2017年江西省赣州市石城县中考数学模拟试卷(5月份)
- 格式:doc
- 大小:465.50 KB
- 文档页数:27
江西省2017年中考数学模拟试卷试题卷(二)(1-17题刘有斐老师录入,18-23肖兰老师录入,在此特别感谢)说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6小题,每小题3分,每小题只有一个正确选项) 1.如图,数轴上点A 所表示的数的倒数是( )A. -2B. 2C. 21D. 21- 2.下列运算中正确的是( ) A.2323=+B.5322)2(x x =C.ab b a 1052=⋅D.236=÷3.过正方体上底面的对角线和下底面一顶点的平面,将正方体截去一个三棱椎,所得到的几何体如图所示,它的左视图是( )4.不等式组 的解集在数轴上表示正确的是( )5.如图,在平面直角坐标系中,等腰直角△CDE 的腰CD = 2在x 轴上,∠ECD =45°,将 △CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在y 轴上,则点N 的坐标为( ) A. (0, 3) B. (0,22) C. (0,6) D. (0,10)6.如图,边长为4cm 的正方形ABCD ,点F 为正方形的中心,点E 在FA 的延长线上,EA =4cm ,⊙O 的半径为1cm ,圆心O 从点E 出发向点F 运动,小明发现:当EO 满足①3<EO <5; ②3≤EO ≤5; ③EO =4+2; ④EO =4+23时,⊙O 与正方形ABCD 的边只有两个公共点,你认为小明探究的结论中正确的有( )A. ① ③B. ② ③C.② ④D. ①③④ 二、填空题(本大题共6小题,每小题3分,共18分) 7.如果x =2是方程121-=+a x 的解,那么a 的值是__________________ 8,分解因式:=++a ax ax 2422_________________9.某书店销售某种中考复习资料,每本的售价是20元,若每本打九折,全部卖完可获利1000元;若每本打八折,全部卖完可获利800元,则这批书共购进了__________本. 10.已知a, b 是一元二次方程042=-+x x 的两个不相等的实数根,则=-b a 2__________________.11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),……,按照这样的运动规律,点P 第2019次运动到点__________________.12.如图,在扇形AOB 中,∠AOB =60°,AO =6,点D 为弧AB 的中点,C 为半径OA 上一动点(点A 除外),沿CD 对折后点A 恰好落在扇形AOB 的边线OB 或OA 上AC 的长可以是__________________.13.(本大题共5小题,每小题3分) (1)计算:20172)1(|2|45cos 2)21(---︒-+--.(2)已知AC 为正方形ABCD 的对角线,点E,F 是AC 上的点, EB ∥DF , 求证: EB=DF .14.先化简1212)11(222++-+--÷---x x x x x x x x x x , 再给x 取一个你喜欢的数代入求值.15.在⊙O 中,点A,B,C 在⊙O 上,请仅用无刻度的直尺作图:(1)在图1中,以点C 或点B 为顶点作一锐角,使该锐角与∠CAB 互余;(2)在图2中,已知AD∥BC 交⊙O 于点D ,过点A 作直线将△ACB 的面积平分.16.班主任将本班中的8名留守学生平均分成A ,B ,C ,D 四个小组. (1)求这8名留守学生中的小明被分到A 小组的概率;(2)数学老师决定从A, B 两个小组的留守学生中任选两名进行数学学习帮扶,请用列表或画树状图的方法,求出所选帮扶的两名留守学生来自同一小组的概率.17.炎热的夏天离不开电风扇,如图,放在水平地面的立式电风扇的立柱BC高1 m,点A与点B始终位于同一水平高度,AB = 0.15 m,此时风力中心点正对点D,测得CD = 2.15 m,其中摇头机可绕点A上下旋转一定的角度.(1)求摇头机制俯角∠DAE的度数(精确到0.1°);(2)当摇头机的俯角∠EAF是(1)中∠DAE的一半时,求风力中心点在地面上向前移动的距离DF(精确到0.1 m).(可使用科学计算器,参考数据:tan26.57°≈0.500,tan24.94°≈0.465,tan13.3°≈0.236,tan12.47°≈0.221,5≈2.236 )四、(本大题共3小题,每小题8分,共24分)18、为了了解某市沿江路口机动车交通违章的情况,将电子警察拍照违章车辆的统计结果绘成了如下两幅不完整的统计图表.(1)该路口机动车有交通违章现象的有__________辆,a=__________;(2)计算扇形统计图中该路口机动车违章行驶所对应的扇形圆心角的度数;(3)若一年中约有50 000辆机动车通过该沿江路口,请你计算大约有多少辆机动车不按所需行进方向驶入导向车道.19、标准的篮球场长28 m,宽15 m,在某场篮球比赛中,红队甲乙两名运动员分别在A,B 处的位置如图1所示,其中点B到中线EF的距离为6 m,点C到中线EF的距离为8 m,运11 m/s,运动员乙动员甲在A处抢到篮板球后,迅速将球抛向C处,球的平均运行速度是2在B处看到后同时快跑到C处并恰好接住了球.图2中l1,l2分别表示球、运动员乙离A处的距离y(m)与从A处抛球后的时间x(s)的关系图象.(1)直接写出a,b,c的值;(2)求运动员乙由B处跑向C处的过程中y(m)与x(s)的函数关系式l2;(3)运动员要接住球,一般在球距离自己还有2 m远时要作接球准备,求运动员乙准备接此球的时间是第几秒钟.20、如图,已知等边三角形ABC,矩形ABDE都内接于半径为2的⊙O ,且它们交于点F、G.(1)求矩形ABDE的面积;(2)求证:EF=FG=GDCA五、(本大题共2小题,每小题9分,共18分)21、如图,已知□OBDC 的对角线相交于点E ,其中O (0,0),B (6,8),C (m ,0),反比列函数y =k x(k ≠0)的图象经过点B . (1)求k 的值.(2)若点E 恰好落在反比列函数y =k x的图象上,求□OBDC 的面积.(3)当m =9时,判断反比例函数图象是否经过CD 的中点.若经过,请说明理由;若不经过,求出CD 与反比列函数图象的交点坐标.22、将两个全等的等边三角形 △ABD 和△BCD 按如图所示放置,AB =2,E 是边AD 上的一个动点,将射线BE 绕点B 顺时针旋转60°,交DC 于点F . (1)判断△BEF 的形状,并说明理由.(2)设△BEF 的面积为S ,求S 的取值范围.(3)当△BEF 的面积最小时,在BE 上是否存在点P ,使DP+BP+AP 最小?若存在求出DP+BP+AP 的最小值;若不存在,请说明理由.六、(本大题共12分)23、如图1,一次函数y=kx+k 与二次函数y=kx 2+kx (k >0)交于A ,B 两点,二次函数图象的顶点为P .(1)写出三条与系数k 无关的一次函数和二次函数共有的结论. (2) 当k 为何值时,△AOP 等边三角形?(3)若一次函数y=kx+k 的图象与二次函数y=kx 2+2kx 的图象交于点C ,D ,与y 轴交于点F ,如图2,某数学学习小组探究k =1时得出以下结论,其中正确结论的序号有__________;① AF =BF ; ② 点C 是BF 的黄金分割点;③AF AD = ;④ △CFO 与△ADO 的面积相等.(4)在(3)中,若去掉k =1,以上正确的结论还成立吗?若成立,请选择两个加以说明.。
江西省赣州市中考数学模拟试卷(5月份)一、选择题:(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.﹣的相反数是()A.B.C.6102 D.2.如图所示,有一根黑色金属丝镶嵌在一个完全透明的正方体表面,则该正方体的左视图是()A.B.C.D.3.下列运算正确的是()A.x3﹣3x2=﹣2x B.(﹣)2=x6C.6x3÷2x﹣2=3x D.(2x﹣4)2=4x2﹣164.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD5.若x1、x2是方程x2﹣2x﹣1=0的两个根,则x1+x1x2+x2的值为()A.1 B.﹣1 C.3 D.﹣36.若关于x的二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,则k的取值范围是()A.k=0 B.k=﹣1 C.k>﹣1 D.k≠0且k=﹣1二、填空题(本大题共6小题,每小题3分,共18分)7.化简:=.8.分解因式:2a2b+4ab+2b=.9.不等式组的解集为.10.将边长相等的一个正方形与一个正五边形,按如图重叠放置,则∠1度数=.11.如图,矩形ABCD中,AD=4,AB=2,以点A为圆心,AD为半径画弧交BC于点E,所得的扇形的弧长为.12.如图,在同一个平面直角坐标系xOy中,虚半圆O是函数y=(﹣5≤x≤5)的图象,实曲线(两支)是函数y=(k≠0)的图象:已知方程=(k≠0)有一个解为x=﹣3,则该方程其余的解为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:|﹣2|﹣+(﹣)﹣1;(2)如图,直线AD∥BE∥CF,=,DE=6,求EF的长.14.先化简,再求值:(a﹣)÷,其中a=2+,b=2﹣.15.4月23日“世界读书日”期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,试一试:求出每本《英汉词典》和《读者》杂志的单价.16.赣州市中考体育测试,男生选测项目有:100米、50米、引体向上、立定跳远,男生需从四个项目中随机选取两个,要求:①100米和50米(分别记为A、B)二选一;②引体向上和立定跳远(分别记为C、D)二选一.(1)直接列出一名男生体育选测项目中所有可能选择的结果;(2)请用列表法或画树形图法,求出小华、小海两名男生在体育测试中,“选取的项目完全相同”的概率.17.在10×10的正方形网格中18.人类的血型一般可分为A,B,AB,O型四种,宁波市中心血战202X年共有8万人无偿献血,血战统计人员由电脑随机选出20人,血型分别是:O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.(1)请设计统计表分类统计这20人各类血型人数;(2)若每位献血者平均献血200毫升,一年中宁波市各医院O型血用血量约为6×106毫米,请你估计202X年这8万人所献的O型血是否够用?19.如图,已知矩形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,顶点B的坐标是(6,4),反比例函数y=(x>0)的图象经过矩形对角线的交点E,且与BC边交于点D.(1)①求反比例函数的解析式与点D的坐标;②直接写出△ODE的面积;(2)若P是OA上的动点,求使得“PD+PE之和最小”时的直线PE的解析式.20.如图1是一个新款水杯,水杯不盛水时按如图2所示的位置放置,这样可以快速晾干杯底,干净透气;将图2的主体部分的抽象成图3,此时杯口与水平直线的夹角为35°,四边形ABCD可以看作矩形,测得AB=10cm,BC=8cm,过点A作AF⊥CE,交CE于点F.(1)求∠BAF的度数;(2)求点A到水平直线CE的距离AF的长(精确到0.1cm)(参考数据sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)21.如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.五、(本大题1小题,共10分)22.在直角坐标系xOy中,定义点C(a,b)为抛物线L:y=ax2+bx(a≠0)的特征点坐标.(1)已知抛物线L经过点A(﹣2,﹣2)、B(﹣4,0),求出它的特征点坐标;(2)若抛物线L1:y=ax2+bx的位置如图所示:①抛物线L1:y=ax2+bx关于原点O对称的抛物线L2的解析式为;②若抛物线L1的特征点C在抛物线L2的对称轴上,试求a、b之间的关系式;③在②的条件下,已知抛物线L1、L2与x轴有两个不同的交点M、N,当一点C、M、N为顶点构成的三角形是等腰三角形时,求a的值.六、(本大题1小题,共12分)23.操作:如图1,正方形ABCD中,AB=a,点E是CD边上一个动点,在AD上截取AG=DE,连接EG,过正方形的中线O作OF⊥EG交AD边于F,连接OE、OG、EF、AC.探究:在点E的运动过程中:(1)猜想线段OE与OG的数量关系?并证明你的结论;(2)∠EOF的度数会发生变化吗?若不会,求出其度数,若会,请说明理由.应用:(3)当a=6时,试求出△DEF的周长,并写出DE的取值范围;(4)当a的值不确定时:①若=时,试求的值;②在图1中,过点E作EH⊥AB于H,过点F作FG⊥CB于G,EH与FG相交于点M;并将图1简化得到图2,记矩形MHBG的面积为S,试用含a的代数式表示出S的值,并说明理由.江西省赣州市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题:(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.