴ ①粒子带负电;② 由几何关系可知,粒子的运动轨迹如图甲所示,其半径R = r ,粒子所受的洛伦兹力等于它做匀速圆周运动时所受的向心力即qv 0B = mv 02/R ,则q /m = v 0/Br .⑵ 粒子的运动轨迹如图乙所示,设其半径为R ′,粒子所受的洛伦兹力提供它做匀速圆周运动的向心力,即qv 0B ′ = mv 02/R ′,又因为tan(θ/2) = r / R ′,解得B ′ =B tan(θ/2).例3 ⑴ 设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R ,由牛顿第二定律和洛伦兹力公式,得qvB = mv 2/R ① 由①式得R = mvqB ②当a /2 < R < a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为O 3的圆弧,圆弧与磁场的上边界相切,如图所示.设该粒子在磁场中运动的时间为t ,依题意t = T /4,得∠OCA = π/2 ③ 设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系可得R sin α = R – a /2 ④ R sin α = a – R cos α ⑤ 又sin2α + cos2α = 1 ⑥由④⑤⑥式得R = ⎝ ⎛⎭⎪⎫2-62a ⑦ 由②⑦式得v = ⎝ ⎛⎭⎪⎫2-62aqB m⑧⑵ 由④⑦式得sin α =6-610变式3 .⑴ M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C点,如图所示,CH = QC = L ,故半径r 1 = L ,又因为qv 1B = mv 12/r 1,且qU m = mv 12/2,所以U m = qB 2L 2/2m .⑵ 设粒子在磁场中运动的轨迹与CD 板相切于K 点,此轨迹的半径为r 2,设圆心为A ,在△AKC 中:sin 45° = r 2/(L – r 2),解得r 2 = ( 2 – 1)L ,即KC = r 2 = ( 2 – 1)L .所以CD 板上可能被粒子打中的区域的长度s = HK ,即 s = r 1 - r 2= (2 – 2)L .⑶ 打在QE 间的粒子在磁场中运动的时间最长,均为半个周期,所以t m = T /2 = πm /qB . 四.考题再练 高考试题1.BC ;带电粒子在磁场中做匀速圆周运动,qv 0B = mv 02/r ,所以r = mv 0/qB ,当带电粒子从不同方向由O 点以速度v 0进入匀强磁场时,其轨迹是半径为r 的圆,轨迹与边界的交点位置最远是离O 点2r 的距离,即OA = 2r ,落在A 点的粒子从O 点垂直入射,其他粒子则均落在A 点左侧,若落在A 点右侧则必须有更大的速度,选项B 正确;若粒子速度虽然比v 0大,但进入磁场时与磁场边界夹角过大或过小,粒子仍有可能落在A 点左侧,选项A 、D 错误;若粒子落在A 点左右两侧d 的范围内,设其半径为r ′,则r ′ ≥ (2r - d )/2,代入r = mv 0/qB ,r ′= mv /qB ,解得v ≥ v 0 – qBd /2m ,选项C 正确.预测1 ⑴ 粒子在第一象限内做直线运动,速度的变化会引起洛伦兹力的变化,所以粒子必做匀速直线运动.这样,电场力和洛伦兹力大小相等,方向相反,电场E 的方向与微粒运动的方向垂直,即与x 轴正向成30°角斜向右上方.由平衡条件有Eq = Bqv 得v = E /B = 103m/s .⑵ 粒子从B 点进入第二象限的磁场B ′ 中,轨迹如图.粒子做圆周运动的半径为R ,由几何关系可知 R = 10cos 30°cm = 203cm ,由qvB ′ = mv 2/R ,解得B ′ = mv 2/qvR = mv /qR ,代入数据解得B ′ =32T . ⑶ 由图可知,B 、D 点应分别是粒子进入磁场和离开磁场的点,磁场B ′ 的最小区域应该分布在以BD 为直径的圆内.由几何关系得BD = 20 cm ,即磁场圆的最小半径r = 10 cm ,所以,所求磁场的最小面积为S = πr 2 = 3.14×10-2m 2.2.C预测 2 ABC ;当桌面右边存在磁场时,在小球下落过程中由左手定则知,带电小球受到斜向右上方的洛伦兹力作用,此力在水平方向上的分量向右,竖直方向上分量向上,因此小球水平方向存在加速度,竖直方向上加速度a < g ,所以t 1 > t 2,s 1 > s 2,A 、B 对;又因为洛伦兹力不做功,C 对;两次小球着地时方向不同,D 错. 五.课堂演练 自我提升1.C ;带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C 正确. 2.C ;根据运动的相对性,带电小球相对磁场的速度与磁场相对于小球(相对地面静止)的速度大小相等、方向相反.洛伦兹力F = qvB 中的v 是相对于磁场的速度.根据力的平衡条件可以得出,当小球相对磁场以速度v = mg tan α/qB 竖直向下运动或以速度v = mg /qB 水平向右运动,带电小球都能处于平衡状态,但题目中要求“绳被拉紧”,由此可以知道只有选项C 正确.3.AC ;由t = (θ/2π)T 和T = 2πm /qB 可知,根据题中已知条件可以求出带电粒子运动的周期,再将周期代入周期公式可以求出带电粒子的比荷. 4.A ;由左手定则知M 带负电,N 带正电,选项A 正确;带电粒子在磁场中做匀速圆周运动且向心力F 向 =F 洛,即 mv 2/r = qvB 得r = mv /qB ,因为M 、N 的质量、电荷量都相等,且r M > r N ,所以v M > v N ,选项B 错误;M 、N 运动过程中,F 洛始终与v 垂直,F 洛不做功,选项C 错误; 由T = 2πm /qB 知M 、N 两粒子做匀速圆周运动的周期相等且在磁场中的运动时间均为 T /2,选项D 错误.5.AD ;带电粒子在匀强磁场中做匀速圆周运动的周期与速度大小无关,因此,在E k - t 图中应有t 4 – t 3= t 3 – t 2 = t 2 – t 1,选项A 正确;带电粒子在回旋加速器中每运行一周加速两次,高频电源的变化周期应该等于2(t n – t n – 1),选项B 错;由r = mv qB =2mEkqB 可知,粒子获得的最大动能决定于D 形盒的半径,当轨道半径与D 形盒半径相等时就不能继续加速,故选项C 错,D 对.。