2018学年高中物理 第1章 碰撞与动量守恒 实验:研究碰撞中的动量守恒学案 教科版选修3-5
- 格式:doc
- 大小:608.65 KB
- 文档页数:10
第二节动量守恒定律在碰撞中的应用[目标定位]1.进一步理解弹性碰撞和非弹性碰撞, 会用动量和能量的观点解决碰撞问题.2.了解动量守恒定律在研究粒子物理中的重要作用.預习导学粧八汉记•鳥按一、 应用动量守恒定律解题的一般步骤1 •确定研究对象组成的系统」析所研究的物理过程是否满足动量守恒的应用条件. 2•设定正方向,分别写出系统初、末状态的总动量. 3.根据动量守恒定律列方程.4 •解方程,统一单位后代入数值进行运算写出结果. 二、 动量守恒定律的普遍应用1 •在自然界中,大到天体的相互作用,小到质子、中子等基本粒子间的相互作用都遵守动 量守恒定律.2.动量守恒定律是比牛顿运动定律应用更为普遍的定律.预习完成后,请把你疑惑的问题记录在下面的表格中问题1问题2问题3一、对碰撞问题的理解 1. 碰撞⑴碰撞时间非常短,可以忽略不计.(2)碰撞过程中内力往往远大于外力,系统所受外力可以忽略不计,所以系统的动量守恒. 2. 三种碰撞类型 (1) 弹性碰撞动量守恒: mv 1o + mv 2o = mv 1+ mv 2机械能守恒: 1 2丄 1 2 1 2丄 1 2 2HW 10 + 2mv 20 = 2mv 1 + ?mv 2推论:质量相等,大小、材料完全相同的弹性小球发生弹性碰撞,碰后交换速度. (2) 非弹性碰撞当V 20 = 0时,有V 1 =V 10m + m2mV 10m + m动量守恒:mv1o+ mv20= mv1+ mv2机械能减少,损失的机械能转化为内能| △ E k| = E<初一E k末=Q(3)完全非弹性碰撞动量守恒:mv io+ mv2o= ( m+ m2) v 共碰撞中机械能损失最多1 2 1 2 1 2| △ E k| = q mv io + 2m2V20 —空(m+ m2) v共【例1】形状、大小完全相同,质量分别为300 g和200 g的两个物体在光滑的水平面上相向运动,速度分别为50 cm/s和100 cm/s.(1) 如果两物体碰撞并粘合在一起,求它们共同的速度大小;(2) 求碰撞后损失的动能;(3) 如果碰撞是弹性碰撞,求两物体碰撞后的速度大小.答案(1)0.1 m/s (2)0.135 J(3) 0.7 m/s 0.8 m/s解析(1) V10 = 50 cm/s = 0.5 m/s ,V2o=—100 cm/s =—1 m/s ,设两物体碰撞后粘合在一起的共同速度为v,由动量守恒定律得mve+ mv2o = ( m + m) v,代入数据解得v = —0.1 m/s ,负号表示方向与V10的方向相反.(2) 碰撞后两物体损失的动能为1 2 1 2 1 2 1 2 1 2 1△E k = q mve + 2向2。
1 碰撞2 动量[目标定位] 1.知道什么是碰撞及碰撞的分类,掌握弹性碰撞和非弹性碰撞的区别.2.理解动量、冲量的概念,知道动量、冲量的方向.3.知道动量的改变量,并会求动量的改变量.4.理解动量定理的物理意义和表达式,能用动量定理解释现象和解决实际问题.一、碰撞1.碰撞现象做相对运动的两个(或几个)物体相遇而发生相互作用,在很短的时间内,它们的运动状态会发生显著变化,这一过程叫做碰撞.2.碰撞的分类(1)弹性碰撞:碰撞前后两滑块的总动能不变.(2)非弹性碰撞:碰撞后两滑块的总动能减少了.(3)完全非弹性碰撞:两物体碰后粘在一起,以相同的速度运动,完全非弹性碰撞过程动能损失最大.二、动量1.定义:运动物体的质量和速度的乘积叫动量;公式p=mv;单位:千克·米/秒,符号:kg·m/s.2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则.3.动量是状态量.4.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小).想一想质量和速度大小相同的两个物体动能相同,它们的动量也一定相同吗?答案不一定.动量是矢量,有方向性,而动能是标量,无方向.三、动量定理1.冲量(1)定义:力与力的作用时间的乘积,公式:I=Ft,单位:牛顿·秒,符号N·s.(2)矢量性:方向与力的方向相同.2.动量定理(1)内容:物体所受合外力的冲量等于物体的动量变化.(2)公式:Ft =p ′-p 或I =Δp .预习完成后,请把你疑惑的问题记录在下面的表格中问题1 问题2 问题3一、碰撞中的动能变化及碰撞分类(1)发生碰撞的两物体,若两物体的形变是弹性的,碰后能够恢复原状,两物体碰撞前后动能不变,这样的碰撞叫弹性碰撞.(2)发生碰撞的两物体,若两物体的形变是非弹性的,碰后不能够完全恢复原状,两物体碰撞后动能减少,这样的碰撞叫非弹性碰撞.(3)若两物体碰后粘在一起,不再分开,此过程两物体损失的动能最大,这样的碰撞叫完全非弹性碰撞.【例1】 一个质量为2 kg 的小球A 以v 0=3 m/s 的速度与一个静止的、质量为1 kg 的小球B 正碰.试根据以下数据,分析碰撞性质. (1)碰后A 、B 的速度均为2 m/s.(2)碰后A 的速度为1 m/s ,B 的速度为4 m/s. 答案 (1)非弹性碰撞 (2)弹性碰撞 解析 碰前系统的动能E k0=12m A v 20=9 J.(1)当碰后A 、B 速度均为2 m/s 时,碰后系统的动能E k =12m A v A 2+12m B v B 2=(12×2×22+12×1×22) J =6 J<E k0 故碰撞为非弹性碰撞.(2)当碰后v A =1 m/s ,v B =4 m/s 时,碰后系统的动能E k ′=12m A v 2A +12m B v 2B=(12×2×12+12×1×42) J =9 J =E k0 故碰撞为弹性碰撞. 二、动量和动量的变化1.对动量的理解(1)动量的矢量性:动量是矢量,它的方向与速度v的方向相同,遵循矢量运算法则.动量是状态量,进行运算时必须明确是哪个物体在哪一状态(时刻)的动量.(2)动量具有相对性:由于速度与参考系的选择有关,一般以地球为参考系.(3)动量与动能的区别与联系:①区别:动量是矢量,动能是标量.②联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p22m或p=2mE k. 2.动量的变化(Δp)(1)Δp=p′-p为矢量式.若p′、p不在一条直线上,要用平行四边形定则求矢量差.若p′、p在一条直线上,先规定正方向,再用正、负表示p′、p,则可用Δp=p′-p=mv′-mv进行代数运算.(2)动量变化的方向:与速度变化的方向相同.【例2】质量为0.5 kg的物体,运动速度为3 m/s,它在一个变力作用下速度变为7 m/s,方向和原来方向相反,则这段时间内动量的变化量为( )A.5 kg·m/s,方向与原运动方向相反B.5 kg·m/s,方向与原运动方向相同C.2 kg·m/s,方向与原运动方向相反D.2 kg·m/s,方向与原运动方向相同答案 A解析以原来的方向为正方向,由定义式Δp=mv′-mv得Δp=(-7×0.5-3×0.5) kg·m/s=-5 kg·m/s,负号表示Δp的方向与原运动方向相反.借题发挥关于动量变化量的求解1.若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算.2.若初、末动量不在同一直线上,运算时应遵循平行四边形定则.三、对冲量的理解和计算1.冲量的理解(1)冲量是过程量,它描述的是力作用在物体上的时间累积效应,求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(2)冲量是矢量,冲量的方向与力的方向相同.2.冲量的计算(1)求某个恒力的冲量:用该力和力的作用时间的乘积.(2)求合冲量的两种方法:可分别求每一个力的冲量,再求各冲量的矢量和;另外,如果各个力的作用时间相同,也可以先求合力,再用公式I合=F合Δt求解.图1(3)求变力的冲量:①若力与时间成线性关系变化,则可用平均力求变力的冲量.②若给出了力随时间变化的图像如图1所示,可用面积法求变力的冲量.③利用动量定理求解.图2【例3】如图2所示,在倾角α=37°的斜面上,有一质量为5 kg的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2 s的时间内,物体所受各力的冲量.(g 取10 m/s2,sin 37°=0.6,cos 37°=0.8)答案见解析解析重力的冲量:I G=Gt=mg·t=5×10×2 N·s=100 N·s,方向竖直向下.支持力的冲量:I F=Ft=mg cos α·t=5×10×0.8×2 N·s=80 N·s,方向垂直斜面向上.摩擦力的冲量:I Ff=F f t=μmg cos α·t=0.2×5×10×0.8×2 N·s=16 N·s,方向沿斜面向上.借题发挥求各力的冲量或者合力的冲量,首先判断是否是恒力,若是恒力,可直接用力与作用时间的乘积,若是变力,要根据力的特点求解,或者利用动量定理求解.四、对动量定理的理解和应用1.动量定理的理解(1)动量定理的表达式Ft=p′-p是矢量式,等号包含了大小相等、方向相同两方面的含义.(2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F是物体所受的合外力,若合外力是变力,则F应是合外力在作用时间内的平均值.2.动量定理的应用(1)定性分析有关现象:①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.(2)应用动量定理定量计算的一般步骤:①选定研究对象,明确运动过程.②进行受力分析和运动的初、末状态分析.③选定正方向,根据动量定理列方程求解.【例4】跳远时,跳在沙坑里比跳在水泥地上安全,这是由于( )A.人跳在沙坑的动量比跳在水泥地上的小B.人跳在沙坑的动量变化比跳在水泥地上的小C.人跳在沙坑受到的冲量比跳在水泥地上的小D.人跳在沙坑受到的冲力比跳在水泥地上的小答案 D解析人跳远时从一定的高度落下,落地前的速度是一定的,初动量是一定的,所以选项A 错误;落地后静止,末动量一定,人的动量变化是一定的,选项B错误;由动量定理可知人受到的冲量等于人的动量变化,所以两种情况下人受到的冲量相等,选项C错误;落在沙坑里力作用的时间长,落在水泥地上力作用的时间短,根据动量定理,在动量变化一定的情况下,时间t越长则受到的冲力F越小,故选项D正确.【例5】质量m=70 kg的撑竿跳高运动员从h=5.0 m高处落到海绵垫上,经Δt1=1 s 后停止,则该运动员身体受到的平均冲力约为多少?如果是落到普通沙坑中,经Δt2=0.1 s 停下,则沙坑对运动员的平均冲力约为多少?(g取10 m/s2)答案 1 400 N 7 700 N解析以全过程为研究对象,初、末动量的数值都是0,所以运动员的动量变化量为零,根据动量定理,合力的冲量为零,根据自由落体运动的知识,物体下落到地面上所需要的时间是t=2hg=1 s从开始下落到落到海绵垫上停止时,mg(t+Δt1)-FΔt1=0代入数据,解得F=1 400 N下落到沙坑中时,mg(t+Δt2)-F′Δt2=0代入数据,解得F′=7 700 N.对弹性碰撞和非弹性碰撞的理解1.现有甲、乙两滑块,质量分别为3m和m,以相同的速率v在光滑水平面上相向运动,发生了碰撞.已知碰撞后甲滑块静止不动,乙滑块反向运动,且速度大小为2v.那么这次碰撞是( )A .弹性碰撞B .非弹性碰撞C .完全非弹性碰撞D .条件不足,无法确定答案 A解析 碰前总动能:E k =12·3m ·v 2+12mv 2=2mv 2碰后总动能:E k ′=12mv ′2=2mv 2,E k =E k ′,所以A 对.对动量和冲量的理解2.关于动量,下列说法正确的是( ) A .速度大的物体,它的动量一定也大 B .