﹣的相反数是()A.B.C.6102 D.【考点】相反数.【分析】根据相反数的定义回答即可.【解答】解:﹣的相反数是.故选;D.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.如图所示,有一根黑色金属丝镶嵌在一个完全透明的正方体表面,则该正方体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,如图所示:,故选:A.【点评】此题主要考查了三视图的画法中左视图画法,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.下列运算正确的是()A.x3﹣3x2=﹣2x B.(﹣)2=x6C.6x3÷2x﹣2=3x D.(2x﹣4)2=4x2﹣16【考点】整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据同类项合并、积的乘方、整式的除法和乘法计算即可.【解答】解:A、x3与3x2不能合并,错误;B、(﹣)2=x6,正确;C、6x3÷2x﹣2=3x5,错误;D、(2x﹣4)2=4x2﹣16x+16,错误;故选B【点评】此题考查了整式的混合运算,涉及的知识有:单项式除单项式,同底数幂的乘法,合并同类项,以及积的乘方与幂的乘方,熟练掌握法则是解本题的关键.4.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD【考点】全等三角形的判定.【分析】利用三角形全等的判定方法:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、添加BC=FD,AC=ED可利用SAS判定△ABC≌△EFD,故此选项不合题意;B、添加∠A=∠DEF,AC=ED可利用SAS判定△ABC≌△EFD,故此选项不合题意;C、添加AC=ED,AB=EF不能判定△ABC≌△EFD,故此选项符合题意;D、添加∠ABC=∠EFD,BC=FD可利用ASA判定△ABC≌△EFD,故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.若x1、x2是方程x2﹣2x﹣1=0的两个根,则x1+x1x2+x2的值为()A.1 B.﹣1 C.3 D.﹣3【考点】根与系数的关系.【分析】欲求x1+x1x2+x2的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1x2=﹣1,∴x1+x1x2+x2=x1+x2+x1x2=2﹣1=1.故选:A.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.6.若关于x的二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,则k的取值范围是()A.k=0 B.k=﹣1 C.k>﹣1 D.k≠0且k=﹣1【考点】抛物线与x轴的交点;二次函数的定义.【专题】计算题.【分析】先根据二次函数的定义得到k≠0,再根据抛物线与x轴的交点问题得到△=22﹣4k×(﹣1)=0,然后解一次方程即可得到k的值.【解答】解:∵y=kx2+2x﹣1为二次函数,∴k≠0,∵二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,∴△=22﹣4k×(﹣1)=0,解得k=﹣1,∴k的值为﹣1.故选B.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:当△=b2﹣4ac>0时,抛物线与x轴有2个交点;当△=b2﹣4ac=0时,抛物线与x轴有1个交点;当△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共6小题,每小题3分,共18分)7.化简:=.【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简,即可解答.【解答】解:,故答案为:.【点评】本题考查了二次根式的性质与化简,解决本题的关键是熟记二次根式的性质.8.分解因式:2a2b+4ab+2b=2b(a+2)2.【考点】提公因式法与公式法的综合运用.【分析】根据提公因式法,可得公式,根据公式法,可得答案.【解答】解:原式=2b(a2+4a+1)=2b(a+2)2,故答案为:2b(a+2)2.【点评】本题考查了因式分解,利用了提公因式法、公式法分解因式,注意分解要彻底.9.不等式组的解集为1≤x<3.【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,然后求其公共部分.【解答】解:由①得,x≥1,由②得,x<3,故不等式组的解集为1≤x<3.故答案为1≤x<3.【点评】本题考查了解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.将边长相等的一个正方形与一个正五边形,按如图重叠放置,则∠1度数=18°.【考点】多边形内角与外角.【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【解答】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=×540°=108°,∠BAE=108°又∵EA=ED,∴∠EAD=×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠1=90°﹣72°=18°,故答案为:18°.【点评】本题考查了正多边形的计算,重点掌握正多边形内角和公式是关键.11.如图,矩形ABCD中,AD=4,AB=2,以点A为圆心,AD为半径画弧交BC于点E,所得的扇形的弧长为.【考点】弧长的计算;矩形的性质.【分析】根据余弦的定义求出∠BAE的度数,根据矩形的性质求出∠DAE的度数,根据弧长的公式l=计算即可.【解答】解:由题意得,AE=AD=4,cos∠BAE===,则∠BAE=30°,∴∠DAE=60°,扇形的弧长==,故答案为:.【点评】本题考查的是扇形的弧长的计算,掌握弧长的公式:l=是解题的关键.12.如图,在同一个平面直角坐标系xOy中,虚半圆O是函数y=(﹣5≤x≤5)的图象,实曲线(两支)是函数y=(k≠0)的图象:已知方程=(k≠0)有一个解为x=﹣3,则该方程其余的解为3、4、﹣4.【考点】反比例函数图象上点的坐标特征.【分析】将x=﹣3代入方程可求得k的值,然后将k的值代入方程,接下来,将方程两边同时平方,最后解关于x的分式方程即可.【解答】解:∵方程=(k≠0)有一个解为x=﹣3,∴=,解得k=12.∴方程=.∴25﹣x2=.整理得:x4﹣25x2+144=0.∴(x2﹣9)(x2﹣16)=0,即(x+3)(x﹣3)(x+4)(x﹣4)=0.解得:x1=﹣3,x2=3,x3=﹣4,x4=4.所以方程的其他解为3、4、﹣4.故答案为:3、4、﹣4.【点评】本题主要考查函数与方程的关系,通过将方程两边同时平方,将原方程转化为分式方程求解是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:|﹣2|﹣+(﹣)﹣1;(2)如图,直线AD∥BE∥CF,=,DE=6,求EF的长.【考点】平行线分线段成比例;实数的运算.【分析】(1)根据实数的运算法则计算即可;(2)根据平行线分线段成比例定理得到比例式,代入数据即可得到结论.【解答】解:(1)原式=2﹣3+(﹣2)=﹣3;(2)∵AD∥BE∥CF,=,∴,即,∴DF=9,∴EF=DF﹣DE=9﹣6=3.【点评】本题考查了实数的运算法则,平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.14.先化简,再求值:(a﹣)÷,其中a=2+,b=2﹣.【考点】分式的化简求值.【分析】先通过通分、化除法为乘法、约分进行化简,然后代入求值.【解答】解:原式=×=.∵a=2+,b=2﹣,∴a+b=4,a﹣b=2,∴将其代入,得原式==.【点评】本题考查了分式的化简求值.分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.15.4月23日“世界读书日”期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,试一试:求出每本《英汉词典》和《读者》杂志的单价.【考点】二元一次方程组的应用.【分析】设每本《英汉词典》的单价为x元,每本《读者》的价格为y元,根据:10本词典和4本杂志的书款+5元快递费=349,2本词典和12本杂志的书款+5元快递费=141,列方程组可求得.【解答】解:设每本《英汉词典》的单价为x元,每本《读者》的价格为y元,根据题意,得:,解得:,答:每本《英汉词典》的单价为32元,每本《读者》的价格为6元.【点评】本题主要考查二元一次方程组的应用,准确确定蕴含的相等关系是解题的关键.16.赣州市中考体育测试,男生选测项目有:100米、50米、引体向上、立定跳远,男生需从四个项目中随机选取两个,要求:①100米和50米(分别记为A、B)二选一;②引体向上和立定跳远(分别记为C、D)二选一.(1)直接列出一名男生体育选测项目中所有可能选择的结果;(2)请用列表法或画树形图法,求出小华、小海两名男生在体育测试中,“选取的项目完全相同”的概率.【考点】列表法与树状图法.【分析】(1)首先将100米、50米、引体向上、立定跳远分别用A,B,C,D表示,然后画树状图,由树状图求得所有等可能的结果;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两名男生在体育测试中所选项目完全相同的情况,再利用概率公式求解即可求得答案.【解答】解:(1)将100米、50米、引体向上、立定跳远分别用A,B,C,D表示,画树状图得:可得所有可能选择的结果有四种AC,AD,BC,BD;(2)列表得:AC AD BC BDAC (AC,AC)(AD,AC)(BC,AC)(BD,AC)AD (AC,AD)(AD,AD)(BC,AD)(BD,AD)BC (AC,BC)(AD,BC)(BC,BC)(BD,BC)BD (AC,BD)(AD,BD)(BC,BD)(BD,BD)∵所有可能出现的结果共有16种,其中所选项目相同的有4种.∴两人所选项目相同的概率为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.在10×10的正方形网格中18.人类的血型一般可分为A,B,AB,O型四种,宁波市中心血战202X年共有8万人无偿献血,血战统计人员由电脑随机选出20人,血型分别是:O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.(1)请设计统计表分类统计这20人各类血型人数;(2)若每位献血者平均献血200毫升,一年中宁波市各医院O型血用血量约为6×106毫米,请你估计202X年这8万人所献的O型血是否够用?【考点】用样本估计总体;统计表.【分析】(1)根据统计表格进行解答即可;(2)根据样本估计总体直接解答得出答案即可.【解答】解:(1)统计表格如图:(2),6.4×106>6×106,答:O型血够用.【点评】此题主要考查了用样本估计总体,根据O型血的数量求出O型血所占的百分比是解题关键.19.如图,已知矩形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,顶点B的坐标是(6,4),反比例函数y=(x>0)的图象经过矩形对角线的交点E,且与BC边交于点D.(1)①求反比例函数的解析式与点D的坐标;②直接写出△ODE的面积;(2)若P是OA上的动点,求使得“PD+PE之和最小”时的直线PE的解析式.【考点】反比例函数综合题.【分析】(1)①连接OE,则O、E、三点共线,则E是OB的中点,即可求得E的坐标,利用待定系数法求得函数的解析式,进而求得D的坐标;②根据S△ODE=S△OBC﹣S△OCD﹣S△BDE即可求解;(2)作E关于OA轴的对称点E',则直线DE'就是所求的直线PE,利用待定系数法即可求解.【解答】解:(1)①连接OB,则O、E、B三点共线.∵B的坐标是(6,4),E是矩形对角线的交点,∴E的坐标是(3,2),∴k=3×2=6,则函数的解析式是y=.当y=4时,x=1.5,即D的坐标是(1.5,4);②S△OBC=BC•OC=×6×4=12,S△OCD=OC•CD=×4×1.5=3,S△BDE=×(6﹣1.5)×2=4.5,则S△ODE=S△OBC﹣S△OCD﹣S△BDE=12﹣3﹣3﹣4.5=4.5;(2)作E关于OA轴的对称点E',则E'的坐标是(3,﹣2).连接E'D,与x轴交点是P,此时PO+PE最小.设y=mx+n,把E'和D的坐标代入得:,解得:,则直线PE的解析式是y=﹣4x+10.【点评】本题考查了待定系数法求函数的解析式,以及图形的对称,求得函数的解析式是关键.20.如图1是一个新款水杯,水杯不盛水时按如图2所示的位置放置,这样可以快速晾干杯底,干净透气;将图2的主体部分的抽象成图3,此时杯口与水平直线的夹角为35°,四边形ABCD可以看作矩形,测得AB=10cm,BC=8cm,过点A作AF⊥CE,交CE于点F.