人教版九年级数学上《圆周角》拔高练习
- 格式:docx
- 大小:277.14 KB
- 文档页数:16
垂径定理和圆周角专题一、知识梳理1.圆心角与圆周角的关系: 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的国心角的一半.例1:如图,∠A 是⊙O 的圆周角,且∠A =35°,那么∠.例2:如图,圆心角∠100°,那么∠.例3:〔2007威海〕如图,AB 是⊙O 的直径,点C D E ,,都在⊙O 上,假设C D E ==∠∠∠,那么A B +=∠∠º.OABC〔例4〕BE F CDG O例例4:〔2007常德〕如图2,⊙O 的直径CD 过弦EF 的中点G ,40EOD ∠=,那么DCF ∠=.2.圆周角定理:直径所对的圆周角是直角,反过来,90°的圆周角所对的弦是直径。
例5::如图,•是⊙O•的直径,∠•30•°,那么∠.例6:〔2007南京〕⊙O 中,30C ∠=,2cm AB =,那么⊙O 的半径为cm .例7:〔2006青岛〕某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,以下图是水平放置的破裂管道有水局部的截面. (1)请你补全这个输水管道的圆形截面;_. ..C(2)假设这个输水管道有水局部的水面宽=16,水面最深地方的高度为4,求这个圆形截面的半径.二、稳固练习1.〔2007浙江温州〕如图,ACB ∠是⊙O 的圆周角,50ACB ∠=︒,那么圆心角AOB ∠是〔 〕A .40︒ B. 50︒C. 80︒D. 100︒2.(2007四川宜宾):如图,四边形是⊙O 的内接正方形,点P 是劣弧上不同于点C 的任意一点,那么∠的度数是〔 〕A .45°B .60°C .75°D .90°3.〔2006·陕西省〕△中,∠A =30°,∠B =60°,=6,那么△外接圆的半径为〔 〕 A .32B .33C .3D .34.圆的弦长与它的半径相等,那么这条弦所对的圆周角的度数是〔 〕OD CB AA .30°B .150°C .30°或150°D .60° 5.(2007上海)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是〔 〕A .第①块B .第②块C .第③块D .第④块6.〔2021山东德州〕如下图,是⊙O 的直径,=,与交于点C ,那么图中与∠相等的角有〔 〕A .2个B .3个C .4个D .5个7.〔2021浙江台州〕以下命题中,正确的选项是〔 〕 ①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等A .①②③B .③④⑤C .①②⑤D .②④⑤8.〔2021南京〕如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,那么等边三角形ABC 的边长为〔 〕BEDACO〔第8A BCOA .3B .5C .23D .259.〔2006·盐城市〕四边形内接于⊙O ,且∠A :∠C =1∶2,那么∠= .10.〔2007山东枣庄〕如图,△内接于⊙O ,∠120°,,为 ⊙O 的直径,6,那么=。
答案先由AB是的直径得出,再根据勾股定理求出AB的长,连接AD,则,再由CD平分可以知道,故,所以,是等腰直角三角形,由勾股定理即可求出BD的长.5.⊙O 的半径10cm ,根据下列点P 到圆心O 的距离,判断点P 和圆O 的位置关系.(1)PO =8cm (2)PO =10cm (3)PO =12cm解:(1)∵8cm<10cm,∴点P在圆内;(2)∵10cm=10cm,∴点P在圆上;(3)∵12cm>10cm,∴点P在圆外.6.在矩形ABCD 中,AB =3,AD =4,以A 为圆心,使B 、C 、D 三点中至少有一点在圆内,至少有一点在圆外,求此圆的半径R 的范围.答案:3<r<5,连接AC,∵AB=3cm,AD=4cm,∴AC=5cm,以点A为圆心作⊙A,使B,C,D三点中至少有一个点在圆内,且至少有一点在圆外,∴⊙A的半径r的取值范围是:3<r<5.7.如图,⊙O 是△ABC 的外接圆,D 是弧AB 上一点,连结BD ,并延长至E ,连结AD 若AB =AC ,∠ADE =65°,试求∠BOC 的度数.答案,1000由题意 ABCD四点共圆,圆内接四边形对角互补角ACB+角ADB=180度角ADE+角ADB=180度角ADE=角ACB=65度角BAC=180度-角ABC-角ACB=50度8.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A 、B 、C•为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.答案为:选在∆ABC的外心处.若想把垃圾回收站建在三个小区都相等的某处只需连接AC、BC及AC,分别作出两边的垂直平分线,两边垂直平分线的交点即为所求点.即三角形的外心。
9、在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2.下列说法中不正确的是()A .当a <5时,点B 在⊙A 内B .当1<a <5时,点B 在⊙A 内C .当a <1时,点B 在⊙A 外D .当a >5时,点B 在⊙A 外答案A由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙O上;当d<r即当1<a<5时,点B在⊙O内;当d>r即当a<1或a>5时,点B在⊙O外.由以上结论可知选项B、C、D正确,选项A错误.故选A.10、如图,点A 、D 、M 在半圆O 上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC =a ,EF =b ,NH =c ,则下列各式正确的是()A 、a >b >c ;B 、a =b =c ;C 、c >a >b ;D 、b >c >a .答案连接OM、OD、OA、根据矩形的对角线相等,得BC=OA,EF=OD,NH=OM.再根据同圆的半径相等,得a=b=c.故选B.11、如果点A 到⊙O 的最短举例是3cm ,最长距离是6cm ,则⊙O 的半径是 cm .答案当这个点在圆外面的的时候直径为6cm-3cm半径为1.5cm当这个点在园内时直径为3cm+6cm半径为4.5cm12、已知Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为 cm .答案:Rt△ABC中,∠C=90°,AC=3cm,BC=4cm;由勾股定理,得:AB==5cm,斜边上的中线是AB=2.5cm.因而外心到直角顶点的距离即斜边的长为2.5cm.故选B.13、已知⊙O 的半径为1,点P 与圆心O 的距离为为d ,且方程x2-2 x+ d=0没有实数根,则点P 与⊙O 的位置关系是.(填园内,圆上或圆外)答案:利用由已知条件方程有实数根,可得出一元二次方程根的判别式,,求出d的取值范围,结合圆的半径是1,得出d与r大小关系,当,点P在上;当,点P在的内部,根据点与圆的位置关系得出p与圆的位置关系.14、棱形ABCD 的对角线AC 与BD 相交于点O ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.求证:E 、F 、G 、H 四点在以O 为圆心的同一个圆上.答案连结OH、OE、OF、本题考查梯形的中位线性质,梯形中位线平行于上下底且等于上下底和的一半,同时考查点和圆的位置关系:点在圆外,点和圆心的连线大于半径;点在圆上,它们之间的连线等于半径;点在圆内,它们之间的连线小于半径.(1)若点M在⊙则,,,, ,则可以列方程为,(,;所以能将其完全覆盖的圆的最小半径2,.。
提技能·题组训练圆周角定理及其推论1.( 滨州中考 ) 如图 , 在☉ O中, 圆心角∠ BOC=78°, 则圆周角∠ BAC的大小为 ()A.156°B.78 °C.39°【解析】选C.∠BOC是所对的圆心角D.12°, ∠ BAC是所对的圆周角,∴∠ BAC=∠ BOC=39°.2.( 海南中考 ) 如图 , 在☉ O中 , 弦 BC=1,点 A 是圆上一点 , 且∠ BAC=30°, 则☉ O的半径是 ()A.1B.2C.D.【解析】选A. 方法一 : 连接OB,OC.∵∠ BAC=30°, ∴∠ BOC=2∠ BAC=60° ,∵OB=OC,∴△ OBC是等边三角形 ,∴OB=OC=BC =1.方法二 : 作直径 CD,连接 BD.则∠ CBD=90°, ∵∠ BDC=∠ BAC=30°, ∴CD=2BC=2,∴OC=CD=1.3.( 长春中考 ) 如图 , △ABC内接于☉ O,∠ABC=71° , ∠ CAB=53° , 点 D 在上,则∠ ADB的大小为()A.45°B.53 °C.56 °D.71 °【解析】选 C.在△ ABC中, ∵∠ ABC=71° , ∠ CAB=53°,∴∠ C=180°-71 °-53 °=56° , ∴∠ ADB=∠C=56°.D,则∠ BOD=. 4.( 佛山中考 ) 图中圆心角∠ AOB=30° , 弦 CA∥ OB,延长CO与圆交于点【解析】因为圆心角∠ AOB=30°, 弦 CA∥OB,所以∠ AOB=∠CAO=30°,又 OA=OC,所以∠ CAO=∠ ACO=30° , 所以∠ AOD=∠ CAO+∠ ACO=60° =∠ AOB+∠ BOD,所以∠BOD=30°.答案 : 30°5.( 贵阳中考 ) 如图 ,AD,AC 分别为☉ O的直径和弦 , ∠CAD=30°,B 是 AC上一点 ,BO⊥AD,垂足为【解析】在Rt△AOB中 , ∠A=30° ,BO=5cm,∴AO=5cm,∵AD是直径 ,∴AD=10cm,∠C=90°, 在 Rt△ ADC中,∠A=30°,AD=10cm,∴CD=5cm.答案: 56. 如图 , 正方形ABCD的顶点都在☉O上 ,P是弧DC上的一点 , 则∠ BPC=.【解析】连接 BD,则 BD是直径 ,∴△ BCD是等腰直角三角形 ,∴∠ BDC=45°, ∴∠ BPC=∠ BDC=45°.答案 : 45°【知识归纳】圆周角与直径1.当题目中出现了直径时 , 常作辅助线 , 利用直径所对的圆周角是直角解决问题 .2.当出现 90°的圆周角时 , 常连接该圆周角所对的弦 , 则该弦为直径 .7. 如图 , 在☉ O中, 直径 AB与弦 CD相交于点 P, ∠CAB=40°, ∠APD=65° .(1)求∠B 的大小 .(2)已知 AD=6,求圆心 O到 BD的距离 .【解析】 (1) ∵∠ APD=∠C+∠CAB,∴∠ C=65°-40 °=25° .∴∠ B=∠C=25° .(2) 过点 O作 OE⊥ BD于 E, 则 DE=BE.又∵ AO=BO,∴OE= AD= ×6=3.∴圆心 O到 BD的距离为 3.圆内接四边形1. 如图 , 四边形 ABCD内接于☉ O,如果∠ BOD=130°, 则∠ BCD的度数是 ()A.115°B.130°C.65°D.50°【解析】选 A. ∵∠ BOD=130°, ∴∠ A= ∠BOD=65°, ∵∠2.( 莱芜中考 ) 如图 , 在☉ O中 , 已知∠ OAB=22.5°, 则∠C 的度数为 ()A. 135 °B.122.5 °C.115.5°D.112.5 °【解析】选 D.如图, 作所对的圆周角 .∵OA=OB,∴∠ OBA=∠ OAB=22.5° . ∴∠ AOB=180 ° - ∠ OAB-∠ OBA =180° -22.5 ° -22.5 °=135° .∴∠ D= ∠ AOB=×135°=67.5 °.∵四边形 ACBD是圆内接四边形 ,∴∠ C+∠D=180° .∴∠ C=112.5 °.【方法技巧】1. 在圆中 , 求角的度数时 , 常利用圆周角定理和圆内接四边形的对角互补来完成.2.有时需要自己作出与已知角互补的圆周角 , 才能运用圆内接四边形的性质 .3. 四边形 ABCD内接于☉ O,AD∥BC,∠ B=75° , 则∠ C=.【解析】∵AD∥ BC,∴∠ A+∠B=180° ,∴∠ A=180°-75 °=105°,答案 : 75°【变式训练】已知 , 四边形 ABCD内接于☉ O, 且∠ A∶∠ C=1∶2, 则∠ BOD= ° .【解析】∵四边形 ABCD内接于☉ O,∴∠ A+∠C=180°.又∠ A∶∠ C=1∶ 2, 得∠ A=60° .∴∠ BOD=2∠A=120°.答案 : 1204.如图 , △ ABC内接于☉ O,AD为△ ABC的外角平分线 , 交☉ O 于点 D, 连接 BD,CD,判断△DBC的形状 , 并说明理由 .【解析】△DBC为等腰三角形 . 理由如下 :∵四边形 ABCD为☉ O的内接四边形 ,∴∠ DCB+∠DAB=180°,又∠ EAD+∠DAB=180°,∴∠ EAD=∠DCB.又∠ DAC=∠DBC,∠EAD=∠DAC,∴∠ DBC=∠DCB,∴DB=DC,即△ DBC为等腰三角形 .【错在哪?】作业错例课堂实拍A,B 为☉ O上的两点 , ∠ AOB=100° , 若点 C 也在☉ O上, 且点 C不与 A,B 重合 , 求∠ACB的度数 .(1)错因 :____________________________________.(2)纠错 :____________________________________________________________ _________________________________.答案: (1) 点 C也可能在劣弧AB上,需要分情况讨论(2)当 C在优弧AB上时,∠ ACB=1∠AOB=50°,当 C 在劣弧AB上时,∠ ACB=2 180°-50 °=130°。
