公式(1)的第一项对应多样化(diversification)的特点,第二项、 第三项对应于搜索过程的集中化(intensification)特点,这三项之 间的相互平衡和制约决定了算法的主要性能。
2020/4/13
9
参数意义
(1)粒子的长度N:问题解空间的维数。
(2)粒子种群大小M:粒子种群大小的选择视具体问题而定,但 是一般设置粒子数为20-50。对于大部分的问题10个粒子已经可 以取得很好的结果,不过对于比较难的问题或者特定类型的问 题,粒子的数量可以取到100或200。另外,粒子数目越多,算 法搜索的空间范围就越大,也就更容易发现全局最优解。当然, 算法运行的时间也较长。
2020/4/13
5
粒子群优化算法的一般数学模型
假设在一个N维空间进行搜索,粒子i的信息可用两个N维向量 来表示:
第i个粒子的位置可表示为 xixi1,xi2,xiNT
速度为 vi vi1,vi2,viNT
在找到两个最优解后,粒子即可根据下式来更新自己的速度和 位置:
v i k 1 d v i k d c 1 r1 a k ( P n i k b d d x i k ) d e c 2 r s2 a k t ( G n d k d b x i k ) d (1e ) s
每个粒子知道自己到目前为止发现的最好位置(particle best,记 为pbest)和当前的位置,pbest就是粒子本身找到的最优解,这 个可以看作是粒子自己的飞行经验。
除此之外,每个粒子还知道到目前为止整个群体中所有粒子发 现的最好位置(global best,记为gbest),gbest是在pbest中的最 好值,即是全局最优解,这个可以看作是整个群体的经验。
8