动量大的物体,它的速度一定也大C .只要物体运动的速度大小不变,物体的动量也保持不变D .质量一定的物体,动量变化越大,该物体的速度变化一定越大 答案 D解析 动量由质量和速度共同决定,只有质量和速度的乘积大,动量才大,A 、B 均错误;动量是矢量,只要速度方向变化,动量也发生变化,选项C 错误;由Δp =m Δv 知D 正确. 3.如图3所示,质量为m 的小滑块沿倾角为θ的斜面向上滑动,经过时间t 1速度为零然后又下滑,经过时间t 2回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为F 1.在整个过程中,重力对滑块的总冲量为( )图3A .mg sin θ(t 1+t 2)B .mg sin θ(t 1-t 2)C .mg (t 1+t 2)D .0答案 C解析 谈到冲量必须明确是哪一个力的冲量,此题中要求的是重力对滑块的冲量,根据冲量的定义式I =Ft ,因此重力对滑块的冲量应为重力乘作用时间,所以I G =mg (t 1+t 2),即C 正确.动量定理的理解和应用4.(多选)一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是( )A .引起小钢球动量变化的是地面给小钢球的弹力的冲量B .引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C .若选向上为正方向,则小钢球受到的合冲量是-1 N·sD .若选向上为正方向,则小钢球的动量变化是1 kg·m/s 答案 BD5.质量为60 kg 的建筑工人,不慎从高空跌下,幸好弹性安全带的保护使他悬挂起来.已知弹性安全带的缓冲时间是1.5 s ,安全带自然长度为5 m ,g 取10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .1 100 NC .600 ND .1 000 N 答案 D解析 建筑工人下落5 m 时速度为v ,则v =2gh =2×10×5 m/s =10 m/s.设安全带所受平均冲力为F ,则由动量定理得:(mg -F )t =-mv ,所以F =mg +mv t =60×10 N+60×101.5N=1 000 N ,故D 对,A 、B 、C 错.(时间:60分钟)题组一 对弹性碰撞和非弹性碰撞的理解 1.下列属于弹性碰撞的是( ) A .钢球A 与钢球B B .钢球A 与橡皮泥球B C .橡皮泥球A 与橡皮泥球B D .木球A 与钢球B 答案 A解析 钢球A 与钢球B 发生碰撞,形变能够恢复,属于弹性碰撞,A 对;钢球A 与橡皮泥球B 、橡皮泥球A 与橡皮泥球B 碰撞,形变不能恢复,即碰后粘在一起,是完全非弹性碰撞,B 、C 错;木球A 与钢球B 碰撞,形变部分能够恢复,属于非弹性碰撞,D 错.2.在光滑的水平面上,动能为E 0的钢球1与静止钢球2发生碰撞,碰后球1反向运动,其动能大小记为E 1,球2的动能大小记为E 2,则必有( ) A .E 1<E 0 B .E 1=E 0 C .E 2>E 0 D .E 2=E 0 答案 A解析 根据碰撞前后动能关系得E 1+E 2≤E 0,必有E 1<E 0,E 2<E 0.故只有A 项对. 题组二 对动量和冲量的理解 3.下列说法正确的是( )A .动能为零时,物体一定处于平衡状态B.物体受到恒力的冲量也可能做曲线运动C.物体所受合外力不变时,其动量一定不变D.动能不变,物体的动量一定不变答案 B解析动能为零时,速度为零,而加速度不一定等于零,物体不一定处于平衡状态,选项A 错误;物体受恒力,也可能做曲线运动.如平抛运动,选项B正确;合外力不变,加速度不变,速度均匀变化,动量一定变化,C项错误;动能不变,若速度的方向变化,动量就变化,选项D错误.4.(多选)如图1所示为放到水平地面上的物体受到的合外力随时间变化的关系,若物体开始时是静止的,则前3 s内( )图1A.物体的位移为0B.物体的动量改变量为0C.物体的动能变化量为0D.前3 s合力冲量为零,但重力冲量不为零答案BCD解析第1 s内:F=20 N,第2、3 s内:F=-10 N,物体先加速,后减速,在第3 s末速度为零,物体的位移不为零,A错误;根据动量定理I=Δp,前3 s内,动量的变化量为零,B正确;由于初速度和末速度都为零,因此,动能变化量也为零,C正确;无论物体运动与否,某一个力在这段时间的冲量不为零,D正确.5.把质量为10 kg的物体放在光滑的水平面上,如图2所示,在与水平方向成53°的10 N 的力F作用下从静止开始运动,在2 s内力F对物体的冲量为多少?物体获得的动量是多少?(sin 53°=0.8,cos 53°=0.6)图2答案20 N·s12 kg·m/s解析首先对物体进行受力分析:与水平方向成53°的拉力F、重力G、支持力F N.由冲量定义可知,力F的冲量为I F=Ft=10×2 N·s=20 N·s.在水平方向,由牛顿第二定律得F cos 53°=ma2 s 末的速度v =at 物体获得的动量P =mv =Ft cos 53°=10×0.6×2 kg·m/s=12 kg·m/s.题组三 动量定理的理解及定性分析6.从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时作用时间长 答案 CD解析 杯子是否被撞碎,取决于撞击地面时,地面对杯子的撞击力大小.规定竖直向上为正方向,设玻璃杯下落高度为h ,它们从h 高度落地瞬间的速度大小为2gh ,设玻璃杯的质量为m ,则落地前瞬间的动量大小为p =m 2gh ,与水泥或草地接触Δt 时间后,杯子停下,在此过程中,玻璃杯的动量变化Δp =-(-m 2gh )相同,再由动量定理可知(F -mg )·Δt =-(-m 2gh ),所以F =m 2ghΔt+mg .由此可知,Δt 越小,玻璃杯所受撞击力越大,玻璃杯就越容易碎,杯子掉在草地上作用时间较长,动量变化慢,作用力小,因此玻璃杯不易碎. 7.从高处跳到低处时,为了安全,一般都是让脚尖着地,这样做是为了( ) A .减小冲量 B .减小动量的变化量C .增大与地面的冲击时间,从而减小冲力D .增大人对地面的压强,起到安全作用 答案 C解析 脚尖先着地,接着逐渐到整只脚着地,延缓了人落地时动量变化所用的时间,由动量定理可知,人落地动量变化一定,这样就减小了地面对人的冲力,故C 正确.8.质量为m 的钢球自高处落下,以速度大小v 1碰地,竖直向上弹回,碰撞时间极短,离地的速度大小为v 2.在碰撞过程中,地面对钢球的冲量的方向和大小为( )A .向下,m (v 1-v 2)B .向下,m (v 1+v 2)C .向上,m (v 1-v 2)D .向上,m (v 1+v 2)答案 D解析 物体以大小为v 1的竖直速度与地面碰撞后以大小为v 2的速度反弹.物体在与地面碰撞过程的初、末状态动量皆已确定.根据动量定理便可以求出碰撞过程中钢球受到的冲量.设垂直地面向上的方向为正方向,对钢球应用动量定理得Ft -mgt =mv 2-(-mv 1)=mv 2+mv 1 由于碰撞时间极短,t 趋于零,则mgt 趋于零.所以Ft =m (v 2+v 1),即弹力的冲量方向向上,大小为m (v 2+v 1).题组四 动量定理的有关计算9.质量为0.5 kg 的小球沿光滑水平面以5 m/s 的速度冲向墙壁后又以4 m/s 的速度反向弹回,如图3所示,若球跟墙的作用时间为0.05 s ,则小球所受到的平均作用力大小为________N.图3答案 90解析 选定小球与墙碰撞的过程,取v 1的方向为正方向,对小球应用动量定理得Ft =-mv 2-mv 1所以,F =-mv 2-mv 1t =-0.5×4-0.5×50.05N =-90 N“-”号说明F 的方向向左.10.如图4所示,质量为1 kg 的钢球从5 m 高处自由下落,又反弹到离地面3.2 m 高处,若钢球和地面之间的作用时间为0.1 s ,求钢球对地面的平均作用力大小.(g 取10 m/s 2)图4答案 190 N解析 钢球落到地面时的速度大小为v 0=2gh 1=10 m/s ,反弹时向上运动的速度大小为v t =2gh 2=8 m/s ,分析物体和地面的作用过程,取向上为正方向,因此有v 0的方向为负方向,v t 的方向为正方向,再根据动量定理得(F N -mg )t =mv t -(-mv 0),代入数据,解得F N =190 N ,由牛顿第三定律知钢球对地面的平均作用力大小为190 N.11.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m ,据测算两车相撞前速度均为30 m/s ,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg 的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s,求这时人体受到的平均冲力为多大?答案(1)5.4×104 N (2)1.8×103 N解析(1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m.设运动的时间为t,则由x=v02t得,t=2xv0=130s.根据动量定理得Ft=Δp=-mv0,解得F=-mv0t=-60×30130N=-5.4×104 N,与运动方向相反.(2)若人系有安全带,则F′=-mv0t′=-60×301N=-1.8×103 N,与运动方向相反.12.将质量为m=1 kg的小球,从距水平地面高h=5 m处,以v0=10 m/s的水平速度抛出,不计空气阻力,g取10 m/s2.求:(1)抛出后0.4 s内重力对小球的冲量;(2)平抛运动过程中小球动量的增量Δp;(3)小球落地时的动量p′的大小.答案(1)4 N·s方向竖直向下(2)10 N·s方向竖直向下(3)10 2 kg·m/s解析(1)重力是恒力,0.4 s内重力对小球的冲量I=mgt=1×10×0.4 N·s=4 N·s方向竖直向下.(2)由于平抛运动的竖直分运动为自由落体运动,故h=12gt′2,落地时间t′=2hg=1 s.小球飞行过程中只受重力作用,所以合外力的冲量为I′=mgt′=1×10×1 N·s=10 N·s,方向竖直向下.由动量定理得Δp=I′=10 N·s,方向竖直向下.(3)小球落地时竖直分速度为v y=gt′=10 m/s.由速度合成知,落地速度v=v20+v2y=102+102m/s=10 2 m/s,所以小球落地时的动量大小为p′=mv=10 2 kg·m/s.。
实验验证动量守恒定律对应学生用书页码一、实验目的1.验证一维碰撞中的动量守恒。
2.探究一维弹性碰撞的特点。
二、实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p =m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒。
三、实验器材方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。
方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等。
方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。
方案四:斜槽,大小相等质量不同的小钢球两个,重垂线一条,白纸,复写纸,天平一台,刻度尺,圆规。
四、实验步骤方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量。
(2)安装:正确安装好气垫导轨。
(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量,②改变滑块的初速度大小和方向)。