九年级数学上册《圆周角》练习题及答案解析学校:___________姓名:___________班级:______________一、单选题1.如图,在⊙O中,AB=AC,⊙AOB=40°,则⊙ADC的度数是()A.40°B.30°C.20°D.15°2.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等3.如图,⊙O的两条弦AB⊙CD,已知⊙ADC=35°,则⊙BAD的度数为()A.55°B.70°C.110°D.130°4.如图,在⊙O中,点A是BC的中点,⊙ADC=24°,则⊙AOB的度数是()A.24°B.26°C.48°D.66°5.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒6.如图,AB 是⊙O 的直径,P A 与⊙O 相切于点A ,⊙ABC =25°,OC 的延长线交P A 于点P ,则⊙P 的度数是( )A .25°B .35°C .40°D .50°7.如图,AB 是O 的直径,C ,D 是O 上的两点,若54ABD ∠=︒,则BCD ∠的度数是( )A .36°B .40°C .46°D .65°8.下列说法正确的是( )A .顶点在圆上的角是圆周角B .两边都和圆相交的角是圆周角C .圆心角是圆周角的2倍D .圆周角度数等于它所对圆心角度数的一半9.下列命题是真命题的是( )A .相等的两个角是对顶角B .相等的圆周角所对的弧相等C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1310.如图,⊙O 是ABC 的外接圆,AC 是⊙O 的直径,点P 在⊙O 上,若40ACB ∠=︒,则BPC ∠的度数是( )A .40︒B .45︒C .50︒D .55︒11.如图,O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交O 于点E ,连接EB .若4AB =,1CD =,则EB 的长为( )A .5B .4C .3D .2.512.如图,点A ,B ,C 是O 上的点,连接,,AB AC BC ,且15ACB ∠=︒,过点O 作OD AB ∥交O 于点D .连接,AD BD ,已知O 半径为2,则图中阴影面积为( )A .2πB .3πC .4πD .23π 13.如图,ABC ∆中,AB 是O 的直径,AC 交O 于点E ,BC 交O 于点D ,点D 是BC 中点,O 的切线DF 交AC 于点F ,则下列结论中⊙A ABE ∠=∠;⊙BD DE =;⊙AB AC =;⊙F 是EC 中点,正确的个数是( )A .1B .2C .3D .4二、填空题14.如图,点A 、B 、C 、D 、E 在O 上,且弧AB 为50︒,则E C ∠+∠=________.15.如图,A 、B 、C 是⊙O 上的三点,AB =2,∠ACB =30°,那么⊙O 的半径等于_____.16.如图,AB 是⊙O 的直径,CD 为弦,AB ⊙CD ,若CD =CB =2,则阴影部分的面积是______.17.如图,在半径为1的O 上顺次取点A ,B ,C ,D ,E ,连接AB ,AE ,OB ,OC ,OD ,OE .若65BAE ∠=︒,70COD ∠=︒,则BC 与DE 的长度之和为__________.(结果保留π).18.如图,ABC内接于⊙O,AB=BC,⊙BAC=30°,AD为⊙O的直径,AD=2,则BD=________.19.如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么________(只需写一个正确的结论).20.如图,AB是⊙O的直径,C、D是⊙O上的两点,⊙AOC=120°,则⊙CDB=_____°.三、解答题21.如图.AB是⊙O的直径,点C,D在⊙O上,C是BD的中点,连接BD交AC于点E,延长AC至F,使CE=CF.(1)求证:BF 是⊙O 的切线.(2)若BF =3,1sin 3A =,求BD 的长. 22.如图,在⊙AOB 和⊙COD 中,OA =OB ,OC =OD ,若⊙AOB =⊙COD =60°.(1)求证:AC =BD .(2)求⊙APB 的度数.23.如图,已知ABCD 是某圆的内接四边形,AB BD =,BM AC ⊥于M ,求证:AM DC CM =+.24.已知AB 是⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,P 是⊙O 上半部分的一个动点,连接OP ,CP .(1)如图⊙,⊙OPC 的最大面积是________;(2)如图⊙,延长PO 交⊙O 于点D ,连接DB ,当CP =DB 时,求证:CP 是⊙O 的切线.25.如图,,,//,//AD DB AE EC FG AB AG BC ==.利用平移或旋转的方法研究图中的线段,,DE BF FC 之间的位置关系和数量关系.参考答案及解析:1.C【详解】先由圆心角、弧、弦的关系求出⊙AOC=⊙AOB=50°,再由圆周角定理即可得出结论.解:⊙在⊙O 中,= ,⊙⊙AOC=⊙AOB ,⊙⊙AOB=40°,⊙⊙AOC=40°, ⊙⊙ADC=12⊙AOC=20°, 故选C .2.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.3.A【分析】根据垂直定义和三角形的两锐角互余进行解答即可.【详解】解:⊙AB ⊙CD ,⊙⊙ADC +⊙BAD =90°,⊙⊙ADC =35°,⊙⊙BAD =90°﹣35°=55°,故选:A .【点睛】本题考查垂直定义、直角三角形的两锐角互余,熟练掌握直角三角形的两锐角互余是解答的关键.4.C【分析】直接利用圆周角求解.【详解】解:⊙点A 是BC 的中点,⊙AC AB =,⊙⊙AOB =2⊙ADC =2×24°=48°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.C【分析】如图,连接AO .利用正多边形的性质求出AOM ∠,AOB ∠,可得结论.【详解】解:如图,连接AO .AMN △是等边三角形,60ANM ∠∴=︒,2120AOM ANM ∠∠∴==︒, ABCDE 是正五边形,360725AOB ∠︒∴==︒,1207248BOM ∠∴=︒-︒=︒.故选:C .【点睛】本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.6.C【分析】根据圆周角定理可得50AOC ∠=︒,根据切线的性质可得90PAO ∠=︒,根据直角三角形两个锐角互余即可求解.【详解】AC AC =,⊙ABC =25°,250AOC ABC ∴∠=∠=︒,AB 是⊙O 的直径,∴90PAO ∠=︒,9040P AOC ∴∠=︒-∠=︒.故选C .【点睛】本题考查了圆周角定理,切线的性质,掌握圆周角定理与切线的性质是解题的关键.7.A【分析】连接AD ,如图,根据圆周角定理得到⊙ADB =90°,⊙C =⊙A ,然后利用余角的性质计算出⊙A ,从而得到⊙C 的度数.【详解】解:如图,连接AD ,⊙AB 为⊙O 的直径,⊙⊙ADB =90°,⊙⊙A =90°−⊙ABD =90°−54°=36°,⊙⊙C =⊙A =36°.故选:A .【点睛】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.8.D【详解】解:顶点在圆上,且与圆有相交的角是圆周角,则A 和B 是错误的;同弧所对的圆周角的度数等于圆心角度数的一半,故选D .9.D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意; 在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.10.C【分析】根据圆周角定理得到90ABC ∠=︒,BPC A ∠=∠,然后利用互余计算出⊙A 的度数,从而得到BPC ∠的度数.【详解】解:⊙AB 是⊙O 的直径,⊙90ABC ∠=︒,⊙90904050A ACB ∠=︒-∠=︒-︒=︒,⊙50BPC A ∠=∠=︒,故选:C .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.C【分析】设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r ,先利用垂径定理得到AC =2,即可利用勾股定理求出半径,从而求出AE 的长,再利用勾股定理即可求出BE .【详解】解:设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r , 由垂径定理得122AC BC AB ===,在Rt ⊙OAC 中,222OA OC AC =+,⊙()22221r r =+-, ⊙52r =, ⊙AE =5,⊙AE 是圆O 的直径,⊙⊙B =90°,⊙在Rt ⊙ABE 中,3BE ,故选:C .【点睛】本题主要考查了垂径定理,勾股定理,直径所对的圆周角是直角等等,熟知垂径定理是解题的关键.12.B【分析】根据圆周角定理可得⊙AOB =30°,再由OD AB ∥,可得AOB ADB SS =,从而得到阴影面积等于扇形AOB 的面积,即可求解.【详解】解:⊙15ACB ∠=︒,⊙⊙AOB =30°, ⊙23023603AOB S ππ⨯==扇形, ⊙OD AB ∥,⊙AOB ADB S S =,⊙阴影面积等于扇形AOB 的面积,⊙阴影面积等于3π. 故选:B【点睛】本题考查了圆周角定理、扇形面积公式和同底等高的两个三角形的面积相等等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.13.C【分析】连接连接OD ,AD 、DE ,根据直径所对的圆周角是直角以及等腰三角形的性质可判断结论⊙;根据同圆或等圆中,同弧所对的弦相等可得结论⊙;根据切线的性质以及三角形中位线定理可得结论⊙;因为只有ABE △是等腰直角三角形时,才能满足结论⊙.