(1)求∠BAF的度数;(2)求点A到水平直线CE的距离AF的长(精确到0.1cm)(参考数据sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)【考点】解直角三角形的应用.【分析】(1)∠D=∠BCD=90°,求出∠DAF=∠DCE=55°,即可得出结果;(2)作BM⊥AF于M,BN⊥EF于N,由三角函数得出MF=BN=BC•sin35°≈4.59(cm),AM=AB•cos35°≈8.20,(cm),即可得出结果.【解答】解:(1)∵四边形ABCD是矩形,∴∠D=∠BCD=90°,∴∠DAF=∠DCE=90°﹣35°=55°,∴∠BAF=90°﹣55°=35°;(2)作BM⊥AF于M,BN⊥EF于N,如图所示:则MF=BN=BC•sin35°=0.5736×8≈4.59(cm),AM=AB•cos35°=10×0.8192≈8.20,(cm),∴AF=AM+MF=8.20+4.59≈12.8(cm);即A到水平直线CE的距离AF的长为12.8cm.【点评】本题考查了解直角三角形的应用;通过作辅助线运用三角函数求出AM和BN是解决问题的关键.21.如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.【考点】圆的综合题.【专题】综合题.【分析】(1)要想证明△ABH是等腰三角形,只需要根据平行四边形的性质可得∠B=∠ADC,再根据圆内接四边形的对角互补,可得∠ADC+∠AHC=180°,再根据邻补角互补可知∠AHC+∠AHB=180°,从而可以得到∠ABH和∠AHB的关系,从而可以证明结论成立;(2)要证直线PC是⊙O的切线,只需要连接OC,证明∠OCP=90°即可,根据平行四边形的性质和边AB与⊙O相切于点A,可以得到∠AEC的度数,又∠PCD=2∠DAF,∠DOF=2∠DAF,∠COE=∠DOF,通过转化可以得到∠OCP的度数,从而可以证明结论;(3)根据题意和(1)(2)可以得到∠AED=90°,由平行四边形的性质和勾股定理,由AB=2,AD=,可以求得半径的长.【解答】(1)证明:∵四边形ADCH是圆内接四边形,∴∠ADC+∠AHC=180°,又∵∠AHC+∠AHB=180°,∴∠ADC=∠AHB,∵四边形ABCD是平行四边形,∴∠ADC=∠B,∴∠AHB=∠B,∴AB=AH,∴△ABH是等腰三角形;(2)证明:连接OC,如右图所示,∵边AB与⊙O相切于点A,∴BA⊥AF,∵四边形ABCD是平行四边形,∴AB∥CD,∴CD⊥AF,又∵FA经过圆心O,∴,∠OEC=90°,∴∠COF=2∠DAF,又∵∠PCD=2∠DAF,∴∠COF=∠PCD,∵∠COF+∠OCE=90°,∴∠PCD+∠OCE=90°,即∠OCP=90°,∴直线PC是⊙O的切线;(3)∵四边形ABCD是平行四边形,∴DC=AB=2,∵FA⊥CD,∴DE=CE=1,∵∠AED=90°,AD=,DE=1,∴AE=,设⊙O的半径为r,则OA=OD=r,OE=AE﹣OA=4﹣r,∵∠OED=90°,DE=1,∴r2=(4﹣r)2+12解得,r=,即⊙O的半径是.【点评】本题考查圆的综合题、平行四边形的性质、勾股定理、同弧所对的圆心角和圆周角的关系,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.五、(本大题1小题,共10分)22.在直角坐标系xOy中,定义点C(a,b)为抛物线L:y=ax2+bx(a≠0)的特征点坐标.(1)已知抛物线L经过点A(﹣2,﹣2)、B(﹣4,0),求出它的特征点坐标;(2)若抛物线L1:y=ax2+bx的位置如图所示:①抛物线L1:y=ax2+bx关于原点O对称的抛物线L2的解析式为y=﹣ax2+bx;②若抛物线L1的特征点C在抛物线L2的对称轴上,试求a、b之间的关系式;③在②的条件下,已知抛物线L1、L2与x轴有两个不同的交点M、N,当一点C、M、N为顶点构成的三角形是等腰三角形时,求a的值.【考点】二次函数综合题.【分析】(1)结合点A、B点的坐标,利用待定系数法即可求出抛物线L的函数解析式,再结合特征点的定义,即可得出结论;(2)①由抛物线L1:y=ax2+bx与抛物线L2关于原点O对称,可将y换成﹣y,将x换成﹣x,整理后即可得出结论;②根据抛物线L2的解析式可找出它的对称轴为:x=,由抛物线L1的特征点C在抛物线L2的对称轴上可得出a=,变形后即可得出结论;③结合②的结论,表示出点C、M、N三点的坐标,由两点间的距离公式可得出MN、MC、NC的长度,结合等腰三角形的性质分三种情况考虑,分别根据线段相等得出关于a的一元四次方程,解方程再结合a的范围即可得出a的值.【解答】解:(1)将点A(﹣2,﹣2)、B(﹣4,0)代入到抛物线解析式中,得,解得:.∴抛物线L的解析式为y=+2x,∴它的特征点为(,2).(2)①∵抛物线L1:y=ax2+bx与抛物线L2关于原点O对称,∴抛物线L2的解析式为﹣y=a(﹣x)2+b(﹣x),即y=﹣ax2+bx.故答案为:y=﹣ax2+bx.②∵抛物线L2的对称轴为直线:x=﹣=.∴当抛物线L1的特征点C(a,b)在抛物线L2的对称轴上时,有a=,∴a与b的关系式为b=2a2.③∵抛物线L1、L2与x轴有两个不同的交点M、N,∴在抛物线L1:y=ax2+bx中,令y=0,即ax2+bx=0,解得:x1=﹣,x2=0(舍去),即点M(﹣,0);在抛物线L2:y=﹣ax2+bx中,令y=0,即﹣ax2+bx=0,解得:x1=,x2=0(舍去),即点N(,0).∵b=2a2,∴点M(﹣2a,0),点N(2a,0),点C(a,2a2).∴MN=2a﹣(﹣2a)=4a,MC=,NC=.因此以点C、M、N为顶点的三角形是等腰三角形时,有以下三种可能:(i)MC=MN,此时有:=4a,即9a2+4a4=16a2,解得:a=0,或a=±,∵a<0,∴a=﹣;(ii)NC=MN,此时有:=4a,即a2+4a4=16a2,解得:a=0,或a=±,∵a<0,∴a=﹣;(iii)MC=NC,此时有:=,即9a2=a2,解得:a=0,又∵a<0,∴此情况不存在.综上所述:当以点C、M、N为顶点的三角形是等腰三角形时,a的值为﹣或﹣.【点评】本题考查了利用待定系数法求二次函数解析式、二次函数的性质、等腰三角形的性质以及解一元高次方程,解题的关键是:(1)利用待定系数法求二次函数解析式;(2)①明白关于原点对称点的特征;②利用二次函数的性质找出对称轴关系式;③分情况讨论求值.本题属于中档题,难度不大,解决该题型题目时,首先根据特征点的定义找出a、b之间的关系,再结合两点间的距离公式以及等腰三角形的性质找出关于a的一元高次方程,解方程即可得出结论.六、(本大题1小题,共12分)23.操作:如图1,正方形ABCD中,AB=a,点E是CD边上一个动点,在AD上截取AG=DE,连接EG,过正方形的中线O作OF⊥EG交AD边于F,连接OE、OG、EF、AC.探究:在点E的运动过程中:(1)猜想线段OE与OG的数量关系?并证明你的结论;(2)∠EOF的度数会发生变化吗?若不会,求出其度数,若会,请说明理由.应用:(3)当a=6时,试求出△DEF的周长,并写出DE的取值范围;(4)当a的值不确定时:①若=时,试求的值;②在图1中,过点E作EH⊥AB于H,过点F作FG⊥CB于G,EH与FG相交于点M;并将图1简化得到图2,记矩形MHBG的面积为S,试用含a的代数式表示出S的值,并说明理由.【考点】四边形综合题.【分析】(1)由正方形的性质得到△AOG≌△DOG即可;(2)由△AOG≌△DOG得到结论,再结合同角或等角的余角相等求出∠EOF;(3)判断出OF垂直平分EG,计算周长即可;(4)先判断出△AOF∽△CEO,得出,求出.【解答】解:(1)OE=OG,理由:如图1,连接OD,在正方形ABCD中,∵点O是正方形中心,∴OA=OD,∠OAD=∠ODC=45°,∵AG=DE,∴△AOG≌△DOG,∴OE=OG,(2)∠EOF的度数不会发生变化,理由:由(1)可知,△AOG≌△DOE,∴∠DOE=∠AOG,∵∠AOG+∠DOG=90°,∴∠DOE+∠DOG=90°,∴∠DOE=∠AOG,∵∠EOG=90°,∵OE=OG,OF⊥EG,∴∠EOF=45°,∴恒为定值.(3)由(2)可知,OE=OG,OF⊥EG,∴OF垂直平分EG,∴△DEF的周长为DE+EF+DF=AG+FG+DF=AD,∵a=6,∴△DEF的周长为AD=a=6,(0<DE<3)(4)①如图2,∵∠EOF=45°,∴∠COE+AOF=135°∵∠OAF=45°,∴∠AFO+∠AOF=135°,∴∠COE=∠AFO,∴△AOF∽△CEO,∴,∵O到AF与CE的距离相等,∴,∴()2=,∵>0,∴=,②猜想:S=a2,理由:如图3,由(1)可知,△AOF∽△CEO,∴,∴AF×CE=OA×OC,∵EH⊥AB,FG⊥CB,∠B=90°,∴S=AF×CE,∴S=OA×OC=×=a2.【点评】此题是四边形综合题,主要考查正方形的性质,线段的垂直平分线的判定和性质,相似三角形的性质和判定,解本题的关键是角度的计算.。
2017年江西省2017年中考数学试卷及答案机密★2017年6⽉19⽇江西省2017年初中毕业暨中等学校招⽣考试数学试题卷说明:1.本卷共有六个⼤题,25个⼩题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.⼀、选择题(本⼤题共8个⼩题,每⼩题3分,共24分)每⼩题只有⼀个正确选项. 1.下列各数中,最⼩的是().A. 0B. 1C.-1D.2.根据2017年第六次全国⼈⼝普查主要数据公报,江西省常住⼈⼝约为4456万⼈.这个数据可以⽤科学计数法表⽰为(). A.4.456×107⼈ B. 4.456×106⼈ C. 4456×104⼈ D. 4.456×103⼈3.将两个⼤⼩完全相同的杯⼦(如图甲)叠放在⼀起(如图⼄),则图⼄中的实物的俯视图是().4.下列运算正确的是().A.a +b =abC.a 2+2ab -b 2=(a -b )2D.3a -2a =1 5.已知⼀次函数y =x +b 的图象经过第⼀、⼆、三象限,则b 的值可以是( ).A .-2 B.-1 C. 0 D. 26.已知x =1是⽅程x 2+bx -2=0的⼀个根,则⽅程的另⼀个根是( ). A .1 B.2 C.-2 D.-17.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是(). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. ∠B =∠C ,BD =DC 8.时钟在正常运⾏时,分针每分钟转动6°,时针每分钟转动0.5°.在运⾏过程中,时针与分针的夹⾓会随着时间的变化⽽变化.设时针与分针的夹⾓为y (度),运⾏时间为t (分),当时间从12︰00开始到12︰30⽌,y 与 t 之间的函数图象是().y (度) A.(度)B.度) C.度) D.B.C. D.A. 第7题图甲⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分) 9.计算:-2-1=__________.10.因式分解:x 3-x =______________.11.函数y =x 的取值范围是 .12.⽅程组25,7x y x y +=??-=?的解是 .13.如图,在△ABC 中,点P 是△ABC 的内⼼,则∠PBC +∠PCA +∠P AB =__________度. 14.将完全相同的平⾏四边形和完全相同的菱形镶嵌成如图所⽰的图案.设菱形中较⼩⾓为x 度,平⾏四边形中较⼤⾓为y 度,则y 与x 的关系式是 .15.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是__________. 16.如图所⽰,两块完全相同的含30°⾓的直⾓三⾓板叠放在⼀起,且∠DAB =30°.有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点④AG ︰DE4,其中.三、(本⼤题共3⼩题,每⼩题6分,共18分) 17.先化简,再求值:2()11a aa a a+÷--,其中 1.a =18.甲、⼄、丙、丁四位同学进⾏⼀次乒乓球单打⽐赛,要从中选出两位同学打第⼀场⽐赛. (1)请⽤树状图法或列表法,求恰好选中甲、⼄两位同学的概率.(2)若已确定甲打第⼀场,再从其余三位同学中随机选取⼀位,求恰好选中⼄同学的概率.19.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0). (1)求点D 的坐标;(2)求经过点C 的反⽐例函数解析式.ACB P第13题第14题AD CBEOG F 第16题第15题C DC图甲DC图⼄四、(本⼤题共2⼩题,每⼩题8分,共16分)20.有⼀种⽤来画圆的⼯具板(如图所⽰),⼯具板长21cm,上⾯依次排列着⼤⼩不等的五个圆(孔),其中最⼤圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最⼤圆的左侧距⼯具板左侧边缘1.5cm,最⼩圆的右侧距⼯具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意⼀点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC⾯积的最⼤值.