(4)验证:一维碰撞中的动量守恒。
方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2。
(2)安装:把两个等大小球用等长悬线悬挂起来。
(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰。
(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。
(5)改变条件:改变碰撞条件,重复实验。
(6)验证:一维碰撞中的动量守恒。
方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量。
(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥。
(3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动。
(4)测速度:通过纸带上两计数点间的距离及时间,由v =ΔsΔt 算出速度。
3 动量守恒定律[目标定位] 1.认识系统、内力、外力,认识和理解动量守恒定律.2.会应用动量守恒定律解决生产、生活中的简单问题.3.了解动量守恒定律的普遍适用性和动量守恒定律适用范围的局限性.一、系统的动量1.系统:在物理学中,有时要把相互作用的两个或多个物体作为一个整体来研究,这个整体叫做系统.2.系统的动量:在一个系统中,把各个物体的动量都相加,相加后的动量称作系统的动量.二、动量守恒定律1.系统碰撞前后总动量不变的条件:系统所受的合外力为零.2.内容:如果一个系统不受外力或所受合外力为零,无论这一系统的内部进行了何种形式的碰撞,这个系统的总动量保持不变,这就是动量守恒定律.3.数学表达式:m1v1+m2v2=m1v1′+m2v2′.4.成立条件(1)系统不受外力作用.(2)系统受外力作用,但合外力为零.想一想如图1所示,在风平浪静的水面上,停着一艘帆船,船尾固定一台电风扇,正在不停地把风吹向帆面,船能向前行驶吗?为什么?图1答案不能.把帆船和电风扇看做一个系统,电风扇和帆船受到空气的作用力大小相等、方向相反,这是一对内力,系统总动量守恒,船原来是静止的,总动量为零,所以在电风扇吹风时,船仍保持静止.三、动量守恒定律的普遍性牛顿运动定律只适用于宏观、低速运动的物体,而动量守恒定律无论在微观、宏观或高速领域,都是适用的.预习完成后,请把你疑惑的问题记录在下面的表格中一、对动量守恒定律的理解1.研究对象相互作用的物体组成的系统.2.动量守恒定律的成立条件(1)系统不受外力或所受合外力为零.(2)系统受外力作用,合外力也不为零,但合外力远远小于内力.此时系统动量近似守恒.(3)系统所受到的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒.3.动量守恒定律的几个性质(1)矢量性.公式中的v1、v2、v1′和v2′都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负(表示方向)后,才能用代数方法运算.(2)相对性.速度具有相对性,公式中的v1、v2、v1′和v2′应是相对同一参考系的速度,一般取相对地面的速度.(3)同时性.相互作用前的总动量,这个“前”是指相互作用前的某一时刻,v1、v2均是此时刻的瞬时速度;同理,v1′、v2′应是相互作用后的同一时刻的瞬时速度.【例1】(多选)如图2所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C 上,A、B间有一根被压缩的弹簧,地面光滑.当弹簧突然释放后,则( )图2A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成系统的动量守恒答案BCD解析如果A、B与平板车上表面间的动摩擦因数相同,弹簧释放后A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A∶m B=3∶2,所以F A∶F B=3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,A选项错;对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力的合力为零,故该系统的动量守恒,B、D选项均正确;若A、B所受摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,C选项正确.针对训练(多选)两位同学穿旱冰鞋,面对面站立不动,互推后向相反的方向运动,不计摩擦阻力,下列判断正确的是( )图3A.互推后两同学总动量增加B.互推后两同学动量大小相等,方向相反C.分离时质量大的同学的速度小一些D.互推过程中机械能守恒答案BC解析对两同学所组成的系统,互推过程中,合外力为零,总动量守恒,故A错;两同学动量的变化量大小相等,方向相反,故B、C正确;互推过程中机械能增大,故D错误.二、动量守恒定律简单的应用1.动量守恒定律不同表现形式的表达式的含义(1)p=p′:系统相互作用前总动量p等于相互作用后总动量p′.(2)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.(3)Δp=0:系统总动量增量为零.(4)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.2.应用动量守恒定律的解题步骤(1)确定相互作用的系统为研究对象;(2)分析研究对象所受的外力;(3)判断系统是否符合动量守恒条件;(4)规定正方向,确定初、末状态动量的正、负号;(5)根据动量守恒定律列式求解.【例2】质量m1=10 g的小球在光滑的水平桌面上以v1=30 cm/s的速率向右运动,恰遇上质量为m2=50 g的小球以v2=10 cm/s的速率向左运动,碰撞后,小球m2恰好停止,则碰后小球m1的速度大小和方向如何?答案20 cm/s 方向向左解析碰撞过程中,两小球组成的系统所受合外力为零,动量守恒.设向右为正方向,则各小球速度为v1=30 cm/s,v2=-10 cm/s;v2′=0.由动量守恒定律列方程m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,代入数据得v 1′=-20 cm/s.故小球m 1碰后的速度的大小为20 cm/s ,方向向左.借题发挥 处理动量守恒应用题“三步曲”(1)判断题目涉及的物理过程是否满足动量守恒的条件.(2)确定物理过程及其系统内物体对应的初、末状态的动量.(3)确定正方向,选取恰当的动量守恒的表达式列式求解.【例3】 将两个完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑.开始时甲车速度大小为3 m/s ,乙车速度大小为2 m/s ,方向相反并在同一直线上,如图4所示.图4(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最小时,乙车的速度是多大?方向如何?答案 (1)1 m/s 向右 (2)0.5 m/s 向右解析 两个小车及磁铁组成的系统在水平方向不受外力作用,两车之间的磁力是系统内力,系统动量守恒.设向右为正方向.(1)据动量守恒得:mv 甲-mv 乙=mv 甲′,代入数据解得v 甲′=v 甲-v 乙=(3-2) m/s =1 m/s ,方向向右.(2)两车相距最小时,两车速度相同,设为v ′,由动量守恒得:mv 甲-mv 乙=mv ′+mv ′. 解得v ′=mv 甲-mv 乙2m =v 甲-v 乙2=3-22m/s =0.5 m/s ,方向向右.对动量守恒条件的理解1.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,对于枪、弹、车,下列说法正确的是( )A .枪和弹组成的系统动量守恒B .枪和车组成的系统动量守恒C .枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D .枪、弹、车三者组成的系统动量守恒答案 D解析 内力、外力取决于系统的划分,以枪和弹组成的系统,车对枪的作用力是外力,系统动量不守恒,枪和车组成的系统受到系统外弹簧对枪的作用力,系统动量不守恒.枪弹和枪筒之间的摩擦力属于内力,但枪筒受到车的作用力,属于外力,故二者组成的系统动量不守恒.枪、弹、车组成的系统所受合外力为零,系统动量守恒,故D 正确.2. (多选)木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上.在b 上施加向左的水平力使弹簧压缩,如图5所示.当撤去外力后,下列说法正确的是( )图5A .a 尚未离开墙壁前,a 和b 组成的系统动量守恒B .a 尚未离开墙壁前,a 和b 组成的系统动量不守恒C .a 离开墙壁后,a 和b 组成的系统动量守恒D .a 离开墙壁后,a 和b 组成的系统动量不守恒答案 BC解析 a 尚未离开墙壁前,墙壁对a 有冲量,a 和b 构成的系统动量不守恒;a 离开墙壁后,系统所受外力之和等于零,系统的动量守恒.动量守恒定律的简单应用3.如图6所示,一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( )图6A .v 0-v 2B .v 0+v 2C .v 0-m 2m 1v 2D .v 0+m 2m 1(v 0-v 2) 答案 D解析 根据分离前后系统动量守恒定律可得:(m 1+m 2)v 0=m 1v 1+m 2v 2解得:v 1=v 0+m 2m 1(v 0-v 2),故D 项正确.4.两小孩在冰面上乘坐“碰碰车”相向运动.A 车总质量为50 kg ,以2 m/s 的速度向右运动;B 车总质量为70 kg ,以3 m/s 的速度向左运动;碰撞后,A 以1.5 m/s 的速度向左运动,则B 的速度大小为多少?方向如何?答案0.5 m/s 方向向左解析由动量守恒定律得:规定向右为正方向,m A v A-m B v B=-m A v A′+m B v B′,解得v B′=-0.5 m/s,所以B的速度大小是0.5 m/s,方向向左.(时间:60分钟)题组一对动量守恒条件的理解1.关于系统动量守恒的条件,下列说法中正确的是( )A.只要系统内存在摩擦力,系统的动量就不可能守恒B.只要系统中有一个物体具有加速度,系统的动量就不守恒C.只要系统所受的合外力为零,系统的动量就守恒D.系统中所有物体的加速度都为零时,系统的总动量不一定守恒答案 C解析根据动量守恒的条件即系统所受外力的矢量和为零可知,选项C正确;系统内存在摩擦力,若系统所受的合外力为零,动量也守恒,选项A错误;系统内各物体之间有着相互作用,对单个物体来说,合外力不一定为零,加速度不一定为零,但整个系统所受的合外力仍可为零,动量守恒,选项B错误;系统内所有物体的加速度都为零时,各物体的速度恒定,动量恒定,总动量一定守恒,选项D错误.2.如图1所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )图1A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒答案 C解析两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故选项A、B错误,选项C正确;甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,选项D错误.3.