【详解】解:连接OD,AD、DE.AB是O的直径,∴∠=︒(直径所对的圆周角是直角),ADB90∴⊥,AD BC点D是BC中点,=,故⊙正确;∴∠=∠,AB ACBAD CAD∴BD DE=,∴=,故⊙正确;BD DEDF是O的切线,∴⊥,OD DF=,BD DCAO BO=,∴,OD AC//∴⊥,DF AF∴,DF BE//⊙点D是BC的中点,∴点F是EC的中点,故⊙正确;只有当ABE△是等腰直角三角形时,45∠=∠=︒,BAC ABE故⊙错误,正确的有⊙⊙⊙共3个,故选:C.【点睛】本题考查了圆周角定理,圆切线的性质,等腰三角形的性质,三角形中位线定理的应用,题目难度适中,熟练掌握相关图形的性质定理是解本题的关键.14.155︒【分析】先根据弧的度数与它所对应的圆心角的度数的关系,求得弧AB对应的圆心角的度数,再根据圆周角与圆心角的关系,则可求得E C ∠+∠.【详解】弧的度数等于它所对应的圆心角的度数,由于弧AB 为50︒,所以3=50∠︒ .顶点在圆上且两边都和圆相交的角叫做圆周角,而一条弧所对的圆周角等于它所对的圆心角的一半,所以:112E ∠=∠ ,122C ∠=∠ , ()()()11112360336050155222E C ∠+∠=∠+∠=︒-∠=︒-︒=︒.【点睛】本题考查弧、圆周角、圆心角的概念,及它们之间的关系.15.2【分析】根据题意和圆周角定理得∠O =60°,则△OAB 是等边三角形,根据AB =2即可得.【详解】解:∵OA =OB ,∠ACB =30°,OA =OB ,∴∠O =60°,∴△OAB 是等边三角形,∵AB =2,∴OA =AB =2,故答案为:2.【点睛】本题考查了等边三角形的判定与性质,圆周角定理,解题的关键是掌握这些知识点.16.23π【分析】连接OC ,设CD 与AB 的交点为E ,利用垂径定理、勾股定理判定△OBC 是等边三角形,运用扇形的面积减去△OBC 的面积即可.【详解】连接OC ,设CD 与AB 的交点为E ,⊙AB 是⊙O 的直径,AB ⊙CD ,CD =CB =2,⊙CE 1BE ==,⊙⊙ECB =30°,⊙CBE =60°,⊙CO =BO ,⊙△OBC 是等边三角形,⊙⊙BOC =60°,OC =OB =2,⊙2602123602S =π⨯⨯-⨯阴影=23π故答案为:23π 【点睛】本题考查了垂径定理,勾股定理,扇形的面积公式,等边三角形的判定和性质,熟练掌握垂径定理,扇形的面积公式是解题的关键.17.13π##3π 【分析】由圆周角定理得2130BOE BAE ∠=∠=︒,根据弧长公式分别计算出BE 与DC 的长度,相减即可得到答案.【详解】解:⊙65BAE ∠=︒,⊙2130BOE BAE ∠=∠=︒又O 的半径为1,BE 的长度=130113=18018ππ⨯,又70COD ∠=︒,⊙DC 的长度=7017=18018ππ⨯, ⊙BC 与DE 的长度之和=13761-==1818183ππππ,故答案为:13π. 【点睛】本题主要考查了计算弧长,圆周角定理,熟练掌握弧长计算公式是解答本题的关键.18【分析】根据AB =BC ,可得⊙C =⊙BAC =30°,再由圆周角定理,可得⊙D =30°,然后利用锐角三角函数,即可求解.【详解】解:⊙AB =BC ,⊙⊙C =⊙BAC =30°,⊙⊙C =⊙D ,⊙⊙D =30°,⊙AD 为⊙O 的直径,⊙⊙ABD =90°,在Rt ABD △ 中,AD =2,⊙D =30°,⊙cos302BD AD =⋅︒==.【点睛】本题主要考查了圆周角定理,锐角三角函数等知识,熟练掌握相关知识点是解题的关键.19.AB =CD (答案不唯一)【分析】根据圆心角、弧、弦、弦心距之间的关系定理的推论可以直接得到所求的结论.【详解】解:⊙OE =OF ,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,⊙AB =CD .故答案为:AB =CD (答案不唯一)【点睛】本题主要考查了圆心角、弧、弦的关系.熟练掌握在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等是解题的关键. 20.30.【分析】先利用邻补角计算出BOC ∠,然后根据圆心周角定理得到CDB ∠的度数.【详解】⊙⊙BOC =180°﹣⊙AOC =180°﹣120°=60°,⊙⊙CDB =12⊙BOC =30°. 故答案为30.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.21.(1)见详解(2)BD=16 3【分析】(1)根据直径所对圆周角得出⊙ACB=90°,根据C是BD的中点,得出DC BC=,利用等弧所对圆周角得出⊙CAB=⊙CBD即可(2)连结OC,交BD于G,根据垂径定理得出OC⊙BD,DG=BG=12BD,由三角函数求出AF=9,利用勾股定理求出ABAB BFBCAF⋅===(1)证明:⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙C是BD的中点,⊙DC BC=,⊙⊙CAB=⊙CBD,⊙CE=CF,BC⊙EF,⊙BE=BF,⊙⊙FBC=⊙CBE,⊙⊙FBC=⊙CBE=⊙CAB,⊙⊙CAB+⊙CBA=90°,⊙⊙FBC+⊙CBA=90°,⊙FB⊙AB,AB为直径,⊙BF为⊙O的切线;,(2)解:连结OC,交BD于G,⊙DC BC=,OC为半径,⊙OC⊙BD,DG=BG=12 BD,⊙BF=3,1 sin3A=,⊙31sin 3BF A AF AF ===, ⊙AF =9,在Rt △ABF 中AB⊙S △ABF =12BC ·AF =12AB ·BF ,⊙AB BF BC AF ⋅=== ⊙sin A =sin⊙CBG =13CG BC ==,⊙3CG =,在Rt ⊙BCG 中83BG ==, ⊙BD =2BG =163.【点睛】本题考查圆的切线判定,等弧所对圆周角性质,线段线段垂直平分线性质,等腰三角形等腰三角形三线合一性质,勾股定理锐角三角函数,面积等积式,本题难度不大,是中考常考试题,掌握好相关知识是解题关键.22.(1)见解析(2)60°【分析】(1)通过证明⊙AOC ⊙⊙BOD ,即可求证;(2)由(1)可得⊙OAC =⊙OBD ,从而得到⊙P AB +⊙PBA =⊙OAB +⊙OBA ,利用三角形内角和的性质即可求解.(1)证明:⊙⊙AOB =⊙COD ,⊙AOB BOC COD BOC ∠+∠∠+∠=,即⊙AOC =⊙BOD ,在⊙AOC 和⊙BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,⊙⊙AOC ⊙⊙BOD (SAS ),⊙AC =BD .(2)解:⊙⊙AOC ⊙⊙BOD ,⊙⊙OAC =⊙OBD ,⊙⊙PBA =⊙ABO +⊙OBD ,⊙OAB =⊙P AB +⊙OAC ,⊙⊙P AB +⊙PBA =⊙P AB +⊙ABO +⊙OBD =⊙P AB +⊙OAC +⊙ABO =⊙OAB +⊙OBA ,⊙OA =OB ,⊙AOB =60°,⊙⊙AOB 是等边三角形,⊙⊙OAB +⊙OBA =120°⊙⊙P AB +⊙PBA =120°,⊙()180********APB PAB PBA ∠︒-∠+∠︒-︒︒===. 【点睛】此题考查了全等三角形的判定与性质,三角形内角和定理,等边三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质.23.见解析【分析】在MA 上截取ME MC =,连接BE ,利用圆周角定理易得()ABE DBC AAS ≅,利用三角形的性质得到AE CD =即可求解.【详解】证明:在MA 上截取ME MC =,连接BE ,BM AC ⊥,BE BC ∴=,BEC BCE ∴∠=∠.AB BD =,∴AB BD =,ADB BAD ∴∠=∠,而ADB BCE ∠=∠,BCE BAD ∴∠=∠.又180BCD BAD ∠+∠=︒,180BEA BCE ∠+∠=︒,BEA BCD ∴∠=∠.BAE BDC ∠=∠,()ABE DBC AAS ∴∆≅∆,AE CD ∴=,AM AE EM DC CM ∴=+=+.【点睛】本题主要考查了圆周角定理,全等三角形的判定和性质,作出辅助线构建三角形全等是解答关键.24.(1)4(2)见解析【分析】(1)因为OC 长度确定,所以当点P 到OC 的距离最大时⊙OPC 的面积最大,当OP ⊙OC 时,当点P 到OC 的距离最大,等于圆O 的半径,求出此时的⊙OPC 的面积即可;(2)连接AP ,BP ,利用同圆中,相等的圆心角所对的弦相等,可得AP =DB ,因为CP =DB ,所以AP =CP ,可证⊙APB ⊙⊙CPO (SAS ),得到⊙OPC =90°,即可证明CP 是切线.(1)解:⊙AB =4,⊙OB =2,OC =OB +BC =4.在⊙OPC 中,设OC 边上的高为h ,⊙S △OPC 12=OC •h =2h , ⊙当h 最大时,S △OPC 取得最大值.作PH ⊙OC ,如图⊙,则PO PH >,当OP ⊙OC 时,PO PH =,此时h 最大,如答图1所示:此时h =半径=2,14242OPC S ⨯⨯==.⊙⊙OPC 的最大面积为4, 故答案为:4.(2)证明:如答图⊙,连接AP ,BP .⊙⊙AOP =⊙BOD ,⊙AP =BD ,⊙CP =DB ,⊙AP =CP ,⊙⊙A =⊙C ,在⊙APB 与⊙CPO 中, AP CPA C AB CO=⎧⎪∠=∠⎨⎪=⎩,⊙⊙APB ⊙⊙CPO (SAS ), ⊙⊙APB =⊙OPC ,⊙AB 是直径,⊙⊙APB =90°,⊙⊙OPC=90°,⊙DP⊙PC,⊙DP经过圆心,⊙PC是⊙O的切线.【点睛】本题考查了圆,熟练掌握圆的半径、切线、弦与圆心角的关系等知识是解题的关键.25.DE与BF平行且相等,DE与FC平行且相等,BF与FC相等且在一条直线上【分析】易知DE是△ABC的中位线,则DE∥BC∥AG;由此可知四边形ADEG和四边形DBFE都是平行四边形,故AG=DE=BF;由全等三角形可得AG=FC,故DE=BF=FC.【详解】解:线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,数量关系是DE=BF=FC,∵AG∥BC(已知)∴∠G=∠EFC(两直线平行,内错角相等)∵∠AEG=∠FEC(对顶角相等),又AE=EC(已知)∴△AGE≌△CFE(AAS);∴AG=FC,FE=EG(全等三角形的对应边相等),可以看做△AGE绕点E旋转180°得到△CFE,又∵AD=DB(已知)∴DE为三角形ABC的中位线,BC,∴DE∥BC,DE=12即DE∥BF,DE∥FC,∵FG∥AB,AG∥BC(已知)∴四边形ABFG是平行四边形∴AG=BF,BC,∴BF=FC=12∴DE=BF=FC,可以看做⊙ADE沿直线AE平移得到△EFC,故线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,BF与FC在一条直线上,数量关系是DE=BF=FC.【点睛】题考查的是三角形中位线定理、平行四边形及全等三角形的判定和性质.三角形的中位线的性质定理,为证明线段相等和平行提供了依据.第21页共21页。