(参考数据:sin60=,cos30 ,tan30=)五、(本⼤题共2⼩题,每⼩题9分,共18分)22.图甲是⼀个⽔桶模型⽰意图,⽔桶提⼿结构的平⾯图是轴对称图形,当点O到BC(或DE)的距离⼤于或等于⊙O的半径时(⊙O是桶⼝所在圆,半径为OA),提⼿才能从图甲的位置转到图⼄的位置,这样的提⼿才合格.现⽤⾦属材料做了⼀个⽔桶提⼿(如图丙A-B-C-D-E-F,C-D是 CD,其余是线段),O是AF的中点,桶⼝直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个⽔桶提⼿是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.)图丙23.以下是某省2017年教育发展情况有关数据:全省共有各级各类学校25000所,其中⼩学12500所,初中2000所,⾼中450所,其它学校10050所;全省共有在校学⽣995万⼈,其中⼩学440万⼈,初中200万⼈,⾼中75万⼈,其它280万⼈;全省共有在职教师48万⼈,其中⼩学20万⼈,初中12万⼈,⾼中5万⼈,其它11万⼈.请将上述资料中的数据按下列步骤进⾏统计分析.(1)整理数据:请设计⼀个统计表,将以上数据填⼊表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,⼩学、初中、⾼中三个学段的师⽣⽐,最⼩的是哪个学段?请直接写出.(师⽣⽐=在职教师数︰在校学⽣数)②根据统计表中的相关数据,你还能从其它⾓度分析得出什么结论吗?(写出⼀个即可)③从扇形统计图中,你得出什么结论?(写出⼀个即可)2010年全省教育发展情况统计表全省各级各类学校所数扇形统计图六、(本⼤题共2⼩题,每⼩题10分,共20分)24.将抛物线c1:y=2x轴翻折,得抛物线c2,如图所⽰.(1)请直接写出抛物线c2的表达式.(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.yxO备⽤图25.某数学兴趣⼩组开展了⼀次活动,过程如下:设∠BAC=θ(0°<θ<90°).现把⼩棒依次摆放在两射线之间,并使⼩棒两端分别落在射线AB,AC上.活动⼀:如图甲所⽰,从点A1开始,依次向右摆放⼩棒,使⼩棒与⼩棒在端点处互相垂直. (A1A2为第1根⼩棒)数学思考:(1)⼩棒能⽆限摆下去吗?答:.(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①θ=_________度;②若记⼩棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…),求出此时a2,a3的值,并直接写出a n(⽤含n的式⼦表⽰).活动⼆:如图⼄所⽰,从点A1开始,⽤等长的⼩棒依次向右摆放,其中A1A2为第⼀根⼩棒,且A1A2=AA1.数学思考:(3)若已经摆放了3根⼩棒,则θ1 =_________,θ2=________,θ3=________;(⽤含θ的式⼦表⽰)(4)若只能..摆放4根⼩棒,求θ的范围.A1A2BC图⼄A3A41θ2θ3θA1A2ABC A3A4A5A6a1a2a3图甲·机密2017年6⽉19⽇江西省2017年中等学校招⽣考试数学试题卷参考答案及评分意见说明:1.如果考⽣的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考⽣的解答中出现错误⽽中断对该题的评阅,当考⽣的解答在某⼀步出现错误,影响了后续部分时,如果该步以后的解答未改变这⼀题的内容和难度,则可视影响的程度决定后⾯部分的给分,但不得超过后⾯部分应给分数的⼀半,如果这⼀步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表⽰考⽣正确做到这⼀步应得的累加分数.4.只给整数分数.⼀、选择题(本⼤题共8个⼩题,每⼩题3分,共24分)1.D 2.A 3.C 4.B 5.D 6.C 7.D 8.A⼆、填空题(本⼤题共8个⼩题,每⼩题3分,共24分)9. 3-10.()()11x x x+-11.1x≤12.4,3xy==-13. 9014.2180y x-=(或1902y x=+)15.(0,1)16.①②③④说明:(1)第11题中若写成“1x<”的,得2分;(2)第16题,填了1个或2个序号的得1分,填了3个序号的得2分.三、(本⼤题共3个⼩题,每⼩题各6分,共18分)17.解:原式=2111111a a aaa a a a a-÷=?=----. ………………3分当1a=时,原式==………………6分18.解:(1)⽅法⼀画树状图如下:所有出现的等可能性结果共有12种,其中满⾜条件的结果有2种.∴P(恰好选中甲、⼄两位同学)=16. ………………4分甲⼄丙丁丙甲⼄丁⼄甲丙丁丁甲⼄丙第⼀次第⼆次⽅法⼆列表格如下:甲⼄丙丁甲甲、⼄甲、丙甲、丁⼄⼄、甲⼄、丙⼄、丁丙丙、甲丙、⼄丙、丁丁丁、甲丁、⼄丁、丙所有出现的等可能性结果共有12种,其中满⾜条件的结果有2种.∴P (恰好选中甲、⼄两位同学)=1 6. ………………4分(2)P (恰好选中⼄同学)=13. ………………6分19.解:(1)∵(0,4),(3,0)A B -,∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. …………3分(2)∵BC ∥AD , 5BC AB ==,∴()3,5C --.设经过点C 的反⽐例函数解析式为ky x=. 把()3,5--代⼊k y x=中,得:53k -=-,∴15k =,∴15y x =. ……6分四、(本⼤题共2个⼩题,每⼩题8分,共16分)20.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………4分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ……………6分∴41621d += ∴54d =. ………………7分答:相邻两圆的间距为54cm. ………………8分21.解:(1) 解法⼀连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =∴BE EC == ………………1分在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==,∴60BOE ∠= , ∴120BOC ∠= ,∴1602BAC BOC ∠=∠= . ………………4分解法⼆连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠= .在Rt △DBC 中,sin BC BDC BD ∠==,∴60BDC ∠= ,∴60BAC BDC ∠=∠= .………………4分(2) 解法⼀因为△ABC 的边BC 的长不变,所以当BC 边上的⾼最⼤时,△ABC 的⾯积最⼤,此时点A 落在优弧BC 的中点处.………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠= .在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ===,∴S △ABC=132=答:△ABC⾯积的最⼤值是 ………………8分解法⼆因为△ABC 的边BC 的长不变,所以当BC 边上的⾼最⼤时,△ABC 的⾯积最⼤,此时点A 落在优弧BC 的中点处.………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠= , ∴△ABC 是等边三⾓形. ………………6分在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ==,∴S △ABC=132=.答:△ABC⾯积的最⼤值是 ………………8分五、(本⼤题共2个⼩题,每⼩题9分,共18分). 22.解法⼀连接OB ,过点O 作OG ⊥BC 于点G . ………………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°,………………4分∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………5分⼜∵17.72OB =, ………………6分∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =?∠=?≈>. ……………8分∴⽔桶提⼿合格. ……………9分解法⼆连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,图丙CDE ∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°. ………………4分要使OG ≥OA ,只需∠OBC ≥∠ABO ,∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……8分∴⽔桶提⼿合格. ………………9分23.解:(1)2017年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………6分(3)①⼩学师⽣⽐=1︰22,初中师⽣⽐≈1︰16.7,⾼中师⽣⽐=1︰15,∴⼩学学段的师⽣⽐最⼩. ………7分②如:⼩学在校学⽣数最多等. ………8分③如:⾼中学校所数偏少等. ………9分说明:(1)第①题若不求出各学段师⽣⽐不扣分;(2)第②、③题叙述合理即给分. 六、(本⼤题共2个⼩题,每⼩题10分,共20分)24.解:(1)2y = ………………2分学校所数(所)在校学⽣数(万⼈)教师数(万⼈)⼩学12500 440 20 初中2000 200 12 ⾼中450 75 5 其它10050 280 11 合计25000 995 48 全省各级各类学校所数扇形统计图(2)①令20,得:121,1x x =-=,则抛物线c 1与x 轴的两个交点坐标为(-1,0),(1,0).∴A (-1-m ,0),B (1-m ,0). 同理可得:D (-1+m ,0),E (1+m ,0).当13AD AE =时,如图①,()()()()111113m m m m -+---=+---,∴12m =. ………………4分当13AB AE =时,如图②,()()()()111113m m m m ----=+---,∴2m =. ………………6分∴当12m =或2时,B ,D 是线段AE 的三等分点.②存在.………………7分⽅法⼀理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称,∴OM ON =.∵()()1,0,1,0A m E m --+,∴A ,E 关于原点O 对称,∴OA OE =,∴四边形ANEM 为平⾏四边形. ………………8分要使平⾏四边形ANEM 为矩形,必需满⾜OM OA =, 即()2221m m +=--,∴1m =.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分⽅法⼆理由:连接AN 、NE 、EM 、MA . 依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称,∴OM ON =.∵()()1,0,1,0A m E m --+,∴A ,E 关于原点O 对称,∴OA OE =,∴四边形ANEM 为平⾏四边形. ………………8分∵222(1)4AM m m =-+++=,2222(1)444ME m m m m =+++=++,222(11)484AE m m m m =+++=++,若222AM ME AE +=,则224444484m m m m +++=++,∴1m =. 此时△AME 是直⾓三⾓形,且∠AME =90°.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分25.解: (1)能. ………………1分(2)① 22.5°. ………………2分②⽅法⼀∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 ⼜∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5,∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1a 3=AA 3+ A 3A 5=a 2+ A 3A 5. ………………3分∵A 3A 52,∴a 3=A 5A 6=AA 5=)2221a =. ………………4分⽅法⼆∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 ⼜∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -=………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ?≥∴1822.5θ≤< . ………………10分。