如图2所示,小车与木箱紧挨着静放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是( )图2A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同答案 C解析由动量守恒定律成立的条件可知男孩、小车与木箱三者组成的系统动量守恒,选项A、B错误,C正确;木箱的动量增量与男孩、小车的总动量增量大小相等,方向相反,选项D 错误.4.(多选)在光滑水平面上A、B两小车中间有一弹簧,如图3所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看成一个系统,下面说法正确的是( )图3A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零答案ACD解析在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,A对;先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,B错;先放开左手,系统在右手作用下,产生向左的作用力,故有向左的冲量,再放开右手后,系统的动量仍守恒,即此后的总动量向左,C对;其实,无论何时放开手,只要是两手都放开后就满足动量守恒的条件,即系统的总动量保持不变,D对.题组二动量守恒定律的简单应用5.在高速公路上发生一起交通事故,一辆质量为1 500 kg向南行驶的长途客车迎面撞上了一辆质量为3 000 kg向北行驶的卡车,碰撞后两辆车接在一起,并向南滑行了一小段距离后停下,根据测速仪的测定,长途客车碰前以20 m/s的速率行驶,由此可判断卡车碰撞前的行驶速率( )A.小于10 m/sB.大于20 m/s,小于30 m/sC.大于10 m/s,小于20 m/sD .大于30 m/s ,小于40 m/s答案 A解析 两车碰撞过程中系统动量守恒,两车相撞后向南滑行,则系统动量方向向南,即p 客>p 卡,1 500×20>3 000×v ,解得v <10 m/s ,故A 正确.6. (多选)如图4所示,A 、B 两个小球在光滑水平面上沿同一直线相向运动,它们的动量大小分别为p 1和p 2,碰撞后A 球继续向右运动,动量大小为p 1′,此时B 球的动量大小为p 2′,则下列等式成立的是( )图4A .p 1+p 2=p 1′+p 2′B .p 1-p 2=p 1′+p 2′C .p 1′-p 1=p 2′+p 2D .-p 1′+p 1=p 2′+p 2 答案 BD解析 因水平面光滑,所以A 、B 两球组成的系统在水平方向上动量守恒.以向右为正方向,由于p 1、p 2、p 1′、p 2′均表示动量的大小,所以碰前的动量为p 1-p 2,碰后的动量为p 1′+p 2′,B 对.经变形得-p 1′+p 1=p 2′+p 2,D 对.7.将静置在地面上质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.m M v 0B.M m v 0C.M M -m v 0 D.m M -m v 0 答案 D解析 火箭模型在极短时间点火,设火箭模型获得速度为v ,据动量守恒定律有0=(M -m )v -mv 0,得v =mM -m v 0,故选D. 8.质量为M 的木块在光滑水平面上以速度v 1向右运动,质量为m 的子弹以速度v 2水平向左射入木块,要使木块停下来,必须使发射子弹的数目为(子弹留在木块中不穿出)( ) A.M +m v 1mv 2 B.Mv 1M +m v 2 C.Mv 1mv 2D.mv 1Mv 2 答案 C解析 设发射子弹的数目为n ,选择n 颗子弹和木块M 组成的系统为研究对象.系统在水平方向所受的合外力为零,满足动量守恒的条件.设木块M 以v 1向右运动,连同n 颗子弹在射入前向左运动为系统的初状态,子弹射入木块后停下来为末状态.选子弹运动的方向为正方向,由动量守恒定律有:nmv 2-Mv 1=0,得n =Mv 1mv 2,所以选项C 正确. 9.质量为M 的小船以速度v 0行驶,船上有两个质量均为m 的小孩a 和b ,分别静止站在船头和船尾.现小孩a 沿水平方向以速率v (相对于静止水面)向前跃入水中,然后小孩b 沿水平方向以同一速率v (相对于静止水面)向后跃入水中,则小孩b 跃出后小船的速度方向________,大小为________(水的阻力不计).答案 向前 ⎝ ⎛⎭⎪⎫1+2m M v 0 解析 选小孩a 、b 和船为一系统,由于忽略水的阻力,故系统水平方向动量守恒,设小孩b 跃出后小船向前行驶的速度为v ′,选v 0方向为正方向,根据动量守恒定律,有(M +2m )v 0=Mv ′+mv -mv ,整理解得v ′=⎝ ⎛⎭⎪⎫1+2m M v 0,方向向前. 题组三 综合应用10.如图5所示,质量为m 2=1 kg 的滑块静止于光滑的水平面上,一质量为m 1=50 g 的小球以1 000 m/s 的速率碰到滑块后又以800 m/s 的速率被弹回,试求滑块获得的速度.图5答案 90 m/s 方向与小球的初速度方向一致解析 对小球和滑块组成的系统,在水平方向上不受外力,竖直方向上所受合力为零,系统动量守恒,以小球初速度方向为正方向,则有v 1=1 000 m/s ,v 1′=-800 m/s ,v 2=0又m 1=50 g =5.0×10-2 kg ,m 2=1 kg由动量守恒定律有:m 1v 1+0=m 1v 1′+m 2v 2′代入数据解得v 2′=90 m/s ,方向与小球初速度方向一致.11.如图6所示,质量为M 的木块放在粗糙的水平面上且弹簧处于原长状态,质量为m 的子弹以初速度v 0击中木块而未穿出,则击中木块瞬间二者的共同速度为多大?图6答案 mM +m v 0 解析 由于从子弹打入到与物块相对静止,时间非常短,弹簧未发生形变,且此过程中地面对物块摩擦力远小于内力(子弹与物块间作用力),故可认为此过程动量守恒.对m 、M 系统,m 击中M 过程动量守恒,mv0=(m+M)v,所以v=mM+mv0.12.光滑水平面上一平板车质量为M=50 kg,上面站着质量m=70 kg的人,共同以速度v0匀速前进,若人相对车以速度v=2 m/s向后跑,问人跑动后车的速度改变了多少?答案 1.17 m/s解析以人和车组成的系统为研究对象,选v0方向为正方向.设人跑动后车的速度变为v′,则人相对地的速度为(v′-v).系统所受合外力为零,根据动量守恒定律有(M+m)v0=Mv′+m(v′-v).解得v′=v0+mvM+m.人跑动后车的速度改变量为Δv=v′-v0=mvM+m=1.17 m/s.Δv的数值为正,说明速度的改变与v0方向一致,车速增加.。
4 习题课动量守恒定律的应用[目标定位] 1.进一步理解动量守恒定律的含义,理解动量守恒定律的系统性、相对性、矢量性和独立性.2.进一步熟练掌握应用动量守恒定律解决问题的方法和步骤.1.动量守恒定律成立的条件动量守恒定律的研究对象是相互作用的物体系统,其成立的条件可理解为:(1)理想条件:系统不受外力.(2)实际条件:系统所受外力为零.(3)近似条件:系统所受外力比相互作用的内力小得多,外力的作用可以被忽略.(4)推广条件:系统所受外力之和虽不为零,但在某一方向,系统不受外力或所受的外力之和为零,则系统在这一方向上动量守恒.2.动量守恒定律的五性动量守恒定律是自然界最重要、最普遍的规律之一.它是一个实验定律,应用时应注意其:系统性、矢量性、相对性、同时性、普适性.预习完成后,请把你疑惑的问题记录在下面的表格中一、动量守恒条件及守恒对象的选取1.动量守恒定律成立的条件:(1)系统不受外力或所受外力的合力为零;(2)系统在某一方向上不受外力或所受外力的合力为0;(3)系统的内力远大于外力.2.动量守恒定律的研究对象是系统.选择多个物体组成的系统时,必须合理选择系统,再对系统进行受力分析,分清内力与外力,然后判断所选系统是否符合动量守恒的条件.【例1】(多选)质量为M和m0的滑块用轻弹簧连接,以恒定速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图1所示,碰撞时间极短,在此过程中,下列情况可能发生的是( )图1A.M、m0、m速度均发生变化,碰后分别为v1、v2、v3,且满足(M+m0)v=Mv1+mv2+m0v3 B.m0的速度不变,M和m的速度变为v1和v2,且满足Mv=Mv1+mv2C.m0的速度不变,M和m的速度都变为v′,且满足Mv=(M+m)v′D.M、m0、m速度均发生变化,M和m0的速度都变为v1,m的速度变为v2,且满足(M+m0)v =(M+m0)v1+mv2答案BC解析M和m碰撞时间极短,在极短的时间内弹簧形变极小,可忽略不计,因而m0在水平方向上没有受到外力作用,动量不变(速度不变),可以认为碰撞过程中m0没有参与,只涉及M 和m,由于水平面光滑,弹簧形变极小,所以M和m组成的系统水平方向动量守恒,两者碰撞后可能具有共同速度,也可能分开,所以只有B、C正确.二、单一方向动量守恒问题1.动量守恒定律的适用条件是普遍的,当系统所受的合外力不为零时,系统的总动量不守恒,但是不少情况下,合外力在某个方向上的分量却为零,那么在该方向上系统的动量分量就是守恒的.2.分析该方向上对应过程的初、末状态,确定初、末状态的动量.3.选取恰当的动量守恒的表达式列方程.三、多物体、多过程动量守恒定律的应用对于由多个物体组成的系统,由于物体较多,作用过程较为复杂,这时往往要根据作用过程中的不同阶段,将系统内的物体按作用的关系分成几个小系统,对不同阶段、不同的小系统准确选取初、末状态,分别列动量守恒定律方程求解.【例2】如图2所示,A、B两个木块质量分别为2 kg与0.9 kg,A、B与水平地面间接触面光滑,上表面粗糙,质量为0.1 kg的铁块以10 m/s的速度从A的左端向右滑动,最后铁块与B的共同速度大小为0.5 m/s,求:图2(1)A的最终速度;(2)铁块刚滑上B时的速度.答案(1)0.25 m/s(2)2.75 m/s解析(1)选铁块和木块A、B为一系统,由系统总动量守恒得:mv=(M B+m)v B+M A v A可求得:v A=0.25 m/s(2)设铁块刚滑上B时的速度为u,此时A、B的速度均为v A=0.25 m/s.由系统动量守恒得:mv =mu +(M A +M B )v A可求得:u =2.75 m/s.借题发挥 处理多物体、多过程动量守恒应注意的问题1.注意正方向的选取.2.研究对象的选取,是取哪几个物体为系统.3.研究过程的选取,应明确哪个过程中动量守恒.针对训练两辆质量相同的小车,置于光滑的水平面上,有一人静止站在A 车上,两车静止,如图3所示.当这个人从A 车跳到B 车上,接着又从B 车跳回A 车并与A 车保持相对静止,则A 车的速率( )图3A .等于零B .小于B 车的速率C .大于B 车的速率D .等于B 车的速率 答案 B解析 选A 车、B 车和人作为系统,两车均置于光滑的水平面上,在水平方向上无论人如何跳来跳去,系统均不受外力作用,故满足动量守恒定律.设人的质量为m ,A 车和B 车的质量均为M ,最终两车速度分别为v A 和v B ,由动量守恒定律得0=(M +m )v A -Mv B ,则v A v B =M M +m,即v A <v B ,故选项B 正确.四、动量守恒定律应用中的临界问题分析在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题.分析临界问题的关键是寻找临界状态,临界状态的出现是有条件的,这个条件就是临界条件.临界条件往往表现为某个(或某些)物理量的特定取值.在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,这些特定关系的判断是求解这类问题的关键.【例3】 如图4所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量为M =30 kg ,乙和他的冰车总质量也是30 kg.