人教版数学九年级上册第二十四章圆24.1.4圆周角同步测试一、选择题1. 下列图形中的角是圆周角的是()A B C D2. 下列说法中正确的是()A. 顶点在圆周上的角叫圆周角B. 圆周角等于圆心角的一半C. 同弦所对的所有圆周角相等D. 弦所对的圆周角有无数个3. 如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A. 22B. 4C. 42D. 8第3题第4题4. 如图,△ABC的顶点A,B,C均在⊙O中,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°5. 如图,四边形ABCD是圆内接四边形,E是线段BC延长线上的一点,若∠BAD=105°,则∠DCE 的大小是()A. 115°B. 105°C. 75°D. 85°6. ⊙O的半径为1,AB是⊙O的一条弦,且AB=3,则弦AB所对的圆周角为()A. 30°B. 60°C. 30°或150°D. 60°或120°7. 如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A. 45°B. 50°C. 60°D. 75°第7题 第8题8. 如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =59°,则∠C 等于( ) A. 29° B. 31° C. 59° D. 62°9. 如图,在⊙O 中,∠AOB 的度数为m ,C 是ACB ︵上一点,D ,E 是AB ︵上不同的两点(不与A ,B 两点重合),则∠D +∠E 的度数为( )A. mB. 180°-m 2C. 90°+m 2D. m2第9题 第10题10. 如图,BA 是半圆O 的直径,点C 在⊙O 上,若∠ABC =50°,则∠CAB = .11. 如图所示,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D = ,∠B = .第11题 第12题12. 如图,AB 是⊙O 的直径,C 是圆上一点,连接BC ,AC ,∠BAC =60°,弦AD 平分∠BAC ,若AD =6,那么AC = .13. 如图所示,AB 是⊙O 的直径,AB =AC ,D ,E 在⊙O 上,说明:BD =DE .14. 如图,已知A ,B ,C ,D 是⊙O 上的四点,延长DC ,AB 相交于点E ,若BC =BE . 求证:△ADE 是等腰三角形.15. 如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是CAD ︵上一点(不与C ,D 重合),求证:∠CPD =∠COB ;(2)点P ′在CD ︵上(不与C ,D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.16. 如图,正方形ABCD 内接于⊙O ,M 为AD ︵中点,连接BM ,CM . (1)求证:BM =CM ;(2)当⊙O 的半径为2时,求BM ︵的长.17. 如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A ,B 重合),连接CO 并延长CO 交⊙O 于点D ,连接AD .(1)弦长AB = (结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.18. 在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连接CD . (1)如图①,若点D 与圆心O 重合,AC =2,求⊙O 的半径r ; (2)如图②,若点D 与圆心O 不重合,∠BAC =25°,求∠DCA 的度数.答案1. B2. D3. C4. C5. B6. D7. C8. B9. B 10. 40° 11. 80° 100° 12. 213. 解:连接AD .∵AB 为⊙O 的直径,∴∠ADB =90°,即AD ⊥BC .又∵AB =AC ,∴∠BAD =∠EAD ,∴︵BD =︵DE,∴BD =DE .14. 证明:∵BC =BE ,∴∠E =∠BCE .∵四边形ABCD 是圆内接四边形,∴∠A +∠DCB =180°.∵∠BCE +∠DCB =180°,∴∠A =∠BCE .∴∠A =∠E .∴AD =DE .∴△ADE 是等腰三角形.15. (1)证明:连接OD ,∵AB 是直径,AB ⊥CD ,∴︵BC =︵BD ,∴∠COB =∠BOD =21∠COD .又∵∠CPD =21∠COD ,∴∠CPD =∠COB .(2)解:∠CP ′D +∠COB =180°.证明:∵四边形PCP ′D 是圆内接四边形,∴∠CPD +∠CP ′D =180°.∴∠CP ′D +∠COB =180°.16. (1)证明:∵四边形ABCD 是正方形,∴AB =CD ,∴︵AB =︵CD ,∵M 为︵AD 中点,∴︵AM =︵DM ,∴︵AB +︵AM =︵CD +︵DM ,即︵BM =︵CM.∴BM =CM .(2)解:∵⊙O 的半径为2,∴⊙O 的周长为4π,∴︵BM 的长=83×4π=23π. 17. 解:(1)2(2)∵∠BOD 是△BOC 的外角,∠BCO 是△ACD 的外角,∴∠BOD =∠B +∠BCO ,∠BCO =∠A +∠D .∴∠BOD =∠B +∠A +∠D .又∵∠BOD =2∠A ,∠B =30°,∠D =20°,∴2∠A =∠B +∠A +∠D =∠A +50°,∴∠A =50°,∴∠BOD =2∠A =100°.18. 解:(1)如图①,过点O 作OE ⊥AC 于点E ,则AE =21AC =21×2=1.∵翻折后点D 与圆心O 重合,∴OE =21r .在Rt △AOE 中,AO 2=AE 2+OE 2,即r 2=12+(21r )2,解得r =33.(2)连接BC .∵AB 是直径,∴∠ACB =90°,∵∠BAC =25°,∴∠B =90°-∠BAC =65°.根据翻折的性质,︵AC 所对的圆周角为∠B ,︵ABC所对的圆周角为∠ADC ,∴∠ADC +∠B =180°,∴∠B =∠CDB =65°,∴∠DCA =∠CDB -∠A =65°-25°=40°.。
24.1.4 圆周角第1课时 圆周角定理及其推论01 基础题知识点1 圆周角的概念1.下列图形中的角是圆周角的是(B)知识点2 圆周角定理2.(茂名中考)如图,A ,B ,C 是⊙O 上的三点,∠B =75°,则∠AOC 的度数是(A)A .150°B .140°C .130°D .120°3.(滨州中考)如图,在⊙O 中,圆心角∠BOC =78°,则圆周角∠BAC 的大小为(C)A .156°B .78°C .39°D .12°4.(山西模拟)如图,直径为AB 的⊙O 中,BC ︵=2AC ︵,连接BC ,则∠B 的度数为(B)A .35°B .30°C .20°D .15° 知识点3 圆周角定理的推论5.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,∠A =35°,则∠B 的度数是(C)A .35°B .45°C .55°D .65°6.(绍兴中考)如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是(D)A .60°B .45°C .35°D .30°7.(黔西南中考)如图,在⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为(A)A .65°B .75°C .50°D .55°8.(太原二模)如图,BD 是圆O 的直径,∠CBD =30°,则∠A 的度数为(C)A .30°B .45°C .60°D .75°9.(常州中考)如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M ,N ,量得OM =8 cm ,ON =6 cm ,则该圆玻璃镜的半径是(B)A.10 cm B .5 cm C .6 cm D .10 cm10.(朝阳中考)如图是一个圆形人工湖的平面图,弦AB 是湖上的一座桥,已知桥长100 m ,测得圆周角∠ACB =30°,则这个人工湖的直径为200m.11.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.证明:∵AB =BC , ∴AB ︵=BC ︵. ∴∠ADB =∠BDC. ∴DB 平分∠ADC.易错点 忽略弦所对的圆周角不唯一而致错12.已知⊙O 的弦AB 的长等于⊙O 的半径,则此弦AB 所对的圆周角的度数为30°或150°. 02 中档题13.(海南中考)如图,点A 、B 、C 在⊙O 上,AC ∥OB ,∠BAO =25°,则∠BOC 的度数为(B)A .25°B .50°C .60°D .80°14.(吕梁孝义市期中)如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为(B)A .100°B .110°C .115°D .120°15.(广州中考)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是(D)A.AD=2OB B.CE=EOC.∠OCE=40°D.∠BOC=2∠BAD16.如图,⊙C经过原点,并与两坐标轴分别交于A,D两点,已知∠OBA=30°,点A的坐标为(2,0),则点D17.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求BC的长;(2)求BD的长.解:(1)∵AB为⊙O的直径,∴∠ACB=∠ADB=90°.∴在Rt△ABC中,BC=AB2-AC2=102-52=5 3.(2)∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∴∠BAD=∠ABD=45°.∴AD=BD.设BD=AD=x,在Rt△ABD中,由勾股定理,得AD2+BD2=AB2.∴x2+x2=102.解得x=5 2.∴BD=5 2.18.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC,AC于点D,E,且点D为边BC的中点.(1)求证:△ABC为等边三角形;(2)求DE的长.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵点D是BC的中点,∴AD是BC的垂直平分线.∴AB=AC.又∵AB=BC,∴AB=AC=BC.∴△ABC为等边三角形.(2)连接BE.∵AB是⊙O的直径,∴∠AEB=90°.∴BE⊥AC.∵△ABC是等边三角形,∴AE=EC,即E为AC的中点.又∵D是BC的中点,∴DE是△ABC的中位线.∴DE =12AB =12×2=1.03 综合题19.(东营中考)如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,CM +DM 的最小值为8__cm .第2课时 圆内接四边形01 基础题知识点 圆内接四边形的性质1.(湘潭中考)如图,四边形ABCD 是⊙O 的内接四边形,若∠DAB =60°,则∠BCD 的度数是(D)A .60°B .90°C .100°D .120°2.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点.若∠BAD =105°,则∠DCE 的大小是(B)A .115°B .105°C .100°D .95°3.(娄底中考)如图,四边形ABCD 为⊙O 的内接四边形,已知∠C =∠D ,则AB 与CD 的位置关系是AB ∥CD .4.如图,AB 是半圆O 的直径,∠BAC =30°,D 是AC ︵的中点,则∠DAC 的度数是30°.5.如图所示,已知圆心角∠AOB =100°,求∠ACD 的度数.解:在优弧AMB ︵上任取一点N ,连接AN ,BN , 由圆周角定理,得∠N =12∠AOB =12×100°=50°.∴∠ACB =180°-∠N =180°-50°=130°. ∴∠ACD =180°-∠ACB =180°-130°=50°.6.已知圆内接四边形相邻三个内角度数的比为2∶1∶7,求这个四边形各内角的度数. 解:根据圆内接四边形的对角互补可知,其对角和相等,所以四个内角的度数的比为2∶1∶7∶8.设这四个内角的度数分别为2x°、x°、7x°、8x°,则 2x +x +7x +8x =360.解得x =20. 则2x =40,7x =140,8x =160.答:这个四边形各内角的度数分别为40°、20°、140°、160°.7.(T4的变式)如图,四边形ABCD 内接于⊙O ,∠B =50°,∠ACD =25°,∠BAD =65°.求证: (1)AD =CD ;(2)AB 是⊙O 的直径.