江西省2017年中等学校招生考试数学学科真题试卷(WORD 含答案)考生须知:1. 全卷共六页,有六大题,24小题. 满分为120分.考试时间120分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本大题共有6小题,每小题3分,共18分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1. -1的绝对值是( )A .1B .0C .-1D .±1故应选A .-1 0 12.等腰三角形的顶角为80°,则其底角为( )A .20°B .50°C .60°D .80° 故应选B .3.下列运算正确的是( )A .3a + 3a =62aB .6a ÷3-a= 3aC .3a ×3a =32a D . 32)2(a -=68a - 故应选D .⒋如图,有c b a ,,三户家用电路接入电表,相邻的电路等距排列,则三户所用电线( ) A .a 户最长 B .b 户最长 C .c 户最长 D .三户一样长(第四题)a b c电 源故应选D.⒌如图,如果在阳光下你的身影方向为北偏东60°的方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°N(第五题)S故应选A.⒍某人驾车从A地上高速公路前往B地,中途服务区休息了一段时间。
出发时油箱存油40升,到达B后剩余4升,则从出发到达B地油箱所剩的油y(升)与时间t(h)之间的函数大致图像是()y y40 404 4.A tB ty y40 404 4C tD t(第六题)故应选C.二、填空题(本大题共8个小题,每小题3分,共24分.) ⒎一个正方体有 六 个面。
⒏当4-=x 时,x 36-的值是 23 .9.如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切与点B ,若∠A=50°,则∠C= 20 度.C A B ⒑已知关于x 的一元二次方程022=-+m x x 有两个相等的实数根,则m 的值是 -1 .⒒已知8)(2=-n m ,2)(2=+n m ,则=+22n m 5 .⒓已知一次函数)0(≠+=k b kx y 经过(2,- 1),(- 3,4)两点,则其图像不经过...第 三 象限。
江西省2017年中考模拟卷数学试题卷四(本卷1-17题由天润肖辉老师,18-23题由天润李飞老师制作,在此特别鸣谢) 一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列选项中,可以用来说明命题‘两个锐角的和是锐角’是假命题的反例是( ) A.∠A =30°,∠B =40° B.∠A =30°,∠B =110° C.∠A =30°,∠B =70° D.∠A =30°,∠B =90°2.质检员抽查某种零件的尺寸,超过规定长度的尺寸记为正数,不足规定长度的尺寸记为负数,检查结果如下:第一个﹢0.13,第二个﹣0.12,第三个﹢0.15,第四个﹣0.11,则符合规定长度的零件是( )A.第1个B.第2个C.第3个D.第4个3.图中的两个圆柱底面半径相同面高度不同,关于这两个圆轴柱的视图说法正确的是( ) A.主视图相同 B.俯视图相同 C.左视图相同D.主视图、俯视图、左视图都相同4三角形的下列线段中一定能将三角形的面积分成相等的两部分的是( )A.中线B.角平分线C.高D.中位线 5.下列命题是假命题的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线互相垂直的四边形是正方形D.对角线相等的菱形是正方形6.下列函数中,其图象与x 轴有两个交点的是( ) A. 2(2017)2016y x =++ B.2(2017)2016y x =-+ C.2(2017)2016y x =--+ D.2(2017)2016y x =-++ 二、填空题(本大题共6小题,每小题3分,共18分) 7.分解因式:228x -=_____.8.点()()1122,,,x y x y 在反比例函数ky x=的图象上,当x ₁<x ₂<0时,y ₁<y ₂,则k 的取值可以是_________(只填一个符合条件的k 值即可)9.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据,若这五个数据的中位数是6,唯一的众数是7,则他们投中次数的总和最大为_____.10.如图是小颖佩戴的一件装饰品,已知AC是菱形ABCD的边长为5cm,则小四边行①②均为菱形,且分别有两个顶点在AC上,若菱形ABCD的边长为5cm,则小四边形①②的周长之和为__________.cm11.某市电价执行‘阶梯式’计费,每月应交电费y(元)与用电量x(千瓦时)之间的函数关系如图所示,若某用户5月份交电费111元,则该用户5月份的用电量是______千瓦时.12.能使262(2)k k+=+成立的k的值为_______.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)解不等式组33>1,213(1)8,xxx x-⎧++⎪⎨⎪--≤-⎩并把解集在数轴上表示出来.(2)如图,扇形AOB的圆心角为45°,AD⊥OB于点D,AD=22.14.在图1,图2中,四边形ABCD为矩形,某圆经过A,B两点,请你用无刻度的直尺画出符合要求的图形(保留痕迹,不写画法)(1)在图1中画出该画的圆心;(2)在图2中画出线段CD的垂直平分线15.王医生随机抽取13---41年龄段的男性吸烟公民120人,对他们各年龄段的吸烟人数进行统计,并将统计结果绘制成如下频数分布直方图,扇形统计图和频数分布表:(不完整)请结合图表完成下列问题:(1)把频数分布直方图,扇形统计图和频数分布表补充完整;(2)写出一条你从上表或图中发现信息,并简述该扇形统计图对本题中所调查的问题有何作用.16.一个不透明的布袋里装16个除颜色外其他均相同的球,其中红球有x 个,白球有2x 个,其他均为黄球.现甲同学从布袋中随机摸出一个球,若是红球,则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜。
江西省2017年中等学校招生考试数学试题卷一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-6的相反数是( )A .B .C . 6D .-61616-2. 在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000,将13000用科学记数法表示应为( )km A . B . C . D .50.1310⨯41.310⨯51.310⨯31310⨯3.下列图形中,是轴对称图形的是( )A .B .C .D .4. 下列运算正确的是( )A . B . C. D . ()2510aa-=22236a a a =g23a a a -+=-623623a a a -÷=-5.已知一元二次方程的两个根为,下列结论正确的是( )22510x x -+=12,x x A . B . C. 都是有理数 D .都是正数1252x x +=-121x x =g12,x x 12,x x 6. 如图,任意四边形中,分别是上的点,对于四边形的形ABCD ,,,E F G H ,,,AB BC CD DA EFGH 状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A .当是各边中点,且时,四边形为菱形 ,,,E F G H AC BD =EFGHB .当是各边中点,且时,四边形为矩形 ,,,E F G H AC BD ⊥EFGH C. 当不是各边中点时,四边形可以为平行四边形 ,,,EFGH EFGH D .当不是各边中点时,四边形不可能为菱形,,,E F G H EFGH 二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7. 函数的取值范围是___________.y =x 8. 如图1是一把园林剪刀,把它抽象为图2,其中,若剪刀张开的角为30°,则OA OB =_________度.A ∠=9. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为___________.10.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是_____________.11.已知一组从小到大排列的数据:2,5,,, ,11的平均数与中位数都是7,则这组数据的众x y 2x 数是______________.12.已知点,连接得到矩形,点的边上,将边沿()()()0,4,7,0,7,4A B C ,AC BC AOBC D AC OA 折叠,点的对应边为,若点到矩形较长两对边的距离之比为1:3,则点的坐标为OD A A 'A 'A '____________.三、解答题 (本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(1)计算:; 21211x x x +÷--(2)如图,正方形中,点分别在上,且.ABCD ,,E F G ,,AB BC CD 090EFG ∠=求证:.EBF FCG ∆∆:14.解不等式组:,并把解集在数轴上表示出来.()26324x x x -<⎧⎨-≤-⎩15.端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.16.如图,已知正七边形,请仅用无刻度的直尺,分别按下列要求画图.ABCDEFG (1)在图1中,画出一个以为边的平行四边形;AB (2)在图2中,画出一个以为边的菱形.AF17. 如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”约为20°,而当手指接触键α盘时,肘部形成的“手肘角”约为100°.图2是其侧面简化示意图,其中视线水平,且与屏幕βAB 垂直.BC (1)若屏幕上下宽,科学使用电脑时,求眼睛与屏幕的最短距离的长;20BC cm =AB (2)若肩膀到水平地面的距离,上臂,下臂水平放置在键盘上,其到地面100DG cm =30DE cm =EF 的距离.请判断此时是否符合科学要求的100°?72FH cm =β(参考数据:,所有结果精确到个位)00001414414sin 69,cos 21,tan 20,tan 4315151115≈≈≈≈四、(本大题共3小题,每小题8分,共24分).18. 为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类ABCDE出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有___________人,其中选择类的人数有_____________人;B (2)在扇形统计图中,求类对应扇形圆心角的度数,并补全条形统计图;A (3)该市约有12万人出行,若将这三类出行方式均视为“绿色出行”方式,请估计该市“绿色,,ABC 出行”方式的人数.19.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为,双层部分的长度为,经测量,得到如下数据:xcm ycm 单层部分的长度(x )cm ...46810 (150)双层部分的长度()y cm …737271…(1)根据表中数据的规律,完成以下表格,并直接写出关于的函数解析式;y x (2)根据小敏的身高和习惯,挎带的长度为时,背起来正合适,请求出此时单层部分的长度;120cm (3)设挎带的长度为,求的取值范围.lcm l20. 如图,直线与双曲线相交于点.已知点,连接()10y k x x =≥()20k y x x=>()2,4P ()()4,0,0,3A B ,将沿方向平移,使点移动到点,得到.过点作轴交双曲线AB Rt AOB ∆OP O P A PB ''∆A '//A C y '于点.C(1)求与的值;1k 2k (2)求直线的表达式;PC (3)直接写出线段扫过的面积.AB 五、(本大题共2小题,每小题9分,共18分).21.如图1,的直径是弦上一动点(与点不重合),,过点作O e 12,AB P =BC ,B C 030ABC ∠=P 交于点.PD OP ⊥O e D(1)如图2,当时,求的长;//PD AB PD (2)如图3,当时,延长至点,使,连接.»»DCAC =AB E 12BE AB =DE①求证:是的切线;DE O e②求的长.PC 22.已知抛物线.()21:450C y ax ax a =-->(1)当时,求抛物线与轴的交点坐标及对称轴;1a =x (2)①试说明无论为何值,抛物线一定经过两个定点,a 1C 并求出这两个定点的坐标;②将抛物线沿这两个定点所在直线翻折,得到抛物线,1C 2C 直接写出的表达式;2C (3)若(2)中抛物线的顶点到轴的距离为2,求的2C x a 值.六、(本大题共12分)23. 我们定义:如图1,在看,把点顺时针旋转得到,把绕点ABC ∆AB A ()000180αα<<AB 'AC 逆时针旋转得到,连接.当时,我们称是的“旋补三角形”,A βAC 'BC ''0180αβ+=A B C '''∆ABC ∆边上的中线叫做的“旋补中线”,点叫做“旋补中心”.AB C ''∆B C ''AD ABC ∆A 特例感知:(1)在图2,图3中,是的“旋补三角形”, 是的“旋补中心”.AB C ''∆ABC ∆AD ABC ∆①如图2,当为等边三角形时,与的数量关系为_____________; ABC ∆AD BC AD =BC ②如图3,当时,则长为_________________.090,8BAC BC ∠==AD 猜想论证:(2)在图1中,当为任意三角形时,猜想与的数量关系,并给予证明.ABC ∆AD BC拓展应用(3)如图4,在四边形,,.在四边形内部是ABCD 090,150,12C D BC ∠=∠==6CD DA ==否存在点,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;P PDC ∆PAB ∆PAB ∆若不存在,说明理由.江西省2017年中等学校招生考试数学试题卷(参考答案)一、选择题1.C2.B3.C4.A5.D6.D 二。