游戏时,甲推着一个质量为m =15 kg 的箱子和他一起以v 0=2 m/s 的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处,乙迅速抓住.若不计冰面摩擦.图4(1)若甲将箱子以速度v 推出,甲的速度变为多少?(用字母表示)(2)设乙抓住迎面滑来的速度为v 的箱子后反向运动,乙抓住箱子后的速度变为多少?(用字母表示)(3)若甲、乙最后不相撞,甲、乙的速度应满足什么条件?箱子被推出的速度至少多大?答案 (1) M +m v 0-mv M(2)mv -Mv 0m +M(3)v 1≤v 2 5.2 m/s解析 (1)甲将箱子推出的过程,甲和箱子组成的整体动量守恒,由动量守恒定律得:(M +m )v 0=mv +Mv 1①解得v 1= M +m v 0-mv M② (2)箱子和乙作用的过程动量守恒,以箱子的速度方向为正方向,由动量守恒定律得: mv -Mv 0=(m +M )v 2③解得v 2=mv -Mv 0m +M④ (3)甲、乙不相撞的条件是v 1≤v 2⑤其中v 1=v 2为甲、乙恰好不相撞的条件.联立②④⑤三式,并代入数据得v ≥5.2 m/s.某一方向上动量守恒问题1. (多选)如图5所示,在光滑的水平面上有一静止的斜面,斜面光滑,现有一个小球从斜面顶点由静止释放,在小球下滑的过程中,以下说法正确的是( )图5A .斜面和小球组成的系统动量守恒B .斜面和小球组成的系统仅在水平方向上动量守恒C .斜面向右运动D .斜面静止不动答案 BC解析 球和斜面组成的系统在水平方向上不受外力作用,故水平方向动量守恒.小球下滑时,对地有向下的加速度,即系统存在向下的加速度,故系统竖直方向上所受合外力不为零,合外力向下,因此不能说系统动量守恒.多物体、多过程中的动量守恒问题2.如图6所示,质量为M 的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m 的物体.从某一时刻起给m 一个水平向右的初速度v 0,那么在物块与盒子前后壁多次往复碰撞后( )图6A .两者的速度均为零B .两者的速度总不会相等C .物体的最终速度为mv 0M ,向右 D .物体的最终速度为mv 0M +m,向右 答案 D解析 物体与盒子组成的系统所受合外力为零,物体与盒子前后壁多次往复碰撞后,以速度v 共同运动,由动量守恒定律得:mv 0=(M +m )v ,故v =mv 0M +m,向右. 3.质量相等的五个物块在一光滑水平面上排成一条直线,且彼此隔开一定的距离,具有初速度v 0的第5号物块向左运动,依次与其余四个静止物块发生碰撞,如图7所示,最后这五个物块粘成一个整体,求它们最后的速度为多少?图7答案 15v 0 解析 由五个物块组成的系统,沿水平方向不受外力作用,故系统动量守恒,mv 0=5mv ,v =15v 0,即它们最后的速度为15v 0. 动量守恒定律应用中的临界问题4.如图8所示,一质量为m 3的人站在质量为m 的小船甲上,以速度v 0在水面上向右运动.另一完全相同的小船乙以速率v 0从右方向左方驶来,两船在一条直线上运动.为避免两船相撞,人从甲船以一定的速率水平向右跃到乙船上,求:为避免两船相撞,人水平跳出时相对于地面的速率至少多大?图8答案 257v 0 解析 设向右为正方向,两船恰好不相撞,最后具有共同速度v 1,由动量守恒定律,得 (m 3+m )v 0-mv 0=(2m +m 3)v 1,解得v 1=17v 0 设人跳出甲船的速度为v 2,人从甲船跃出的过程满足动量守恒定律,则(m 3+m )v 0=mv 1+m 3v 2,解得v 2=257v 0.(时间:60分钟)题组一 动量守恒条件及系统和过程的选取1.两球在水平面上相向运动,发生正碰后都变为静止.可以肯定的是,碰前两球的( )A .质量相等B .动能相等C .动量大小相等D .速度大小相等 答案 C解析 两小球组成的系统碰撞过程中满足动量守恒,两球在水平面上相向运动,发生正碰后都变为静止,故根据动量守恒定律可以断定碰前两球的动量大小相等、方向相反,C 正确.2. (多选)如图1所示,A 、B 两木块紧靠在一起且静止于光滑水平面上,物块C 以一定的初速度v 0从A 的左端开始向右滑行,最后停在B 木块的右端,对此过程,下列叙述正确的是( )图1A .当C 在A 上滑行时,A 、C 组成的系统动量守恒B .当C 在B 上滑行时,B 、C 组成的系统动量守恒C .无论C 是在A 上滑行还是在B 上滑行,A 、B 、C 三物块组成的系统动量都守恒D .当C 在B 上滑行时,A 、B 、C 组成的系统动量不守恒答案 BC解析 当C 在A 上滑行时,对A 、C 组成的系统,B 对A 的作用力为外力,不等于0,故系统动量不守恒,选项A错误;当C在B上滑行时,A、B已分离,对B、C组成的系统,沿水平方向不受外力作用,故系统动量守恒,选项B正确;若将A、B、C三物块视为一系统,则沿水平方向无外力作用,系统动量守恒,选项C正确,选项D错误.3. (多选)平板车B静止在光滑水平面上,在其左端另有物体A以水平初速度v0向车的右端滑行,如图2所示.由于A、B间存在摩擦,因而A在B上滑行后,A开始做减速运动,B 做加速运动(设B车足够长),则B车速度达到最大时,应出现在( )图2A.A的速度最小时B.A、B速度相等时C.A在B上相对静止时D.B车开始做匀速直线运动时答案ABCD解析由于A、B之间存在摩擦力,A做减速运动,B做加速运动,当两个物体的速度相等时,相对静止,摩擦力消失,变速运动结束,此时A的速度最小,B的速度最大,因此选项A、B、C正确,此后A、B一起匀速运动,所以D项正确.4.(多选)如图3所示,在质量为M的小车上挂有一单摆,摆球的质量为m0,小车和摆球以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列可能发生的情况是( )图3A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3B.摆球的速度不变,小车和木块的速度分别变为v1、v2,满足Mv=Mv1+mv2C.摆球的速度不变,小车和木块的速度都变为v′,满足Mv=(M+m)v′D.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv2答案BC5.(多选)如图4所示,小车放在光滑的水平面上,将系着绳的小球拉开一定的角度,然后同时放开小球和小车,那么在以后的过程中( )图4A .小球向左摆动时,小车也向左运动,且系统动量守恒B .小球向左摆动时,小车向右运动,且系统动量守恒C .小球向左摆到最高点,小球的速度为零而小车的速度不为零D .在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反答案 BD解析 小球摆动过程中,竖直方向上合力不为零,故系统总动量不守恒,但水平方向不受外力,在水平方向动量守恒,所以选项B 、D 正确.6. (多选)如图5所示,小车放在光滑水平面上,A 、B 两人站在车的两端,这两人同时开始相向行走,发现车向左运动,分析小车运动的原因可能是( )图5A .A 、B 质量相等,但A 比B 速率大B .A 、B 质量相等,但A 比B 速率小C .A 、B 速率相等,但A 比B 的质量大D .A 、B 速率相等,但A 比B 的质量小答案 AC解析 两人及车组成的系统动量守恒,则m A v A -m B v B -m C v C =0,得m A v A -m B v B >0.所以A 、C 正确.题组二 多物体、多过程动量守恒定律的应用7.一弹簧枪对准以6 m/s 的速度沿光滑桌面迎面滑来的木块发射一颗铅弹,射出速度为10 m/s ,铅弹射入木块后未穿出,木块继续向前运动,速度变为5 m/s.如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块迎面射入的铅弹数为( )A .5颗B .6颗C .7颗D .8颗答案 D解析 设木块质量为m 1,铅弹质量为m 2,第一颗铅弹射入,有m 1v 0-m 2v =(m 1+m 2)v 1,代入数据可得m 1m 2=15,设再射入n 颗铅弹木块停止,有(m 1+m 2)v 1-nm 2v =0,解得n =8.8.如图6所示,一轻质弹簧两端连着物体A 和B ,放在光滑的水平面上,物体A 被水平速度为v 0的子弹射中并且子弹嵌在其中.已知物体A 的质量m A 是物体B 的质量m B 的34,子弹的质量m 是物体B 的质量的14,求弹簧压缩到最短时B 的速度.图6答案 v 08解析 弹簧压缩到最短时,子弹、A 、B 具有共同的速度v 1,且子弹、A 、B 组成的系统,从子弹开始射入物体A 一直到弹簧被压缩到最短的过程中,系统所受外力(重力、支持力)之和始终为零,故整个过程系统的动量守恒,由动量守恒定律得mv 0=(m +m A +m B )v 1,又m =14m B ,m A =34m B ,故v 1=mv 0m +m A +m B =v 08, 即弹簧压缩到最短时B 的速度为v 08. 9.如图7所示,甲车质量m 1=20 kg ,车上有质量M =50 kg 的人,甲车(连同车上的人)以v =3 m/s 的速度向右滑行.此时质量m 2=50 kg 的乙车正以v 0=1.8 m/s 的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上,求人跳出甲车的水平速度(相对地面)应当在什么范围以内才能避免两车相撞?不计地面和小车的摩擦,且乙车足够长.图7答案 大于等于3.8 m/s解析 人跳到乙车上后,如果两车同向,甲车的速度小于或等于乙车的速度就可以避免两车相撞.以人、甲车、乙车组成系统,由水平方向动量守恒得:(m 1+M )v -m 2v 0=(m 1+m 2+M )v ′,解得v ′=1 m/s.以人与甲车为一系统,人跳离甲车过程水平方向动量守恒,得:(m 1+M )v =m 1v ′+Mu ,解得u =3.8 m/s.因此,只要人跳离甲车的速度u ≥3.8 m/s ,就可避免两车相撞.题组三 综合应用10.如图8所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)图8答案 25 m/s解析 要使两车恰好不相撞,则两车速度相等.以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:0+M 2v 0=(M 1+m +M 2)v 共v 共=5 m/s以小球与乙车组成的系统,水平方向动量守恒:M 2v 0-mv =(m +M 2)v 共v =25 m/s11.质量为M =2 kg 的小平板车静止在光滑水平面上,车的一端静止着质量为m A =2 kg 的物体A (可视为质点),如图9所示,一颗质量为m B =20 g 的子弹以600 m/s 的水平速度射穿A 后,速度变为100 m/s ,最后物体A 相对车静止,若物体A 与小车间的动摩擦因数μ=0.5,取g =10 m/s 2,求平板车最后的速度是多大.图9答案 2.5 m/s解析 子弹击穿A 后,A 在水平方向上获得一个速度v A ,最后当A 相对车静止时,它们的共同速度为v .子弹射穿A 的过程极短,因此车对A 的摩擦力、子弹的重力作用可略去,即认为子弹和A 组成的系统水平方向动量守恒,同时,由于作用时间极短,可认为A 的位置没有发生变化,设子弹击穿A 后的速度为v ′,由动量守恒定律有m B v 0=m B v ′+m A v A ,得v A =m B v 0-v ′ m A =0.02× 600-100 2m/s =5 m/s A 获得速度v A 相对车滑动,由于A 与车间有摩擦,最后A 相对车静止,以共同速度v 运动,对于A 与车组成的系统,水平方向动量守恒,因此有:m A v A =(m A +M )v ,所以v =m A v A m A +M =2×52+2 m/s =2.5 m/s.12.如图10所示,光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在11 一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.图10答案 65v 0 解析 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 与B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0④。