证明:(1)∵四边形ABCD 内接于⊙O , ∴∠D =180°-∠B =130°. ∵∠ACD =25°,∴∠DAC =180°-∠D -∠ACD =180°-130°-25°=25°. ∴∠DAC =∠ACD. ∴AD =CD.(2)∵∠BAC =∠BAD -∠DAC =65°-25°=40°,∠B =50°, ∴∠ACB =180°-∠B -∠BAC =180°-50°-40°=90°. ∴AB 是⊙O 的直径.易错点 对圆内接四边形的概念理解不清导致错误8.(来宾中考)如图,在⊙O 中,点A ,B ,C 在⊙O 上,且∠ACB =110°,则∠α=140°.02 中档题9.(山西中考模拟百校联考)如图,点A ,B ,C ,D 为⊙O 上的点,四边形AOBC 是菱形,则∠ADB 的度数是(C)A .30°B .45°C .60°D .75°10.(聊城中考)如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为(B)A .45°B .50°C .55°D .60°11.(南京中考)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=215°.12.(吉林中考)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC 上任意一点,连接DP,BP,则∠BPD可能为80(50°≤∠BPD≤100°)(写出一个即可).13.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.求⊙C的半径.解:∵四边形ABMO内接于⊙C,∴∠BAO+∠BMO=180°.∵∠BMO=120°,∴∠BAO=60°.在Rt△ABO中,AO=4,∠BAO=60°,∴AB=8.∵∠AOB=90°,∴AB为⊙C的直径.∴⊙C的半径为4.14.(苏州中考)如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD.连接AC交圆O于点F,连接AE,DE,DF.(1)求证:∠E=∠C;(2)若∠E=55°,求∠BDF的度数.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.∵CD=BD,∴AD垂直平分BC.∴AB=AC.∴∠B=∠C.又∵∠B=∠E,∴∠E=∠C.(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°-∠E.又∵∠CFD=180°-∠AFD,∴∠CFD=∠E=55°.∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°.03综合题15.(佛山中考)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E=∠F,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α,β的代数式表示∠A的大小.解:(1)证明:∵∠DCE=∠BCF,∠E=∠F,又∵∠ADC=∠E+∠DCE,∠ABC=∠F+∠BCF,∴∠ADC=∠ABC.(2)由(1)知∠ADC=∠ABC,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°.∴∠ADC=90°.在Rt△ADF中,∠A=90°-∠F=90°-42°=48°.(3)连接EF.∵四边形ABCD为⊙O的内接四边形,∴∠ECD=∠A.∵∠ECD=∠CEF+∠CFE,∴∠A=∠CEF+∠CFE.∵∠A+∠CEF+∠CFE+∠DEC+∠BFC=180°,∴2∠A+α+β=180°.∴∠A=90°-α+β2.。
《圆》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)已知点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,过点B、C的圆记作为圆O2,过点C、A的圆记作为圆O3,则下列说法中正确的是()A.圆O1可以经过点C B.点C可以在圆O1的内部C.点A可以在圆O2的内部D.点B可以在圆O3的内部2.(5分)下列说法:①直径是弦;②长度相等的两条弧是等弧;③任何一条直径所在的直线都是圆的对称轴;④任何一条直径都是圆的对称轴,其中正确的有()A.1个B.2个C.3个D.4个3.(5分)下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心4.(5分)下列说法错误的是()A.长度相等的两条弧是等弧B.直径是圆中最长的弦C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧5.(5分)下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1B.2C.3D.4二、填空题(本大题共5小题,共25.0分)6.(5分)如图,OA、OB是⊙O的半径,C是⊙O上一点,∠AOB=40°,∠OBC=50°,则∠OAC=°.7.(5分)点A、B在⊙O上,若∠AOB=40°,则∠OAB=.8.(5分)线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.9.(5分)如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)10.(5分)如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG =FD.小云发现连接图中已知点得到两条线段,便可证明IG=FD.请回答:小云所作的两条线段分别是和;证明IG=FD的依据是矩形的对角线相等,和等量代换.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.12.(10分)如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).13.(10分)如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.14.(10分)已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB 于F,且AE=BF,AC与BD相等吗?为什么?15.(10分)已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.《圆》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)已知点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,过点B、C的圆记作为圆O2,过点C、A的圆记作为圆O3,则下列说法中正确的是()A.圆O1可以经过点C B.点C可以在圆O1的内部C.点A可以在圆O2的内部D.点B可以在圆O3的内部【分析】根据已知条件对个选项进行判断即可.【解答】解:∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,∴点C可以在圆O1的内部,故A错误,B正确;∵过点B、C的圆记作为圆O2,∴点A可以在圆O2的外部,故C错误;∵过点C、A的圆记作为圆O3,∴点B可以在圆O3的外部,故D错误.故选:B.【点评】本题考查了圆的认识,根据已知条件正确的作出判断是解题的关键.2.(5分)下列说法:①直径是弦;②长度相等的两条弧是等弧;③任何一条直径所在的直线都是圆的对称轴;④任何一条直径都是圆的对称轴,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据弧的分类、圆的性质对各小题进行逐一分析即可.【解答】解:①直径是最长的弦,故本小题正确;②在等圆或同圆中,长度相等的两条弧是等弧,故本小题错误;③经过圆心的每一条直线都是圆的对称轴,故本小题正确;④经过圆心的每一条直线都是圆的对称轴,故本小题错误.故选:B.【点评】本题考查的是圆的认识,熟知圆周角定理、等弧的概念以及弦的定义.注意熟记定理与公式是关键.3.(5分)下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心【分析】利用圆的对称性质逐一求解可得.【解答】解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.【点评】本题主要考查圆的认识,解题的关键是掌握圆的对称性.4.(5分)下列说法错误的是()A.长度相等的两条弧是等弧B.直径是圆中最长的弦C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧【分析】利用等弧的定义、等圆的定义及弦的定义分别判断后即可确定正确的选项.【解答】解:A、长度相等的弧的度数不一定相等,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确,故选:A.【点评】本题考查了圆的认识的知识,了解圆的有关定义是解答本题的关键,难度不大.5.(5分)下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1B.2C.3D.4【分析】根据轴对称图形的性质、全等图形的性质即可一一判断;【解答】解:①关于一条直线对称的两个图形一定能重合;正确.②两个能重合的图形一定关于某条直线对称;错误.③两个轴对称图形的对应点一定在对称轴的两侧;错误,也可以在对称轴上.④一个圆有无数条对称轴.正确.故选:B.【点评】本题考查圆的认识、轴对称图形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,OA、OB是⊙O的半径,C是⊙O上一点,∠AOB=40°,∠OBC=50°,则∠OAC=30°.【分析】连接OC,根据等腰三角形的性质和三角形内角和定理得到∠BOC=80°,求出∠AOC,根据等腰三角形的性质计算.【解答】解:连接OC,∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°×2=80°,∴∠AOC=80°+40°=120°,∵OC=OA,∴∠OAC=∠OCA=30°,故答案为:30.【点评】本题考查的是等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.7.(5分)点A、B在⊙O上,若∠AOB=40°,则∠OAB=70°.【分析】由∠AOB=40°,OA=OB知∠OAB=∠OBA=,代入计算可得.【解答】解:如图,∵∠AOB=40°,OA=OB,∴∠OAB=∠OBA==70°,故答案为:70°.【点评】本题主要考查圆的基本性质,解题的关键是掌握圆的所有半径都相等及等腰三角形的性质.8.(5分)线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有2个.【分析】以A为圆心,5cm长为半径作圆,与以AB为直径的圆交于2点,依此即可求解.【解答】解:如图所示:到点A的距离为5cm的点有2个.故答案为:2.【点评】此题考查了圆的认识,关键是熟悉圆可以看做是所有到定点O的距离等于定长r的点的集合的知识点.9.(5分)如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB =90°,∠P AB=20°,因而∠PBA=90°﹣20°=70°,在小量角器中弧PB所对的圆心角是70°,因而P在小量角器上对应的度数为70°.故答案为:70°;【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.10.(5分)如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG =FD.