江西省赣州市石城县中考数学模拟试卷(5月份)一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项1.(3分)﹣6的绝对值是()A.﹣6B.C.﹣D.62.(3分)下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣23.(3分)如图所示的几何体的俯视图是()A.B.C.D.4.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.(3分)如图,▱ABCD中,∠C=120°,AB=AE=5,AE与BD交于点F,AF=2EF,则BC的长为()A.6B.8C.10D.126.(3分)已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5B.x0>﹣1C.﹣5<x0<﹣1D.﹣2<x0<3二、填空题(本大题共6个小题,每小题3分,共18分)7.(3分)据中古江西网报道,4月22日全省将有近15万人参加省公务员录用考试笔试,数字15万用科学记数法表示为:.8.(3分)已知α、β是方程x2+x﹣6=0的两根,则α2β+αβ=.9.(3分)如图,在平面直角坐标系xOy中,A(1,1),B(2,2),双曲线y=与线段AB有公共点,则k的取值范围是.10.(3分)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B 的最短距离为cm.11.(3分)如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为.12.(3分)在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y=上,则k值可以是.三、解答题(本大题共4个小题,每小题6分,共24分)13.(6分)(1)计算:|﹣2|﹣3tan30°+(2﹣)0+(2)如图,已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.14.(6分)先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.15.(6分)某校食堂的中餐与晚餐的消费标准如表种类单价米饭0.5元/份A类套餐菜 3.5元/份B类套餐菜 2.5元/份一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A、B 类套餐菜选其中一份,这5天共消费36元,请问这位学生A、B类套餐菜各选用多少次?16.(6分)在图1、2中,⊙O过了正方形网格中的格点A、B、C、D,请你仅用无刻度的直尺分别在图1、图2、图3中画出一个满足下列条件的∠P(1)顶点P在⊙O上且不与点A、B、C、D重合;(2)∠P在图1、图2、图3中的正切值分别为1、、2.17.(6分)某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)四、解答题(本大题共3个小题,每小题8分,共24分)18.(8分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.19.(8分)如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.20.(8分)如图,在△ABC中,点O在边AC上,⊙O与△ABC的边AC,AB分别切于C、D两点,与边AC交于点E,弦与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是的中点,连结DF,DC,试判断△DCF的形状;(3)在(2)的条件下,若BC=a,求AE的长.五、解答题(本大题共2个小题,每小题9分,共18分)21.(9分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B 城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.22.(9分)在▱ABCD中,点B关于AD的对称点为B′,连接AB′,CB′,CB′交AD 于F点.(1)如图1,∠ABC=90°,求证:F为CB′的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B绕点A旋转的过程中,点F始终为CB′的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B′作B′G∥CD交AD于G点,只需证三角形全等;想法2:连接BB′交AD于H点,只需证H为BB′的中点;想法3:连接BB′,BF,只需证∠B′BC=90°.…请你参考上面的想法,证明F为CB′的中点.(一种方法即可)(3)如图3,当∠ABC=135°时,AB′,CD的延长线相交于点E,求的值.23.(12分)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n 上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.江西省赣州市石城县中考数学模拟试卷(5月份)参考答案一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项1.D;2.D;3.B;4.B;5.C;6.B;二、填空题(本大题共6个小题,每小题3分,共18分)7.1.5×105;8.12或﹣18;9.1≤k≤4;10.(3+3);11.2+;12.10或12或8;三、解答题(本大题共4个小题,每小题6分,共24分)13.;14.;15.;16.;17.;四、解答题(本大题共3个小题,每小题8分,共24分)18.45%;60;19.;20.;五、解答题(本大题共2个小题,每小题9分,共18分)21.;22.;23.y=﹣x2﹣3;y=﹣x﹣3;。
江西省赣州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2017·钦州模拟) ﹣5的相反数是()A . 5B . ﹣5C .D . -2. (2分)(2016·丹东) 2016年1月19日,国家统计局公布了2015年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A . 6.76×106B . 6.76×105C . 67.6×105D . 0.676×1063. (2分)如图所示:数轴上点A所表示的数为a ,则a的值是()A . +1B . +1C .D . -14. (2分)(2018·惠山模拟) 为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:每天使用零花钱(单位:元)12356人数25431则这15名同学每天使用零花钱的众数和中位数分别是()元.A . 3,3B . 2,2C . 2,3D . 3,55. (2分)以下列各组数为三角形的边长,能构成直角三角形的是()A . 1,2,3;B . 2,3,4;C . 6,8,10;D . 5,12,96. (2分) (2016九上·广饶期中) 如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA 的两边分别与函数y=﹣、y= 的图象交于B、A两点,则∠OAB的大小的变化趋势为()A . 逐渐变小B . 逐渐变大C . 时大时小D . 保持不变二、填空题 (共10题;共12分)7. (1分) (2017七上·埇桥期中) ﹣1的相反数是________.8. (1分)(2013·连云港) 使式子有意义的x取值范围是________.9. (1分)计算: ________.10. (1分)关于x的分式方程﹣=0无解,则m= ________.11. (1分) (2016九上·宁江期中) 如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是________ cm.12. (1分)(2017·南宁模拟) 如图,在△ABC中,∠BAC=50°,AC=2,AB=3.现将△ABC绕A点逆时旋转50°得到△AB1C1 ,则图中的阴影部分的面积为________.13. (1分)校运动会小明参加铅球比赛,若某次投掷,铅球飞行的高度y(米)与水平距离x(米)之间的函数关系式为,小明这次投掷的成绩是________ 米.14. (1分)一包洽洽瓜子售价8元,商家为了促销,顾客每买一包洽洽瓜子获一张奖券,每4张奖券可兑换一包洽洽瓜子,则每张奖券相当于________元.15. (3分)一慢车和一快车沿相同路线从A地到B地,所行的路程与时间图象如图,则慢车比快车早出发________小时,快车追上慢车行驶了________千米,快车比慢车早________小时到达B地.16. (1分)(2019·太仓模拟) 如图,中,,,,将绕点顺时针旋转90º得到,为线段上的动点,以点为圆心,长为半径作⊙ ,当⊙ 与的边相切时,⊙ 的半径为________.三、解答题 (共11题;共134分)17. (40分) (2018七下·长春月考) 计算:(1) (-4x2y)·(-x2y2)·( y)3;(2) (-3ab)(2a2b+ab-1) ;(3) (m- )(m+ );(4)(-x-1)(-x+1) ;(5) ( - x - 5)2 ;(6);(7)先化简,再求值:(x+1)2﹣(x+2)(x﹣2),其中;(8)解方程组 .18. (5分) (2017八上·孝南期末) 化简: + .19. (5分) (2017八下·东台期中) 在矩形ABCD中,AB=6cm,BC=8cm,若将矩形对角线BD对折,使B点与D点重合,四边形EBFD是菱形吗?请说明理由,并求这个菱形的边长.20. (16分)(2017·南宁模拟) 某校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分为四类(A.特别好,B.好,C.一般,D.较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将两幅统计图中不完整的部分补充完整;(3)假定全校各班实施新课程改革效果一样,全校共有学生2 400人,请估计该校新课程改革效果达到A类的有多少学生;(4)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.21. (15分)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标;(3)当t≤x≤t+1时,求y=ax2+bx+c的最大值.22. (8分)(2018·孝感) 在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗飘飘,引我成长”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成,,,,五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)类所对应的圆心角是________度,样本中成绩的中位数落在________类中,并补全条形统计图________;(2)若类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图求恰好抽到1名男生和1名女生的概率.23. (5分)某商店9月份的利润是2500元,要使11月的利润达到3600元,平均每月增长的百分率是多少?24. (5分)先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°.25. (15分)(2017·武汉模拟) 已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C 作CE垂直于BD的延长线,垂足为E,如图1(1)求证:AD•CD=BD•DE;(2)若BD是边AC的中线,如图2,求的值;(3)如图3,连接AE.若AE=EC,求的值.26. (5分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=________°,∠3=________°;(2)在(1)中,若∠1=55°,则∠3=________°,若∠1=40°,则∠3=________°;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3=________°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,请说明理由.27. (15分) (2016九上·乌拉特前旗期中) 某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共134分)17-1、17-2、17-3、17-4、17-5、17-6、17-7、17-8、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、23-1、24-1、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、。