2018学年高中物理第1章碰撞与动量守恒动量守恒定律的应用(碰撞)学案教科版选修3-5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018学年高中物理第1章碰撞与动量守恒动量守恒定律的应用(碰撞)学案教科版选修3-5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018学年高中物理第1章碰撞与动量守恒动量守恒定律的应用(碰撞)学案教科版选修3-5的全部内容。
动量守恒定律的应用(碰撞)【学习目标】1.知道什么是弹性碰撞和非弹性碰撞;2.知道什么是对心碰撞和非对心碰撞及散射现象;3.会运用动量守恒定律分析,解决碰撞物体相互作用的问题.【要点梳理】 要点一、碰撞1.碰撞及类碰撞过程的特点(1)时间特点:在碰撞、爆炸等现象中,相互作用时间很短.(2)相互作用力特点:在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大.(3)动量守恒条件特点:系统的内力远远大于外力,所以,系统即使所受外力之和不为零,外力也可以忽略,系统的总动量守恒.(4)位移特点:碰撞、爆炸过程是在一瞬间发生的,时间极短,所以,在物体发生碰撞、爆炸的瞬间,可忽略物体的位移.可以认为物体在碰撞、爆炸前后仍在同一位置.(5)能量特点:碰撞过程中,一般伴随着机械能的损失,碰撞后系统的总动能要小于或等于碰撞前系统的总动能,即:1212k k k k E E E E +≤+''.(6)速度特点:碰后必须保证不穿透对方. 2.碰撞的分类(1)按碰撞过程中动能的损失情况,可将碰撞分为弹性碰撞和非弹性碰撞.①弹性碰撞:碰撞过程中机械能不损失,即碰撞前后系统总动能守恒:1212k k k k E E E E +=+''.②非弹性碰撞;碰撞过程中机械能有损失,系统总动能不守恒:1212k k k k E E E E ++''<.③完全非弹性碰撞:碰撞后两物体“合”为一体,具有共同的速度,这种碰撞动能损失最大.(2)按碰撞前后,物体的运动方向是否沿同一条直线,可将碰撞分为正碰和斜碰. ①正碰:碰撞前后,物体的运动方向在同一条直线上,也叫对心碰撞. ②斜碰:碰撞前后,物体的运动方向不在同一条直线上,也叫非对心碰撞. 高中阶段一般只研究正碰的情况. ③散射指微观粒子之间的碰撞.要点诠释:由于粒子与物质微粒的碰撞并非直接接触,而是相互靠近,且发生对心碰撞的概率很小,所以多数粒子在碰撞后飞向四面八方.要点二、碰撞问题的处理方法 1.解析碰撞问题的三个依据(1)动量守恒,即1212p p p p +=+''.(2)动能不增加,即1212k k k k E E E E +≥+''.或222212121212''2222p p p p m m m m +≥+. (3)速度要符合情境:如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即v v 后前>,否则无法实现碰撞.碰撞后,原来在前的物体的速度一定增大,且原来在前的物体速度大于或等于原来在后的物体的速度.即v v ≥后前'',否则碰撞没有结束.如果碰前两物体是相向运动,则碰后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.爆炸问题爆炸与碰撞的共同点是物理过程剧烈,系统内物体的相互作用力(内力)很大,过程持续时间很短,即使系统所受合外力不为零,但合外力的冲量几乎为零,故系统的动量几乎不变,所以爆炸过程中可以近似认为动量守恒.要点诠释:爆炸与碰撞的不同点是爆炸过程中有其他形式的能向动能转化,故爆炸过程中系统的动能会增加.要点三、弹性正碰 1.弹性正碰的讨论如图所示,在光滑水平面上质量为1m 的小球以速度1v 与质量为2m 的静止小球发生弹性正碰.讨论碰后两球的速度1v '和2v '.根据动量守恒和动能守恒有:111122 m v m v m v =+'',222111122111''222m v m v m v =+,解上面两式可得:碰后1m的速度121112'm mv vm m-=+,碰后2m的速度121122'mv vm m=+.讨论:(1)若12m m>,1v'和2v'都是正值,表示1v'和2v'都与1v方向相同.(若12m m,121m m m≈-,121m m m+≈,则:11v v=',212v v=',表示1m的速度不变,2m以12v的速度被撞出去).(2)若12m m<,1v'为负值,表示1v'与1v方向相反,1m被弹回.(若12m m,这时122m m m≈--,1122mm m≈+,11v v='-,2v=',表示1m被反向以原速率弹回,而2m仍静止).(3)若12m m=,则有1v=',21v v=',即碰后两球速度互换.2.拓展设在光滑的水平面上质量为1m的小球以速度1v去碰撞质量为2m、速度为2v的小球发生弹性正碰,试求碰后两球的速度1v'和2v'。
碰撞和动量守恒实验教案一、教学目标1. 让学生理解碰撞的基本概念,了解实际碰撞与理想碰撞的区别。
2. 让学生掌握动量守恒定律的表述及应用。
3. 培养学生进行实验操作、数据处理和分析问题的能力。
4. 引导学生运用物理学知识解决实际问题,提高学生的科学素养。
二、教学内容1. 碰撞的基本概念:碰撞的定义、碰撞的类型。
2. 动量守恒定律:动量守恒定律的表述、动量守恒定律的应用。
3. 实际碰撞与理想碰撞:实际碰撞中的能量损失、实际碰撞与理想碰撞的差异。
4. 碰撞实验:实验原理、实验器材、实验步骤、实验数据处理。
5. 实验结果分析:数据分析、误差分析、实验结论。
三、教学重点与难点1. 教学重点:碰撞的基本概念、动量守恒定律、实际碰撞与理想碰撞。
2. 教学难点:动量守恒定律在复杂碰撞问题中的应用、实验数据的处理和分析。
四、教学方法1. 采用问题驱动的教学方法,引导学生思考碰撞现象背后的物理规律。
2. 利用实验教学,让学生亲身体验碰撞过程,提高学生的实践操作能力。
3. 采用小组讨论的形式,培养学生的团队合作意识和交流能力。
4. 利用多媒体辅助教学,形象直观地展示碰撞现象和动量守恒过程。
五、教学安排1. 第一课时:介绍碰撞的基本概念,讲解动量守恒定律的表述。
2. 第二课时:分析实际碰撞与理想碰撞的差异,讲解碰撞实验的原理。
3. 第三课时:进行碰撞实验,引导学生掌握实验步骤和数据处理方法。
4. 第四课时:分析实验结果,讨论误差来源,得出实验结论。
5. 第五课时:布置课后作业,巩固所学知识。
教案仅供参考,具体实施时可根据实际情况进行调整。
六、教学评价1. 评价学生对碰撞基本概念的理解程度,通过课堂提问和课后作业进行评估。
2. 评价学生对动量守恒定律的应用能力,通过解答相关习题和实验报告进行评估。
3. 评价学生对实际碰撞与理想碰撞的认识,通过课堂讨论和实验分析进行评估。
4. 评价学生的实验操作技能和数据处理能力,通过实验操作和实验报告进行评估。
实验:验证动量守恒定律[学习目标] 1.掌握验证动量守恒定律的方法和基本思路.2.掌握直线运动物体速度的测量方法.一、实验目的验证碰撞中的动量守恒定律二、实验原理为了使问题简化,这里研究两个物体的碰撞,且碰撞前两物体沿同一直线运动,碰撞后仍沿这一直线运动.设两个物体的质量分别为m1、m2,碰撞前的速度分别为v1、v2,碰撞后的速度分别为v1′、v2′,如果速度与我们规定的正方向相同取正值,相反取负值.根据实验求出两物体碰前动量p=m1v1+m2v2,碰后动量p′=m1v1′+m2v2′,看p与p′是否相等,从而验证动量守恒定律.三、实验设计实验设计需要考虑的问题:(1)如何保证碰撞前后两物体速度在一条直线上.(2)如何测定质量和速度.①测量质量用天平.②测定碰撞前后的速度,这是实验成功的关键.四、实验案例气垫导轨上的实验器材:气垫导轨、气泵、光电计时器、天平等.气垫导轨装置如图1所示,由导轨、滑块、挡光片、光电门等组成,在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上(如图2所示,图中气垫层的厚度放大了很多倍),这样大大减小了由摩擦产生的影响.图1 图2设Δx 为滑块(挡光片)的宽度,Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间,则v =Δx Δt .五、实验步骤1.调节气垫导轨,使其水平.是否水平可按如下方法检查:打开气泵后,导轨上的滑块应该能保持静止.2.按说明书连接好数字计时器与光电门.3.如图3所示,把中间夹有弯形弹簧片的两滑块置于光电门中间保持静止,烧断拴弹簧片的细线,测出两滑块的质量和速度,将实验结果记入设计好的表格中.图34.如图4所示,在滑块上安装好弹性碰撞架.将两滑块从左、右以适当的速度经过光电门后在两光电门中间发生碰撞,碰撞后分别沿各自碰撞前相反的方向运动再次经过光电门,光电计时器分别测出两滑块碰撞前后的速度.测出它们的质量后,将实验结果记入相应表格中.图45.如图5所示,在滑块上安装好撞针及橡皮泥,将装有橡皮泥的滑块停在两光电门之间,装有撞针的滑块从一侧经过光电门后两滑块碰撞,一起运动经过另一光电门,测出两滑块的质量和速度,将实验结果记入相应表格中.图56.根据上述各次碰撞的实验数据验证碰撞前后的动量是否守恒.实验数据记录表例1某同学利用气垫导轨做验证碰撞中的动量守恒的实验;气垫导轨装置如图6所示,所用的气垫导轨装置由导轨、滑块、弹射架、光电门等组成.图6(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨通入压缩空气;③接通光电计时器;④把滑块2静止放在气垫导轨的中间;⑤滑块1挤压导轨左端弹射架上的橡皮绳;⑥释放滑块1,滑块1通过光电门1后与左侧固定弹簧的滑块2碰撞,碰后滑块1和滑块2依次通过光电门2,两滑块通过光电门2后依次被制动;⑦读出滑块通过两个光电门的挡光时间分别为滑块1通过光电门1的挡光时间Δt1=10.01ms ,通过光电门2的挡光时间Δt 2=49.99 ms ,滑块2通过光电门2的挡光时间Δt 3=8.35 ms ;⑧测出挡光片的宽度d =5 mm ,测得滑块1(包括撞针)的质量为m 1=300 g ,滑块2(包括弹簧)的质量为m 2=200 g ; (2)数据处理与实验结论:①实验中气垫导轨的作用是a.________b .________.②碰撞前滑块1的速度v 1为________m/s ;碰撞后滑块1的速度v 2为______m/s ;滑块2的速度v 3为______m/s ;(结果保留两位有效数字)③在误差允许的范围内,通过本实验,同学们可以探究出哪些物理量是不变的?通过对实验数据的分析说明理由.(至少回答2个不变量). a .____________b .____________.答案 ①a.大大减小了因滑块和导轨之间的摩擦而引起的误差.b.保证两个滑块的碰撞是一维的.②0.50 0.10 0.60③a.系统碰撞前后总动量不变.b.碰撞前后总动能不变.(c.碰撞前后质量不变.) 解析 ①a.大大减小了因滑块和导轨之间的摩擦而引起的误差.b.保证两个滑块的碰撞是一维的.