小云发现连接图中已知点得到两条线段,便可证明IG=FD.请回答:小云所作的两条线段分别是OH和OE;证明IG=FD的依据是矩形的对角线相等,同圆的半径相等和等量代换.【分析】连接OH、OE,由矩形OGHI和正方形ODEF的性质得出IG=OH,OE=FD,由OH=OE,即可得出结论.【解答】解:连接OH、OE,如图所示:∵在矩形OGHI和正方形ODEF中,IG=OH,OE=FD,∵OH=OE,∴IG=FD;故答案为:OH、OE,同圆的半径相等.【点评】本题考查了矩形的性质、正方形的性质、同圆的半径相等的性质;熟练掌握矩形和正方形的性质是解决问题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.【分析】连结OC,如图,由CE=AO,OA=OC得到OC=EC,则根据等腰三角形的性质得∠E=∠1,再利用三角形外角性质得∠2=∠E+∠1=2∠E,加上∠D=∠2=2∠E,所以∠BOD=∠E+∠D,即∠E+2∠E=75°,然后解方程即可.【解答】解:连结OC,如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.12.(10分)如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).【分析】根据圆的定义解答即可.【解答】解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:【点评】本题考查了圆的认识,关键是了解圆的定义,灵活运用所学知识解决问题.13.(10分)如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.【分析】由直径AB=5cm,可得半径OC=OA=AB=cm,分别利用勾股定理计算AD、AC的长.【解答】解:连接OC,∵AB=5cm,∴OC=OA=AB=cm,Rt△CDO中,由勾股定理得:DO==cm,∴AD=﹣=1cm,由勾股定理得:AC==,则AD的长为1cm,AC的长为cm.【点评】本题考查了同圆的半径相等、勾股定理,在圆中常利用勾股定理计算边的长,本题熟练掌握勾股定理是关键.14.(10分)已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB 于F,且AE=BF,AC与BD相等吗?为什么?【分析】连结OC、OD,由OA=OB,AE=BF,得到OE=OF,由CE⊥AB,DF⊥AB 得到∠OEC=∠OFD=90°,再根据“HL”可判断Rt△OEC≌Rt△OFD,则∠COE=∠DOF,所以AC弧=BD弧,AC=BD.【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC弧=BD弧,∴AC=BD.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了直角三角形全等的判定与性质.15.(10分)已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.【分析】利用圆周角定理、圆弧、弧所对的弦的关系,进而得出∠DAB=∠B=60°,进而得出答案.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴BC=AB=1,∠B=60°,以A圆心BC长为半径画弧可得点D,再连接AD即可;∵AD=BC,∴=,∴∠DAB=∠B=60°,∴∠DAC=60°﹣30°=30°;同理可得:∠D′AC=60°+30°=90°;综上所述:∠CAD的度数为30°或90°.【点评】此题主要考查了圆周角定理以及圆有关的概念,得出∠DAB=∠B=60°是解题关键.。
九年级数学24.1.4《圆周角》同步练习一、选择题:1、如图,已知AB 是⊙O 的直径,∠D =40°,则∠CAB 的度数为( )A. 40°B.50°C. 45°D. 60°2、如图,AD 是⊙O 的弦,AB ∥CD ,∠AOC =76°,则∠BAD =( )A. 48°B.60°C. 38°D.26°3、如图,弦AB 把圆周分成1:2的两部分,已知⊙O 半径为1,则弦长AB 为( ).A. 3B.2C. 2.5D. √34、如图,A.B.C 是⊙O 上三点,42ACB ∠,则ABO ∠等于( )A. 48°B.50°C. 45°D. 64°5、如图,△ABC 的三个顶点都在⊙O 上,且AB 是⊙O 的直径,∠A =20°,则∠B = ()A. 40°B.50°C. 45°D. 70°6、若⊙O 的弦AB 的长等于⊙O 的半径,则弦AB 所对的圆周角的度数为( )A. 60°B.50°C. 45°或150°D. 30°或150°7、如图,⊙O的弦AB、CD的延长线相交于点P,且DA=DP.若BC=5,则BP=().A. 5B.10C. 2.5D. 5√28、如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A. 45°B.70°C. 55°D. 35°9、如图,点A、B、C、D在⊙O上,AC为直径,若∠D=22°,则∠ACB=( )A. 68°B.44°C. 45°D. 64°10、如图,AB是⊙O的直径,C、D是圆上的两点(不与A、B重合),已知BC=6,∠ADC =30°,则AB=( )A. 4√3B.6C. 7.5D. 5√211、如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD=100°,则∠DCE的度数为( )A .40°B .50°C .60°D .80°12、如图,AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°.则∠EBC 的度数为( )A .40°B .22.5°C .30°D .17.5°二、填空题:13、如图,已知点A B C ,,在⊙O 上,若50ACB ∠=°,则AOB ∠= °.14、如图,点A 、B 、C 在⊙O 上,∠AOB =72°,则∠ACB 等于 .15、在直径为10cm 的⊙O 中,弦AB =5cm ,则弦AB 所对的圆周角= .16、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC=5cm ,CD=8cm ,则AE= 。
24.1.4圆周角知识点1 圆周角定理例1.如图,«Skip Record If...»是«Skip Record If...»的直径,«Skip Record If...»为圆内一点,则下列说法中正确的是()A.«Skip Record If...»是«Skip Record If...»的弦B.«Skip Record If...»是圆心角C.«Skip Record If...»是圆周角D.«Skip Record If...»变式2.如图,在«Skip Record If...»中,点«Skip Record If...»是«Skip Record If...»上一点,若«Skip Record If...»,则«Skip Record If...»的度数是()A.80°B.100°C.120°D.130°3.AB是⊙O的直径,C.D是圆上两点,∠BDC=32°,则∠AOC的度数为()A.32°B.64°C.116°D.128°知识点2 同弧或等弧所对的圆周角相等例4.如图,«Skip Record If...»、«Skip Record If...»是«Skip Record If...»的直径,«Skip Record If...»,«Skip Record If...»交«Skip Record If...»于点«Skip Record If...»,«Skip Record If...»,则«Skip Record If...»的度数为()A.20°B.40°C.60°D.70°变式5.如图,«Skip Record If...»是«Skip Record If...»的直径,点«Skip Record If...»,«Skip Record If...»在圆上,«Skip Record If...»,则«Skip Record If...»等于()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»6.如图CD是⊙O的直径,CD=10,点A在⊙O上,∠ACD=30°,B为«Skip Record If...»的中点,P是直径CD上一动点,则PA+PB的最小值为()A.5«Skip Record If...»B.«Skip Record If...»C.5D.«Skip Record If...»知识点3 直径所对的圆周角例7.如图,半径为5的«Skip Record If...»经过点C和点O,点B是y轴右侧«Skip Record If...»的优弧上一点,«Skip Record If...»,则点C的坐标为()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»变式8.如图,在圆内接五边形ABCDE中,∠EAB∠+∠C+∠CDE+∠E=430°,则∠CDA =_____度.9.如图,扇形OAB的圆心角为124°,C是弧«Skip Record If...»上一点,则∠ACB=_______.课堂练习10.如图,在⊙O 中,AC =«Skip Record If...»AB , 直径BC =2«Skip Record If...», «Skip Record If...», 则AD =___.11.如下是小华设计的“作«Skip Record If...»的角平分线”的尺规作图过程,请帮助小华完成尺规作图并填空(保留作图痕迹).步骤作法推断第一步在«Skip Record If...»上任取一点C ,以点C 为圆心,«Skip Record If...»为半径作半圆,分别交射线«Skip Record If...»于点P ,点Q ,连接«Skip Record If...»«Skip Record If...» ①«Skip Record If...»,理由是② 第二步过点C 作«Skip Record If...»的垂线,交«SkipRecord If...»于点D ,交«Skip Record If...»于点E«Skip Record If...»,«Skip Record If...» ③ 第三步作射线«Skip Record If...»射线«Skip Record If...»平分«Skip Record If...»射线«Skip Record If...»为所求作.12.如图,△ABC 是⊙O 的内接三角形,点C 是优弧AB 上一点(点C 不与A ,B 重合),设∠OAB =α,∠C =β,(1)当α=35°时,求β的度数;(2)猜想α与β之间的关系,并给以证明.13.如图所示,已知AB为圆O的直径,CD是弦,且AB⊥CD于点E,连接AC.OC.BC.(1)求证:∠ACO=∠BCD;(2)若EB=2cm,CD=8cm,求圆O的直径.14.如图,⊙O是△ABD的外接圆,AB为直径,点C是弧AD的中点,连接OC,BC 分别交AD于点F,E.(1)求证:∠ABD=2∠C.(2)若AB=10,BC=8,求BD的长.参考答案1.B【分析】根据弦、圆心角、圆周角的概念可直接进行排除选项.【详解】解:A.点C不在«Skip Record If...»上,所以AC不是«Skip Record If...»的弦,故错误,不符合题意;B.因为点O是圆心,所以∠BOC是圆心角,故正确,符合题意;C.点C不在«Skip Record If...»上,所以∠C不是圆周角,故错误,故不符合题意;D.当点C在圆上时,则OC=OA=OB,若«Skip Record If...»成立,则AC+OC<OA+OB,∴AC<OA,与题干矛盾,∴D选项错误,不符合题意;故选B.