江西省2017年中考模拟试卷数学试题卷(五) 2017.3(本卷1-17题由实验二中王晔老师录入,18-23固院初中刘玮老师录入,在此特别感谢) 说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6个小题,每小题3 分,共18分,每小题只有一个正确选项.) 1. 23-的相反数是( )A .-9B .9C .6D .-62. 下列计算中正确的是( )A .22a a a =+B .632a a a =⋅ C .a a a 4)2(2=÷ D .2224)2(b a b a -=-3. 2016年是我国全面放开二孩的第一年,根据国家统计局发布的1‰抽样调查数据推算,2016年全年出生人口达到1 786万人,成为2000年以来最高的出生人口年份.1 786万用科学记数法表示是( )A .71086.17⨯ B .710786.1⨯ C .61086.17⨯ D .610786.1⨯ 4. 如图所示几何体的左视图是( )5. 2016年某校九年级6名数学教师年终绩效综合考评得分(满分100分)如下:100,97,94,98,97,96.则下列说法中不正确的是( )A .这组数据的众数是97B .这组数据的中位数是96C .这组数据的平均数是97D .这组数据的方差是310 6. 如图,每个图案都是由若干个“∙”组成,其中第1个图案中有10个“∙”,第2个图案中有13个“∙”,…,则第2017个图案中“∙”的个数是( )A .6 085B .6 052C .6 058D .6 061二、填空题(本大题共6小题,每小题3分,共18分) 7. 计算:=︒60cos .8. 如图,将一张长方形纸片ABCD 沿EF 折叠后,点C 落在AB 边上的点G 处,点D 落在点H 处.若︒=∠621,则图中BEG ∠的度数为 .9. 已知一元二次方程0122=--x x 的两个根为a ,b ,则=+-222b ab a .10.如图,AD 为⊙O 的直径,若︒=∠25C ,则ADB ∠的度数为 .11.如图,在平面直角坐标系中,等边△ABC 的边BC 在x 轴上,其中点B (2,0),C (4,0).将△ABC 向左平移,当点A 落在直线121+=x y 上时,平移的距离是 . 12. 已知抛物线542--=x x y 与x 轴交于A (-1,0),B (5,0)两点,与y 轴交于点C .点P 是该抛物线上的一个不与点C 重合的动点,若ABC PAB S S △△=,则点P 的坐标是 . 三、(本大题共5小题,每小题6分,共30分) 13. (本题共2小题,每小题3分)(1)已知方程022=--m x x 有两个相等的实数根,求m 的值.(2)先化简,再求值:)44(2mm m m m --÷-,其中m 为(1)中所得值.数学试题卷(五) 第1页(共6页)数学试题卷(五) 第2页(共6页)14. 解不等式组⎪⎩⎪⎨⎧<--+≥+,10)1(23,135x x x 并写出该不等式组的整数解. 15.2016年全省各级各类中小学校(含中等职业学校)开展了“万师访万家”活动.某县家访的方式有:A 、上门走访;B 、电话访问;C 、网络访问(班级微信或QQ 群);D 、其他.该县教育局负责人从“万师访万家”平台上随机抽取本县一部分老师的家访情况,绘制了如图所示两幅尚不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次被抽查的家访老师共有多少人?扇形统计图中,“A ”所对应的圆心角的度数为多少? (2)请补全条形统计图;(3)已知该县共有3 500位老师参与了这次“万师访万家”活动,,请估计该县共有多少位老师采用的是“上门走访”的方式进行家访的?16. 如图1、图2,四边形ABCD 是正方形,CE DE =.请你仅用无刻度的直尺按要求完成下列画图.(1)在图1中,画出CD 边的中点; (2)在图2中,画出AD 边的中点.17. 某县要从一中的2位骨干老师和3位学科带头人中抽调2位老师去新建的实验学校任教,学校采取抽签的方式进行.(1)如果骨干老师李老师主动申请去,那么学科带头人王老师被抽到的概率是多少? (2)求抽到的2位老师都是学科带头人的概率(通过画树状图或列表的方法进行分析).四.(本大题共3小题,每小题8分,共24分)18.春节来临之际,某食品经销商店购进了A ,B 两种食用油,每箱A 种食用油比每箱B 种食用油贵20元.该商店用了3840元购进A 种食用油,用了1720元购进B 种食用油,所购进的A 种食用油的箱数是所购进B 种食用油箱数的2倍.(1)分别求每箱A 种食用油和每箱B 种食用油的进价.(2)已知一箱食用油有4瓶,每箱A 种食用油的售价为65元.若该商店将购进的两种食用油全部售出后,要使得所获利润不少于2000元,则每瓶B 种食用油的售价至少是多少元?19.图1是小明家购买的一款台灯,现忽略支管的粗细,得到它的侧面简化结构图如图2所示.已知MN 是桌面,AB 垂直MN ,FG //AB //CD ,ED //CF ,现测得FG =10cm ,AB =30cm ,FB =24cm ,BC =42cm ,点G 到桌面MN 的距离为6.3cm . (1)求∠ABF 的度数(结果精确到1度);(2)求点C 到桌面MN 的距离(结果精确到1cm ).(可使用科学计算器.参考数据:sin 55°≈0.82,cos55°≈0.57,tan55°≈1.43)20.如图,一次函数y =x + b (b >0)与反比例函数(0)ky k x=≠的图像有一个公共点A .直线l ⊥x 轴于点N (a ,0),且与一次函数和反比例函数的图像分别交于点B ,C . (1) 当点A 的坐标为(1,2)时,①求一次函数与反比例函数的解析式.②若四边形ODBC 是平行四边形,求a 的值.数学试题卷(五) 第3页(共6页)数学试题卷(五) 第4页(共6页)(2)是否存在四边形ODBC 是菱形的情况?如果存在,求出k 和b 之间的关系式;如果不存在,请说明理由. 五.(本大题共有2小题,每小题9分,共18分)21.如图1,在三角形ABC 中,以AB 为直径的⊙O 交AC 边于点D ,点E 在BC 上,连接BD ,DE ,∠CDE =∠ABD .(1)求证:DE 是⊙O 的切线. (2)如图2,当∠ABC =时90°,线段DE 与BC 有什么关系?请说明理. (3)如图3,若AB =AC =10 ,sin ∠CDE =35,求BC 的长.22.如图,已知抛物线y =ax ²+bx +c 交y 轴于点A (0,-4),交x 轴于点B (4,0),C (-1,0),过点A 作垂直于y 轴的直线l .在抛物线上任取一点P ,过点P 作直线PQ 平行于y 轴交直线l 于点Q ,交x 轴于点M ,直线AB 与直线PQ 相交于点K ,连接AP . (1)求抛物线的解析式。
2017年江西省赣州市石城县中考数学模拟试卷(5月份)一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项1.(3分)﹣6的绝对值是()A.﹣6 B.C.﹣ D.62.(3分)下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣23.(3分)如图所示的几何体的俯视图是()A. B.C.D.4.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.(3分)如图,▱ABCD中,∠C=120°,AB=AE=5,AE与BD交于点F,AF=2EF,则BC的长为()A.6 B.8 C.10 D.126.(3分)已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3二、填空题(本大题共6个小题,每小题3分,共18分)7.(3分)据中古江西网报道,4月22日全省将有近15万人参加2017年省公务员录用考试笔试,数字15万用科学记数法表示为:.8.(3分)已知α、β是方程x2+x﹣6=0的两根,则α2β+αβ=.9.(3分)如图,在平面直角坐标系xOy中,A(1,1),B(2,2),双曲线y=与线段AB有公共点,则k的取值范围是.10.(3分)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.11.(3分)如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为.12.(3分)在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y=上,则k值可以是.三、解答题(本大题共4个小题,每小题6分,共24分)13.(6分)(1)计算:|﹣2|﹣3tan30°+(2﹣)0+(2)如图,已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.14.(6分)先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.15.(6分)某校食堂的中餐与晚餐的消费标准如表一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A、B类套餐菜选其中一份,这5天共消费36元,请问这位学生A、B类套餐菜各选用多少次?16.(6分)在图1、2中,⊙O过了正方形网格中的格点A、B、C、D,请你仅用无刻度的直尺分别在图1、图2、图3中画出一个满足下列条件的∠P(1)顶点P在⊙O上且不与点A、B、C、D重合;(2)∠P在图1、图2、图3中的正切值分别为1、、2.17.(6分)某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a 的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)四、解答题(本大题共3个小题,每小题8分,共24分)18.(8分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.19.(8分)如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.20.(8分)如图,在△ABC中,点O在边AC上,⊙O与△ABC的边AC,AB分别切于C、D两点,与边AC交于点E,弦与AB平行,与DO的延长线交于M 点.(1)求证:点M是CF的中点;(2)若E是的中点,连结DF,DC,试判断△DCF的形状;(3)在(2)的条件下,若BC=a,求AE的长.五、解答题(本大题共2个小题,每小题9分,共18分)21.(9分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y (千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.22.(9分)在▱ABCD中,点B关于AD的对称点为B′,连接AB′,CB′,CB′交AD 于F点.(1)如图1,∠ABC=90°,求证:F为CB′的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B绕点A旋转的过程中,点F始终为CB′的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B′作B′G∥CD交AD于G点,只需证三角形全等;想法2:连接BB′交AD于H点,只需证H为BB′的中点;想法3:连接BB′,BF,只需证∠B′BC=90°.…请你参考上面的想法,证明F为CB′的中点.(一种方法即可)(3)如图3,当∠ABC=135°时,AB′,CD的延长线相交于点E,求的值.23.(12分)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y 轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.2017年江西省赣州市石城县中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项1.(3分)﹣6的绝对值是()A.﹣6 B.C.﹣ D.6【解答】解:|﹣6|=6,故选:D.2.(3分)下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣2【解答】解:A、不是同类项,不能合并,故本选项错误;B、不是同底数幂的除法,不能次数相减,故本选项错误;C、去括号时,括号里的每一项都变号,应为a﹣(a﹣b)=b,故本选项错误;D、(a﹣1)(a+2)=a2+a﹣2,正确.故选D.3.(3分)如图所示的几何体的俯视图是()A. B.C.D.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.4.