②滑块1碰撞之前的速度v 1=d Δt 1=5×10-310.01×10-3 m/s ≈0.50 m/s ;滑块1碰撞之后的速度v 2=d Δt 2=5×10-30.049 9m/s ≈0.10 m/s ;滑块2碰撞后的速度v 3=d Δt 3=5×10-38.35×10-3 m/s ≈0.60 m/s ;③a.系统碰撞前后总动量不变.因为系统碰撞前的动量m 1v 1=0.15 kg·m/s,系统碰撞后的动量m 1v 2+m 2v 3=0.15 kg·m/s b .碰撞前后总动能不变.因为碰撞前的总动能E k1=12m 1v 12=0.037 5 J ,碰撞之后的总动能E k2=12m 1v 22+12m 2v 32=0.037 5J ,所以碰撞前后总动能相等. c .碰撞前后质量不变.例2 某同学设计了一个用打点计时器探究碰撞中动量变化的规律的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速直线运动.然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速直线运动,他设计的具体装置如图7所示.在小车A 后连着纸带,电磁打点计时器电源频率为50 Hz ,长木板下垫着小木片用以平衡摩擦力.图7(1)若已得到打点纸带如图8所示,并测得各计数点间的距离标在图上,A 为运动起始的第一点.则应选________段来计算小车A 的碰前速度,应选______段来计算小车A 和小车B 碰后的共同速度(填“AB ”“BC ”“CD ”或“DE ”).图8(2)已测得小车A 的质量m A =0.40 kg ,小车B 的质量m B =0.20 kg ,由以上的测量结果可得:碰前两小车的总动量为______ kg·m/s,碰后两小车的总动量为______ kg·m/s. 答案 (1)BC DE (2)0.420 0.417解析 (1)因小车做匀速运动,应取纸带上打点均匀的一段来计算速度,碰前BC 段点距相等,碰后DE 段点距相等,故取BC 段、DE 段分别计算碰前小车A 的速度和碰后小车A 和小车B 的共同速度. (2)碰前小车速度v A =x BC T =10.50×10-20.02×5m/s =1.05 m/s其动量p A =m A v A =0.40×1.05 kg·m/s=0.420 kg·m/s碰后小车A 和小车B 的共同速度v AB =x DE T =6.95×10-20.02×5m/s =0.695 m/s碰后总动量p AB =(m A +m B )v AB =(0.40+0.20)×0.695 kg·m/s=0.417 kg·m/s从上面计算可知:在实验误差允许的范围内,碰撞前后总动量不变.例3 某同学用图9甲所示的装置通过半径相同的A 、B 两球的碰撞来探究动量守恒定律.图中SQ 是斜槽,QR 为水平槽.实验时先使A 球从斜槽上某一固定位置G 由静止开始滚下,落到位于水平地面的记录纸上留下痕迹.再把B 球放在水平槽上靠近末端的地方,让A 球仍从位置G 由静止滚下,和B 球碰撞后,A 、B 两球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图中O 点是水平槽末端R 在记录纸上的垂直投影点.B 球落点痕迹如图乙所示,其中米尺水平放置,且平行于G 、R 、O 所在平面,米尺的零点与O 点对齐. (1)碰撞后B 球的水平射程ON 应取为________ cm.图9(2)该同学实验数据记录如表所示,设两球在空中运动的时间为t ,请根据数据求出两球碰撞前的动量之和是________,两球碰撞后的动量之和是________,由此得出的结论是________________________________________________________________________.答案 (1)65.2 (2)t t误差允许的范围内,碰撞前后动量守恒定律成立解析 (1)水平射程是将10个不同的落点用尽量小的圆圈起来,其圆心即为平均落点,从题图乙上可读出约为65.2 cm.(2)A 、B 两球在碰撞前后都做平抛运动,高度相同,在空中运动的时间相同,而水平方向都做匀速直线运动,其水平射程等于速度与落地时间t 的乘积. 碰撞前A 球的速度为v A =OP t =47.9 cm t,碰撞前质量与速度的乘积之和为m A v A =20.0 g×47.9 cm t =958.0 g·cmt.碰撞后A 球的速度为v A ′=OM t =15.2 cmt,碰撞后B 球的速度为v B ′=ON t =65.2 cm t.碰撞后动量之和为m A v A ′+m B v B ′=20.0 g×15.2 cm t +10.0 g×65.2 cm t =956.0 g·cmt.一、选择题(1题为单选题,2~3题为多选题)1.用气垫导轨进行验证碰撞中的动量守恒的实验时,不需要测量的物理量是( )A.滑块的质量B.挡光时间C.挡光片的宽度D.光电门的高度答案 D2.在利用气垫导轨探究动量守恒定律实验中,哪些因素可导致实验误差( )A.导轨安放不水平B.小车上挡光板倾斜C.两小车质量不相等D.两小车碰后粘合在一起答案AB解析导轨不水平,小车速度将受重力影响.挡光板倾斜会导致挡光板宽度不等于挡光阶段小车通过的位移,导致速度计算出现误差.3.若用打点计时器做“探究碰撞中的不变量”的实验,下列操作正确的是( )A.相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了改变两车的质量B.相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了碰撞后粘在一起C.先接通打点计时器的电源,再释放拖动纸带的小车D.先释放拖动纸带的小车,再接通打点计时器的电源答案BC解析相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了碰撞后两车能粘在一起共同运动,这种情况能得到能量损失很大的碰撞,选项A错,B正确;应当先接通打点计时器的电源,再释放拖动纸带的小车,否则因运动距离较短,小车释放以后再接通电源,不容易得到实验数据,故选项C正确,D错误.二、非选择题4.在用气垫导轨做“验证碰撞中的动量守恒”实验时,左侧滑块质量m1=170 g,右侧滑块质量m2=110 g,挡光片宽度d为3.00 cm,两滑块之间有一压缩的弹簧片,并用细线连在一起,如图1所示.开始时两滑块静止,烧断细线后,两滑块分别向左、右方向运动.挡光片通过光电门的时间分别为Δt1=0.32 s,Δt2=0.21 s.则两滑块的速度大小分别为v1′=______m/s,v2′=______m/s(保留三位有效数字).烧断细线前m1v1+m2v2=______kg·m/s,烧断细线后m1v1′+m2v2′=________kg·m/s.可得到的结论是__________________________.(取向左为速度的正方向)图1答案0.094 0.143 0 2.5×10-4在实验允许的误差范围内,碰撞前后两滑块的总动量保持不变解析两滑块速度v 1′=d Δt 1=3.00×10-20.32m/s ≈0.094 m/s ,v 2′=-d Δt 2=-3.00×10-20.21 m/s ≈-0.143 m/s ,烧断细线前m 1v 1+m 2v 2=0烧断细前后m 1v 1′+m 2v 2′=(0.170×0.094-0.110×0.143) kg·m/s=2.5×10-4kg·m/s, 在实验允许的误差范围内,m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.5.用如图2所示装置验证碰撞中的动量守恒,气垫导轨水平放置,挡光板宽度为9.0 mm ,两滑块被弹簧(图中未画出)弹开后,左侧滑块通过左侧光电计时器,记录时间为0.040 s ,右侧滑块通过右侧光电计时器,记录时间为0.060 s ,左侧滑块质量为100 g ,左侧滑块的m 1v 1=________ g·m/s,右侧滑块质量为150 g ,两滑块的总动量m 1v 1+m 2v 2=________g·m/s.(取向左为速度的正方向)图2答案 22.5 0解析 左侧滑块的速度为:v 1=d 1t 1=9.0×10-30.040m/s =0.225 m/s则左侧滑块的m 1v 1=100 g×0.225 m/s=22.5 g·m/s 右侧滑块的速度为:v 2=-d 2t 2=-9.0×10-30.060m/s =-0.15 m/s则右侧滑块的m 2v 2=150 g×(-0.15 m/s)=-22.5 g·m/s 因m 1v 1与m 2v 2等大、反向,两滑块的总动量m 1v 1+m 2v 2=0.6.如图3所示,在实验室用两端带竖直挡板C 、D 的气垫导轨和带固定挡板的质量都是M 的滑块A 、B ,做探究碰撞中的不变量的实验:图3(1)把两滑块A 和B 紧贴在一起,在A 上放质量为m 的砝码,置于导轨上,用电动卡销卡住A 和B ,在A 和B 的固定挡板间放一弹簧,使弹簧处于水平方向上的压缩状态.(2)按下电钮使电动卡销放开,同时启动两个记录两滑块运动时间的电子计时器,当A 和B 与挡板C 和D 碰撞的同时,电子计时器自动停表,记下A 运动至C 的时间t 1,B 运动至D 的时间t 2.(3)重复几次取t 1、t 2的平均值. 请回答以下几个问题:①在调整气垫导轨时应注意___________________________________________________; ②应测量的数据还有_________________________________________________________; ③作用前A 、B 两滑块的速度与质量乘积之和为________________,作用后A 、B 两滑块的速度与质量乘积之和为________________.(用测量的物理量符号和已知的物理量符号表示) 答案 ①用水平仪测量并调试使得气垫导轨水平 ②A 至C 的距离L 1、B 至D 的距离L 2 ③0 (M +m )L 1t 1-M L 2t 2或M L 2t 2-(M +m )L 1t 1解析 ①为了保证滑块A 、B 作用后做匀速直线运动,必须使气垫导轨水平,需要用水平仪加以调试.②要求出A 、B 两滑块在电动卡销放开后的速度,需测出A 至C 的时间t 1和B 至D 的时间t 2,并且要测量出两滑块到两挡板的运动距离L 1和L 2,再由公式v =x t求出其速度.③设向左为正方向,根据所测数据求得两滑块的速度分别为v A =L 1t 1,v B =-L 2t 2.碰前两滑块静止,v =0,速度与质量乘积之和为0;碰后两滑块的速度与质量乘积之和为(M +m )L 1t 1-M L 2t 2.若设向右为正方向,同理可得碰后两滑块的速度与质量的乘积之和为M L 2t 2-(M +m )L 1t 1. 7.某班物理兴趣小组选用如图4所示装置来“探究碰撞中的动量守恒”.将一段不可伸长的轻质小绳一端与力传感器(可以实时记录绳所受的拉力)相连固定在O 点,另一端连接小钢球A ,把小钢球拉至M 处可使绳水平拉紧.在小钢球最低点N 右侧放置有一水平气垫导轨,气垫导轨上放有小滑块B (B 上安装宽度较小且质量不计的遮光板)、光电门(已连接数字毫秒计).当地的重力加速度为g .图4某同学按上图所示安装气垫导轨、滑块B (调整滑块B 的位置使小钢球自由下垂静止在N 点时与滑块B 接触而无压力)和光电门,调整好气垫导轨高度,确保小钢球A 通过最低点时恰好与滑块B 发生正碰.让小钢球A 从某位置静止释放,摆到最低点N 与滑块B 碰撞,碰撞后小钢球A 并没有立即反向,碰撞时间极短.(1)为完成实验,除了毫秒计读数Δt 、碰撞前瞬间绳的拉力F 1、碰撞结束瞬间绳的拉力F 2、滑块B 的质量m B 和遮光板宽度d 外,还需要测量的物理量有________. A .小钢球A 的质量m A B .绳长LC .小钢球从M 到N 运动的时间(2)滑块B 通过光电门时的瞬时速度v B =________.(用题中已给的物理量符号来表示) (3)实验中需要探究的表达式为________. 答案 (1)AB (2)dΔt(3)F 1m A L -m 2A gL =F 2m A L -m 2A gL +m BdΔt解析 滑块B 通过光电门时的瞬时速度v B =dΔt. 根据牛顿第二定律得:F 1-m A g =m A v21L .F 2-m A g =m A v 22L.由m A v 1=m A v 2+m B v B 得F 1m A L -m 2A gL =F 2m A L -m 2A gL +m BdΔt.所以还需要测量小钢球A 的质量m A 以及绳长L .百度文库是百度发布的供网友在线分享文档的平台。