【点拨】本题主要考查弦、圆心角、圆周角的概念,熟练掌握弦、圆心角、圆周角的概念是解题的关键.2.D【分析】在优弧AC上取点D,连接AD.CD,由∠AOC= 100° 求出∠ADC= «Skip Record If...»∠AOC,根据四边形ABCD是圆内接四边形,得到∠ADC+∠ABC= 180° ,即可求出∠ABC的度数.【详解】在优弧AC上取点D,连接AD.CD,∵∠AOC= 100° ,∴∠ADC= «Skip Record If...»∠AOC=50° ,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC= 180° ,∴∠ABC= 180° -50° =130° ,故选:D.【点拨】此题考查圆周角定理:同弧所对的圆周角等于圆心角的一半,圆内接四边形的性质:圆内接四边形的对角互补.3.C【分析】根据圆周角定理可求∠AOC,根据邻补角定义可求∠AOC的度数.【详解】∵AB是⊙O的直径,C.D是圆上两点,∠BDC=32°∴∠BOC=2∠D=2×32°=64°∴∠AOC=180°-∠BOC=116°故选:C【点拨】考核知识点:圆周角定理.理解圆周角定理是关键.4.C【分析】先根据圆周角定理可得∠EOD=2∠A=40°,再根据平行线的性质可得∠ADB=∠A =20°,由三角形外角定理即可得出答案.【详解】解:∵∠A=20°,∴∠EOD=2∠A=40°,又∵«Skip Record If...»,∴∠ADB=∠A=20°,∴∠AFC=∠EOD+∠ADB=40°+20°=60°.故选:C.【点拨】本题主要考查了圆周角定理,熟练应用圆周角定理进行求解是解决本题的关键.5.B【分析】由圆周角定理得出∠ACB=90°,由直角三角形的性质求出∠B=55°,再由圆周角定理得出∠ADC=∠B=55°即可.【详解】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=35°,∴∠B=90°﹣35°=55°,∴∠ADC=∠B=55°.故选:B.【点拨】此题主要考查了三角形的外接圆、圆周角定理以及直角三角形的性质;熟练掌握圆周角定理是解题的关键.6.A【分析】首先作A关于CD的对称点Q,连接BQ,然后根据圆周角定理、圆的对称性质和勾股定理解答.本题考查的是轴对称-最短路线问题,解答此题的关键是找到点A的对称点,把题目的问题转化为两点之间线段最短解答.【详解】解:作A关于MN的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB=QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接OQ,OB,∵B为«Skip Record If...»的中点,∴∠BOD=∠ACD=30°,∴∠QOD=2∠QCD=2×30°=60°,∴∠BOQ=30°+60°=90°.∵直径CD=10,∴OB=«Skip Record If...»CD=«Skip Record If...»×10=5,∴BQ=«Skip Record If...»=«Skip Record If...»=5«Skip Record If...»,即PA+PB的最小值为5«Skip Record If...» .故选A.【点拨】此题主要考查圆周角定理的应用,解题的关键是熟知圆周角定理、圆的对称性质应用.7.A【分析】先根据«Skip Record If...»可得CD是«Skip Record If...»的直径,进而求得«Skip Record If...»,再利用圆周角定理得出∠CDO的度数,进而利用含30°的直角三角形的性质得出答案.【详解】解:如图,设«Skip Record If...»与x轴的交点为D,连接CD.«Skip Record If...»∴CD是«Skip Record If...»的直径,∵«Skip Record If...»的半径为5,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,∴点C的坐标为«Skip Record If...»,故选:A.【点拨】此题主要考查了圆周角定理及其推论以及含30°的直角三角形的性质,作出正确的辅助线是解决本题的关键.8.70【分析】先利用多边的内角和得到∠EAB+∠B+∠C+∠CDE+∠E=540°,则可计算出∠B=110°,然后根据圆内接四边形的性质求∠CDA的度数.【详解】解:∵五边形ABCDE的内角和为(5-2)×180°=540°,∴∠EAB+∠B+∠C+∠CDE+∠E=540°,∵∠EAB+∠C+∠CDE+∠E=430°,∴∠B=540°-430°=110°,∵四边形ABCD为⊙O的内接四边形,∴∠B+∠CDA=180°,∴∠CDA=180°-110°=70°.故答案为70.【点拨】本题考查了多边形的内角和与圆内接四边形的性质,运用圆内接四边形的性质是解决问题的关键.9.118°【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【详解】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=124°,∴∠ADB=«Skip Record If...»∠AOB=«Skip Record If...»×124°=62°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣62°=118°.故答案为:118°.【点拨】本题主要考查了圆内接四边形的性质,圆心角与它的圆周角的关系,解题的关键在于能够熟练掌握相关知识进行求解.10.«Skip Record If...»【分析】过D点作DE⊥AB交AB于E,连接BD,DC,根据«Skip Record If...»和BC是直径可以得到,∠DAB=∠DAC=45°=∠DBC=∠DCB,即可得到AE=DE,利用勾股定理先求出AB,BD再求出AE,即可求出AD.【详解】解:如图所示,过D点作DE⊥AB交AB于E,连接BD,CD∵BC是圆的直径∴∠BAC=90°=∠BDC∵«Skip Record If...»∴∠DAB=∠DAC=45°=∠DBC=∠DCB∴BD=DC∵DE⊥AB∴∠AED=90°∴∠EDA=∠DAB=45°∴AE=DE在Rt△ABC中,AC=«Skip Record If...»AB,BC=2«Skip Record If...»,«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»同理«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»设AE=DE=x,则BE=4-x在Rt△DEB中,«Skip Record If...»∴«Skip Record If...»解得«Skip Record If...»或«Skip Record If...»∵«Skip Record If...»,«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»∴AE=DE=3∴«Skip Record If...»故答案为:«Skip Record If...».【点拨】本题主要考查了圆周角定理,直径所对的圆周角是90°,勾股定理,等腰三角形的判定等等,大角对大边,解题的关键在于能够熟练掌握相关知识进行求解.11.见解析;①90;②直径所对的圆周角是直角;③«Skip Record If...»【分析】根据直径所对的圆周角是直角,和同弧所对的圆周角相等即可得出结论【详解】解:补全的图形如图1所示.①∵OQ是直径∴∠OPQ=90°故答案为:90;②故答案为:直径所对的圆周角是直角;③∵CE⊥PQ∴由垂径定理得:«Skip Record If...»«Skip Record If...».故答案为:«Skip Record If...»【点拨】本题考查圆周角定理的推论,垂径定理,熟练掌握圆周角定理及推论是关键12.(1)55°;(2)α+β=90°,证明见解析.【分析】(1)连接OB,根据等腰三角形的性质得到∠OBA=35°,根据三角形内角和定理求出∠AOB,根据圆周角定理计算即可;(2)根据三角形内角和定理和圆周角定理计算.【详解】解:(1)连接OB,∵∠OAB=α=35°,∴∠OBA=35°,∴∠AOB=110°,∴β=«Skip Record If...»∠AOB=55°;(2)结论:α+β=90°.证明:∵∠AOB=180°-2α,β=«Skip Record If...»∠AOB∴β=90°-α,∴α+β=90°.【点拨】本题考查的是三角形的外接圆与外心,掌握圆周角定理、三角形内角和定理是解题的关键.13.(1)翙解析;(2)圆O的直径为10cm.【分析】(1)由AB为⊙O的直径,AB⊥CD,根据垂径定理即可得«Skip Record If...»,然后由圆周角定理可得∠BCD=∠BAC,又由OA=OC,根据等边对等角,可得∠BAC=∠ACO,继而证得结论;(2)根据勾股定理,求出各边之间的关系,即可确定半径.【详解】(1)证明:∵AB为⊙O的直径,AB⊥CD,∴«Skip Record If...»,∴∠BCD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠ACO=∠BCD;(2)设⊙O的半径为R cm,则OE=OB-EB=(R-2)cm,CE=«Skip Record If...»CD=«Skip Record If...»×8=4(cm).在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R-2)2+42,解得R=5,∴OB=5 cm.故圆O的直径为10 cm.【点拨】本题考查圆周角定理、垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.14.(1)见解析;(2)BD=2.8【分析】(1)利用弧的中点,等腰三角形的性质计算即可.(2)利用勾股定理,三角形中位线定理,垂径定理的推论计算即可.【详解】(1)证明:∵C是«Skip Record If...»的中点,∴«Skip Record If...»,∴∠ABC=∠CBD,∵OB=OC,∴∠ABC=∠C,∴∠ABC=∠CBD=∠C,∴∠ABD=∠ABC+∠CBD=2∠C;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴AC=«Skip Record If...»=6,∵C是«Skip Record If...»的中点,∴OC⊥AD,∴«Skip Record If...»,∴«Skip Record If...»,∴OF=1.4,又∵O是AB的中点,F是AD的中点,∴OF是△ABD的中位线,∴BD=2OF=2.8.【点拨】本题考查了垂径定理及其推论,直径所对的圆周角是直角,勾股定理,三角形中位线定理,熟练掌握垂径定理,灵活运用勾股定理和三角形中位线定理是解题的关键.。