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选B.5.(3分)如图,▱ABCD中,∠C=120°,AB=AE=5,AE与BD交于点F,AF=2EF,则BC的长为()A.6 B.8 C.10 D.12【解答】解:在▱ABCD中,∠C=120°,∴∠ABC=60°,∵AB=AE,∴△ABE是等边三角形,∴BE=AB=5,∵AD∥BC,∴==2,∴BC=10,故选:C.6.(3分)已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3【解答】解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)7.(3分)据中古江西网报道,4月22日全省将有近15万人参加2017年省公务员录用考试笔试,数字15万用科学记数法表示为: 1.5×105.【解答】解:将15万用科学记数法表示为1.5×105.故答案为:1.5×105.8.(3分)已知α、β是方程x2+x﹣6=0的两根,则α2β+αβ=12或﹣18.【解答】解:根据题意得α+β=﹣1,αβ=﹣6,所以α2β+αβ=αβ(α+1)=﹣6(α+1),而解方程x2+x﹣6=0得x1=﹣3,x2=2,当α=﹣3时,原式=﹣6(﹣3+1)=12;当α=2时,原式=﹣6(2+1)=﹣18.故答案为12或﹣18.9.(3分)如图,在平面直角坐标系xOy中,A(1,1),B(2,2),双曲线y=与线段AB有公共点,则k的取值范围是1≤k≤4.【解答】解:当(1,1)在y=上时,k=1,当(2,2)在y=的图象上时,k=4.则双曲线y=与线段AB有公共点,则k的取值范围是1≤k≤4.故答案是:1≤k≤4.10.(3分)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.【解答】解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).11.(3分)如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO2+.【解答】解:如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC中,OC===,∴BC=OB﹣OC=2﹣,∴在Rt△ABC中,tan∠ABO===2+.故答案是:2+.12.(3分)在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y=上,则k值可以是10或12或8.【解答】解:∵点A的坐标为(5,0),点C的坐标为(0,4),∴当PA=PO时,P在OA的垂直平分线上,P的坐标是(2.5,4);当OP=OA=5时,由勾股定理得:CP==3,P的坐标是(3,4);当AP=AO=5时,同理BP=3,CP=5﹣3=2,P的坐标是(2,4).∵点P在双曲线y=上,∴k=2.5×4=10或k=3×4=12或k=2×4=8,故答案为10或12或8.三、解答题(本大题共4个小题,每小题6分,共24分)13.(6分)(1)计算:|﹣2|﹣3tan30°+(2﹣)0+(2)如图,已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.【解答】解:(1)原式=2﹣3×+1+2=2﹣+1+2=3+;(2)∵BC平分∠ACD,∴∠1=∠BCD.又∵∠1=∠2,∴∠2=∠BCD.∴AB∥CD.14.(6分)先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.【解答】解:原式=x2﹣4﹣(x2﹣2x+1)=2x﹣5,∴2x﹣5=2×(﹣)﹣5=﹣6.15.(6分)某校食堂的中餐与晚餐的消费标准如表一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A、B类套餐菜选其中一份,这5天共消费36元,请问这位学生A、B类套餐菜各选用多少次?【解答】解:设这位学生A类套餐菜选了x次,B类套餐菜选了y次,根据题意得:,解得:.答:这位学生A类套餐菜选了6次,B类套餐菜选了4次.16.(6分)在图1、2中,⊙O过了正方形网格中的格点A、B、C、D,请你仅用无刻度的直尺分别在图1、图2、图3中画出一个满足下列条件的∠P(1)顶点P在⊙O上且不与点A、B、C、D重合;(2)∠P在图1、图2、图3中的正切值分别为1、、2.【解答】解:①如图1中,tan∠P=1.理由:∵∠P=∠DOC=45°,∴∠P即为所求;如图2中,tan∠P=.理由:∵∠P=∠FAC,∴tan∠P=tan∠FAC==.∴∠P即为所求.如图3中,tan∠EPC=2.理由:∵∠E=∠FAC,PE是直径,∴∠FAC+∠AFC=90°,∠E+∠EPC=90°,∴∠AFC=∠EPC,tan∠EPC=tan∠AFC==2.∴∠EPC即为所求;17.(6分)某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a 的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)【解答】解:(1)答:P的概率是=;(恰好是A,a)(2)依题意画树状图如下:共有9种情形,每种发生可能性相等,其中恰好是两对家庭成员有(AB,ab),(AC,ac),(BC,bc)3种,故恰好是两对家庭成员的概率是P==.四、解答题(本大题共3个小题,每小题8分,共24分)18.(8分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为45%,所抽查的学生人数为60.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.【解答】解:(1)a=1﹣20%﹣30%﹣5%=45%;所抽查的学生人数为:3÷5%=60人;故答案为:45%,60;(2)平均睡眠时间为8小时的人数为:60×30%=18人;(3)这部分学生的平均睡眠时间的众数是7,平均数==7.2小时;(4)1200名睡眠不足(少于8小时)的学生数=×1200=780人.19.(8分)如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),将A(0,2),B(2,0)代入得:,解得:,故直线AB解析式为y=﹣x+2,将D(﹣1,a)代入直线AB解析式得:a=+2=3,则D(﹣1,3),将D坐标代入y=中,得:m=﹣3,则反比例解析式为y=﹣;(2)联立两函数解析式得:,解得:或,则C坐标为(3,﹣),过点C作CH⊥x轴于点H,在Rt△OHC中,CH=,OH=3,tan∠COH==,∠COH=30°,在Rt△AOB中,tan∠ABO===,∠ABO=60°,∠ACO=∠ABO﹣∠COH=30°.20.(8分)如图,在△ABC中,点O在边AC上,⊙O与△ABC的边AC,AB分别切于C、D两点,与边AC交于点E,弦与AB平行,与DO的延长线交于M 点.(1)求证:点M是CF的中点;(2)若E是的中点,连结DF,DC,试判断△DCF的形状;(3)在(2)的条件下,若BC=a,求AE的长.【解答】(1)证明:∵AB是⊙O的切线,∴OD⊥AB,∴∠ODB=90°,∵CF∥AB,∴∠OMF=∠ODB=90°,∴OM⊥CF,∴CM=MF.(2)解:结论:△DFC是等边三角形.理由:∵点M是CF中点,DM⊥CF,∴DE=DF,∵E是中点,∴DC=CF,∴DC=CF=DF,∴△DCF是等边三角形.(3)解:∵BC、BD是切线,∴BC=BD,∵CE垂直平分DF,∴∠DCA=30°,∠DCB=60°,∴△BCD是等边三角形,∴∠B=60°,∠A=30°,在Rt△ABC中,BC=BD=CD=a,∴OC=OD=a,OA=a,∴AE=OA﹣OC=a.五、解答题(本大题共2个小题,每小题9分,共18分)21.(9分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y (千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.22.(9分)在▱ABCD中,点B关于AD的对称点为B′,连接AB′,CB′,CB′交AD 于F点.(1)如图1,∠ABC=90°,求证:F为CB′的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B绕点A旋转的过程中,点F始终为CB′的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B′作B′G∥CD交AD于G点,只需证三角形全等;想法2:连接BB′交AD于H点,只需证H为BB′的中点;想法3:连接BB′,BF,只需证∠B′BC=90°.…请你参考上面的想法,证明F为CB′的中点.(一种方法即可)(3)如图3,当∠ABC=135°时,AB′,CD的延长线相交于点E,求的值.【解答】(1)证明:∵四边形ABCD为平行四边形,∠ABC=90°,∴□ABCD为矩形,AB=CD,∴∠D=∠BAD=90°,∵B,B′关于AD对称,∴∠B′AD=∠BAD=90°,AB=AB′,∴∠B′AD=∠D,∵∠AFB′=∠CFD,在△AFB′与△CFD中,,∴△AFB′≌△CFD(AAS),∴FB′=FC,∴F是CB′的中点;(2)证明:方法1:如图2,过点B′作B′G∥CD交AD于点G,∵B,B′关于AD对称,∴∠1=∠2,AB=AB′,∵B′G∥CD,AB∥CD,∴B′G∥AB.∴∠2=∠3,∴∠1=∠3,∴B′A=B′G,∵AB=CD,AB=AB′,∴B′G=CD,∵B′G∥CD,∴∠4=∠D,∵∠B′FG=∠CFD,在△B′FG与△CFD中,∴△B′FG≌△CFD(AAS),∴FB′=FC,∴F是CB′的中点;方法2:连接BB′交直线AD于H点,∵B,B′关于AD对称,∴AD是线段B′B的垂直平分线,∴B′H=HB,∵AD∥BC,∴==1,∴FB′=FC.∴F是CB′的中点;方法3:连接BB′,BF,∵B,B′关于AD对称,∴AD是线段B′B的垂直平分线,∴B′F=FB,∴∠1=∠2,∵AD∥BC,∴B′B⊥BC,∴∠B′BC=90°,∴∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∴FB=FC,∴B′F=FB=FC,∴F是CB′的中点;(3)解:取B′E的中点G,连结GF,∵由(2)得,F为CB′的中点,∴FG∥CE,FG=CE,∵∠ABC=135°,□ABCD中,AD∥BC,∴∠BAD=180°﹣∠ABC=45°,∴由对称性,∠EAD=∠BAD=45°,∵FG∥CE,AB∥CD,∴FG∥AB,∴∠GFA=∠FAB=45°,∴∠FGA=90°,GA=GF,∴FG=sin∠EAD•AF=AF,∴由①,②可得=.23.(12分)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y 轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l 的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是y=﹣x2﹣3,衍生直线的解析式是y=﹣x﹣3;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=x2﹣2x﹣3过(0,﹣3),∴设其衍生抛物线为y=ax2﹣3,∵y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴衍生抛物线为y=ax2﹣3过抛物线y=x2﹣2x﹣3的顶点(1,﹣4),∴﹣4=a•1﹣3,解得a=﹣1,∴衍生抛物线为y=﹣x2﹣3.设衍生直线为y=kx+b,∵y=kx+b过(0,﹣3),(1,﹣4),∴,∴,∴衍生直线为y=﹣x﹣3.(2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点,∴将y=﹣2x2+1和y=﹣2x+1联立,得,解得或,∵衍生抛物线y=﹣2x2+1的顶点为(0,1),∴原抛物线的顶点为(1,﹣1).设原抛物线为y=a(x﹣1)2﹣1,∵y=a(x﹣1)2﹣1过(0,1),∴1=a(0﹣1)2﹣1,解得a=2,∴原抛物线为y=2x2﹣4x+1.(3)∵N(0,﹣3),∴MN绕点N旋转到与x轴平行后,解析式为y=﹣3,∴再沿y轴向上平移1个单位得的直线n解析式为y=﹣2.设点P坐标为(x,﹣2),∵O(0,0),M(1,﹣4),∴OM2=(x M﹣x O)2+(y O﹣y M)2=1+16=17,OP2=(|x P﹣x O|)2+(y O﹣y P)2=x2+4,MP2=(|x P﹣x M|)2+(y P﹣y M)2=(x﹣1)2+4=x2﹣2x+5.①当OM2=OP2+MP2时,有17=x2+4+x2﹣2x+5,解得x=或x=,即P(,﹣2)或P(,﹣2).②当OP2=OM2+MP2时,有x2+4=17+x2﹣2x+5,解得x=9,即P(9,﹣2).③当MP2=OP2+OM2时,有x2﹣2x+5=x2+4+17,解得x=﹣8,即P(﹣8,﹣2).综上所述,当P为(,﹣2)或(,﹣2)或(9,﹣2)或(﹣8,﹣2)时,△POM为直角三角形.。