《圆周角》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°2.(5分)如图,点A、B、C在⊙O上,D是的中点,若∠ACD=20°,则∠AOB的度数为()A.60°B.70°C.80°D.90°3.(5分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为点E,连接CO,AD,则下列说法中不一定成立的是()A.CE=DE B.∠BOC=2∠BAD C.=D.AD=2CE4.(5分)如图,在⊙O中,弦AB、CD相交于点M,连接BC、AD,∠AMD=100°,∠A =30°,则∠B=()A.40°B.45°C.50°D.60°5.(5分)如图,⊙A过原点O,分别与x轴、y轴交于点C和点D,点B在⊙A上,已知∠B=30°,⊙A的半径为2,则圆心A的坐标是()A.(,1)B.(1,)C.(,1)D.(1,)二、填空题(本大题共5小题,共25.0分)6.(5分)如图,AB是⊙O的直径,E是OB的中点,过E点作弦CD⊥AB,G是弧AC上任意一点,连结AG、GD,则∠G=.7.(5分)如图,A,B是⊙O上的两点,OA⊥OB,点C在优弧上,则∠ACB=度.8.(5分)如图,⊙O的弦AC与半径OB交于点D,BC∥OA,AO=AD,则∠C的度数为°.9.(5分)如图,A、B、C是⊙O上的点,若∠BOC=100°,则∠BAC=°.10.(5分)如图,等腰△ABC的顶角∠BAC=50°,以AB为直径的半圆分别交BC,AC 于点D,E.则的度数是度.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E,连接AD,BC,CO(1)当∠BCO=25°时,求∠A的度数;(2)若CD=4,BE=4,求⊙O的半径.12.(10分)如图,AB是圆O的一条弦,点O在线段AC上,AC=AB,OC=3,sin A=.求:(1)圆O的半径长;(2)BC的长.13.(10分)已知四边形ABCD内接于⊙O,BC=CD,连接AC,BD.(I)如图①,若∠CBD=36°,求∠BAD的大小;(Ⅱ)如图②,若点E在对角线AC上,且EC=BC,∠EBD=24°,求∠ABE的大小.14.(10分)如图,AB是⊙O的直径,AC是⊙O的弦,∠ACB的平分线交⊙O于点D,若AB=10,求BD的长.15.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,AE=1,CD=4,连接OC.(1)求⊙O的半径;(2)求sin∠COA的值.《圆周角》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°【分析】根据直径所对的圆周角是90°和平行线的性质解答即可.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.【点评】此题考查圆周角定理,关键是根据直径所对的圆周角是90°和平行线的性质解答.2.(5分)如图,点A、B、C在⊙O上,D是的中点,若∠ACD=20°,则∠AOB的度数为()A.60°B.70°C.80°D.90°【分析】根据圆周角定理即可得到结论.【解答】解:连接OD,∴∠AOD=2∠ACD,∵D是的中点,∴∠AOB=2∠AOD=4∠ACD=80°,故选:C.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.3.(5分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为点E,连接CO,AD,则下列说法中不一定成立的是()A.CE=DE B.∠BOC=2∠BAD C.=D.AD=2CE【分析】先根据垂径定理得到,CE=DE,再利用圆周角定理解答即可.【解答】解:∵在⊙O中,AB是直径,CD是弦,AB⊥CD,∴CE=DE,故A成立;∴,∴,故C成立;∴∠CAB=∠BAD,∴∠BOC=2∠CAB=2∠BAD,故B成立;故选:D.【点评】本题考查了圆周角定理和垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.4.(5分)如图,在⊙O中,弦AB、CD相交于点M,连接BC、AD,∠AMD=100°,∠A=30°,则∠B=()A.40°B.45°C.50°D.60°【分析】根据三角形内角和定理求出∠D,根据圆周角定理解答即可.【解答】解:∵∠AMD=100°,∠A=30°,∴∠D=180°﹣∠AMD﹣∠A=50°,由圆周角定理得,∠B=∠D=50°,故选:C.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5.(5分)如图,⊙A过原点O,分别与x轴、y轴交于点C和点D,点B在⊙A上,已知∠B=30°,⊙A的半径为2,则圆心A的坐标是()A.(,1)B.(1,)C.(,1)D.(1,)【分析】连接CD,过A作AE⊥OC于E,根据圆周角定理得到CD是⊙O的直径,解直角三角形得到OD=CD=2,OC=CD=2,根据垂径定理得到结论.【解答】解:连接CD,过A作AE⊥OC于E,∵∠COD=90°,∴CD是⊙O的直径,∴CD=4,∵∠DCO=∠B=30°,∴OD=CD=2,OC=CD=2,∵AE⊥OC,∴OE=CE=OC=,AE=AC=1,∴A(,1),故选:A.【点评】本题考查了圆周角定理,解直角三角形,垂径定理,正确的作出辅助线是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,AB是⊙O的直径,E是OB的中点,过E点作弦CD⊥AB,G是弧AC上任意一点,连结AG、GD,则∠G=60°.【分析】连接OD,BD,根据含30°的直角三角形的性质和圆周角定理解答即可.【解答】解:连接OD,BD,∵CD⊥AB,E是OB的中点,∴∠OED=90°,2OE=OD,∴∠BOD=60°,∵OB=OD,∴△OBD是等边三角形,∴∠B=60°,∴∠G=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据含30°的直角三角形的性质和圆周角定理解答.7.(5分)如图,A,B是⊙O上的两点,OA⊥OB,点C在优弧上,则∠ACB=45度.【分析】先利用垂直的定义得到∠AOB=90°,然后根据圆周角定理计算∠ACB的度数.【解答】解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故答案为:45【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.(5分)如图,⊙O的弦AC与半径OB交于点D,BC∥OA,AO=AD,则∠C的度数为36°.【分析】由BC∥OA,AO=AD,根据平行线的性质、等腰三角形的性质以及圆周角定理,可得出∠C与∠B的关系,然后由三角形内角和的求得答案.【解答】解:∵BC∥OA,AO=AD,∴∠AOD=∠ODA,∠AOD=∠B,∵∠BDC=∠ODA,∴∠B=∠BDC,∵∠AOD=2∠C,∴∠B=∠BDC=2∠C,∵△BDC的内角和是180°,∴2∠C+2∠C+∠C=180°,解得:∠C=36°,故答案为:36°.【点评】此题考查了圆周角定理以及平行线的性质.注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是关键.9.(5分)如图,A、B、C是⊙O上的点,若∠BOC=100°,则∠BAC=50°.【分析】利用圆周角定理计算即可.【解答】解:∵∠BOC=2∠BAC,∠BOC=100°,∴∠BAC=50°,故答案为50【点评】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考基础题.10.(5分)如图,等腰△ABC的顶角∠BAC=50°,以AB为直径的半圆分别交BC,AC 于点D,E.则的度数是50度.【分析】连接AD,由AB为直径可得出AD⊥BC,由AB=AC利用等腰三角形的三线合一即可得出∠BAD=∠CAD=∠BAC=25°,再根据圆周角定理即可得出的度数.【解答】解:连接AD,如图所示.∵AB为直径,∴AD⊥BC.∵AB=AC,∴∠BAD=∠CAD=∠BAC=25°.∴的度数=2∠EAD=50°.故答案为:50.【点评】此题考查了圆周角定理以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E,连接AD,BC,CO(1)当∠BCO=25°时,求∠A的度数;(2)若CD=4,BE=4,求⊙O的半径.【分析】(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=BE﹣BO,利用勾股定理列出关于r的方程,求出方程的解即可得到圆的半径r的值.【解答】解:(1)∵OC=OB,∴∠BCO=∠B,∵∠B=∠D,∴∠D=∠BCO=25°,∵CD⊥AB,∴在Rt△ADE中,∠A=90°﹣∠D=90°﹣25°=65°;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=BE﹣BO=4﹣r,∴,解得:r=3,∴⊙O的半径为3.【点评】此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.12.(10分)如图,AB是圆O的一条弦,点O在线段AC上,AC=AB,OC=3,sin A=.求:(1)圆O的半径长;(2)BC的长.【分析】(1)过点O作OH⊥AB,垂足为点H,设OH=3k,AO=5k,则AH=,得到AB=2AH=8k,求得AC=AB=8k,列方程即可得到结论;(2)过点C作CG⊥AB,垂足为点G,在Rt△ACG中,∠AGC=90°,解直角三角形即可得到结论.【解答】解:(1)过点O作OH⊥AB,垂足为点H,在Rt△OAH中中,∠OHA=90°,∴sin A==,设OH=3k,AO=5k,则AH=,∵OH⊥AB,∴AB=2AH=8k,∴AC=AB=8k,∴8k=5k+3,∴k=1,∴AO=5,即⊙O的半径长为5;(2)过点C作CG⊥AB,垂足为点G,在Rt△ACG中,∠AGC=90°,∴sin A==,∵AC=8,∴CG=,AG==,BG=,在Rt△CGB中,∠CGB=90°,∴BC===.【点评】本题考查了圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.13.(10分)已知四边形ABCD内接于⊙O,BC=CD,连接AC,BD.(I)如图①,若∠CBD=36°,求∠BAD的大小;(Ⅱ)如图②,若点E在对角线AC上,且EC=BC,∠EBD=24°,求∠ABE的大小.【分析】(I)由BC=CD,推出=,可得∠DBC=∠BAC=∠CAD,由此即可解决问题.(Ⅱ)想办法证明∠ABE=∠EBD即可解决问题.【解答】解:(Ⅰ)∵BC=CD,∴=,∴∠DBC=∠BAC=∠CAD,∵∠CBD=36°,∴∠BAC=∠CAD=36°,∴∠BAD=36°+36°=72°.(Ⅱ)∵CB=CE,∴∠CBE=∠CEB,∴∠DBE+∠CBD=∠BAE+∠ABE,∵∠CBD=∠BAC,∴∠ABE=∠DBE=24°.【点评】本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(10分)如图,AB是⊙O的直径,AC是⊙O的弦,∠ACB的平分线交⊙O于点D,若AB=10,求BD的长.【分析】根据直径所对的圆周角是直角可得∠ACB=∠ADB=90°,再根据角平分线的定义可得∠DCA=∠BCD,然后求出AD=BD,再根据等腰直角三角形的性质其解即可.【解答】解:如图,连接AD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD,∴=,∴AD=BD,∴在Rt△ABD中,AD=BD=AB=×10=5,即BD=5.【点评】本题考查了勾股定理,圆周角定理,解题的关键是得出△ABD是等腰直角三角形.15.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,AE=1,CD=4,连接OC.(1)求⊙O的半径;(2)求sin∠COA的值.【分析】(1)由CD⊥AB知CE=CD=2,设OC=OA=r,则OE=r﹣1,在Rt△COE 中,由OC2=OE2+CE2列出关于r的方程求解可得;(2)由OC=,CE=2根据sin∠COA=计算可得.【解答】解:(1)∵CD⊥AB,∴CE=DE=CD=2,设OC=OA=r,则OE=r﹣1,在Rt△COE中,由OC2=OE2+CE2知r2=(r﹣1)2+22,解得r=,即⊙O的半径为;(2)在Rt△COE中,OC=,CE=2,∴sin∠COA===.【点评】本题主要考查圆周角定理,解题的关键是掌握垂径定理与圆周角定理、勾股定理及三角函数的应用等知识点.。