实验:研究碰撞中的动量守恒【学习目标】1.明确探究碰撞中的不变量的基本思路;2.掌握同一条直线上运动的两个物体碰撞前、后速度的测量方法; 3.掌握实验数据处理的方法; 4.掌握案例的原理、方法.【要点梳理】要点诠释: 要点一、实验内容 1.实验目的该实验的目的是追寻碰撞过程中的不变量,由于质量不是描述运动状态的量,因此我们需要在包括物体质量和速度在内的整体关系中探究哪些是不变的,所以实验中一方面需要控制碰撞必须是一维碰撞,另一方面还要测量物体的质量和速度,并通过计算探究不变量存在的可能性.2.实验探究的基本思路 (1)一维碰撞.两个物体碰撞前沿同一直线运动,碰撞后仍沿这一直线运动,这种碰撞叫做一维碰撞. (2)追求不变量.在一维碰撞的情况下,设两个物体的质量分别为12m m 、,碰撞前的速度分别为12v v 、,碰撞后的速度分别为12v v 、'',如果速度与我们规定的正方向一致取正值,相反取负值,依次研究以下关系是否成立:①11112222m v m v m v m v ==,'';②11221122m v m v m v m v +=+'';③ 222211221122''m v m v m v m v +=+;④12121212''v v v v m m m m +=+. 3.实验探究的案例方案一:利用气垫导轨实现一维碰撞,如图所示.(1)质量的测量:用天平测量. (2)速度的测量:xv t∆=∆,式中x ∆为滑块(挡光片)的宽度,t ∆为数字计时器显示的滑块(挡光片)经过光电门的时间.(3)各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量.方案二:利用等长悬线悬挂等大小球实现一维碰撞,如图所示.(1)质量的测量:用天平测量.(2)速度的测量:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(3)不同碰撞情景的实现:用贴胶布的方法增大两球碰撞时的能量损失.方案三:利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞,如图所示.(1)质量的测量:用天平测量. (2)速度的测量:xv t∆=∆,x ∆是纸带上两计数点间的距离,可用刻度尺测量.t ∆为小车经过x ∆所用的时间,可由打点间隔算出.4.实验步骤不论采用哪种方案,实验过程均可按实验方案合理安排,参考步骤如下: (1)用天平测相关质量. (2)安装实验装置. (3)使物体发生碰撞.(4)测量或读出相关物理量,计算有关速度. (5)改变碰撞条件,重复步骤(3)、(4).(6)进行数据处理,通过分析比较,找出碰撞中的守恒量.(7)整理器材,结束实验. 5.实验数据分析将实验中测得的数据填入下表中,然后探究不变量.6.注意事项(1)保证两物体发生的是一维碰撞,即两个物体碰撞前沿同一直线运动,碰撞后仍沿这一直线运动.(2)若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪确保导轨水平.(3)若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一竖直面内.(4)碰撞有很多情形.我们寻找的不变量必须在各种碰撞情况下都不改变,才符合要求. 7.误差分析(1)碰撞是否为一维碰撞是产生误差的一个原因,设计实验方案时应保证碰撞为一维碰撞. (2)碰撞中是否受其他力(例如摩擦力)影响是带来误差的又一个原因,实验中要合理控制实验条件,避免除碰撞时相互作用力外的其他力影响物体速度.要点二、实验总结1.探究一维碰撞中的不变量的设计思路 2.实验探究中要注意的两个问题(1)保证两个物体做一维碰撞:可用斜槽、气垫导轨等控制物体的运动. (2)速度的测量要比较方便、精确:可利用光电门、打点计时器(配纸带)、闪光照片等手段,也可利用匀速运动、平抛运动等间接测量.【典型例题】类型一、纸带研究碰撞问题例1.某同学设计了一个用打点计时器探究碰撞中的不变量的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速直线运动,然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速直线运动.他设计的具体装置如图甲所示.在小车A 后面连着纸带,电磁打点计时器的电源频率为50 Hz ,长木板下垫着小木片用以平衡摩擦力.(1)与物体运动有关的物理量可能有哪些; (2)碰撞前后哪些物理量可能不变; (3)如何研究碰撞的各种不同形式. 实验思路 (1)怎样保证碰撞是一维的? (2)如何测量质量?(3)如何测量速度? (4)数据如何处理? 需要考虑的问题探究一维碰撞 中的不变量(1)若已得到打点纸带如图乙所示,并将测得的各计数点间距标在图上,A 为运动起始的第一点.则应选________段计算A 碰前的速度,应选________段计算A 和B 碰后的共同速度.(填“AB ”或“BC ”“CD ”或“DE ”)(2)已测得小车A 的质量0.40 kg A m =,小车B 的质量0.20 kg B m =,由以上测量结果可得:碰前 ________kg m/s A A B B m v m v +=⋅,碰后________kg m/s A A B B m v m v +⋅''. (3)通过以上实验及计算结果,你能得出什么结论?【思路点拨】解此类问题关键是求小车的速度,而小车碰撞前后的速度求解方法是利用纸带上匀速运动过程求解,为了减小测量的相对误差,应多测几个间距来求速度.【答案】(1)BC DE (2)0.420.417【解析】(1)小车A 碰前做匀速直线运动,打出纸带上的点应该是间距均匀的,故计算小车碰前速度应选BC 段;CD 段上所打的点由稀变密,可见在CD 段A B 、两小车相互碰撞.A B 、碰撞后一起做匀速直线运动,所打出的点又是间距均匀的,故应选DE 段计算碰后速度.(2)0.105m / s 1.05m / s 0.1A BC v t ===∆, 0.0695''m / s 0.695m / s 0.1A B DE v v v t =====∆.碰前0.41.05 kg m/s 0.42 kg m/s A A B B m v m v +=⨯⋅=⋅,碰后()0.60.695 kg m/s 0.417 kg m/s A A B B A B m v m v m m v +=+=⨯⋅=⋅''.举一反三:【变式】用半径相同的两个小球A B 、的碰撞探究碰撞中的不变量,实验装置如图所示,斜槽与水平槽圆滑连接.实验时先不放B 球,使A 球从斜槽上某一固定点C 由静止滚下,落到位于水平地面的记录纸上留下痕迹.再把B 球静置于水平槽的前端边缘处,让A 球仍从C 处由静止滚下,A 球和B 球碰撞后分别落在记录纸上留下各自的痕迹.记录纸上的O 点是重垂线所指的位置,若测得各落点痕迹到D 点的距离: 2.68 cm OM =,8.26 cm OP =,11.50 cm ON =,并已知A B 、两球的质量比为21∶,则未放B 球时A 球落点是记录纸上的________ 点,系统碰撞前总动量A A p m v =与碰撞后总动量A AB B p m v m v =+'''的百分误差|'|p p p-=________.(结果保留一位有效数字)【答案】P 2【解析】未放B 球时A 球的落点是P .用小球的质量和水平位移的乘积代替动量,则有|()||'|A A B A m OP m OM m ON p p p m OP⋅-⋅+⋅-=⋅ |8.62( 2.6811.50)|2%8.62A AB A m m m m ⨯-⨯+⨯=≈⨯.类型二、气垫导轨研究物体速度例2.为了研究碰撞,实验可以在气垫导轨上进行,这样就可以大大减小阻力,使滑块在碰撞前后的运动可以看成是匀速运动,使实验的可靠性及准确度得以提高.在某次实验中,A B 、两铝制滑块在一水平长气垫导轨上相碰,用闪光照相机每隔0.4 s 的时间拍摄一次照片,每次拍摄时闪光的延续时间很短,可以忽略,如图所示,已知A B 、之间的质量关系是1.5B A m m =,拍摄共进行了4次,第一次是在两滑块相撞之前,以后的三次是在碰撞之后.A 原来处于静止状态,设A B 、滑块在拍摄闪光照片的这段时间内是在10 cm 至105 cm 这段范围内运动(以滑块上的箭头位置为准),试根据闪光照片求出:(1)A B 、两滑块碰撞前后的速度各为多少?(2)根据闪光照片分析说明两滑块碰撞前后各自的质量与自己的速度的乘积和是不是不变量?【答案】见解析【解析】由图分析可知,(1)碰撞后:'0.2'm/s 0.50m/s 0.4'0.3'm/s 0.75m/s 0.4B BA A s v t s v t ∆⎧===⎪⎪∆⎨∆⎪===⎪∆⎩.从发生碰撞到第二次拍摄照片,A 运动的时间是1''0.15s 0.2s '0.75A A s t v ∆===, 由此可知:从拍摄第一次照片到发生碰撞的时间为2(0.40.2)0.2 s t ==-,则碰撞前B 物体的速度为2''0.2m/s 1.0m/s 0.2B B s v t ∆===, 由题意得0A v =.(2)碰撞前:1.5A A B B A m v m v m +=,碰撞后:0.750.15 1.5A A B B A A A m v m v m m m +=+='',所以A AB B A A B B m v m v m v m v +=+'',即碰撞前后两个物体各自的质量与自己的速度的乘积之和是不变量.【总结升华】准确把握题目中信息“A 原来处于静止状态”是正确分析照片信息的前提,图示滑块位置只是对应运动中不同时刻的几个状态,碰撞不一定发生在闪光时刻,在不计碰撞时间的情况下,相邻两位置对应的时间仍为闪光间隔,但碰撞前后物体速度不同,所以在这0.4 s 内不可以用总位移与总时间的比值求速度.举一反三:【变式】气垫导轨(如图甲)工作时,空气从导轨表面的小孔喷出,在导轨表面和滑块内表面之间形成一层薄薄的空气层,使滑块不与导轨表面直接接触,大大减小了滑块运动时的阻力.为了验证动量守恒定律,在水平气垫导轨上放置两个质量均为a 的滑块,每个滑块的一端分别与穿过打点计时器的纸带相连,两个打点计时器所用电源的频率均为b .气垫导轨正常工作后,接通两个打点计时器的电源,并让两滑块以不同的速度相向运动,两滑块相碰后粘在一起继续运动.图乙为某次实验打出的、点迹清晰的纸带的一部分,在纸带上以同间距的6个连续点为一段划分纸带,用刻度尺分别量出其长度12s s 、和3s .若题中各物理量的单位均为国际单位,郡么,碰撞前两滑块的动量大小分别为________、________,两滑块的总动量大小为________;碰撞后两滑块的总动量大小为________.重复上述实验,多做几次.若碰撞前、后两滑块的总动量在实验误差允许的范围内相等,则动量守恒定律得到验正.【答案】10.2abs 30.2abs 130.2()ab s s - 20.4abs 【解析】因为打点计时器所用电源的频率均为b ,所以打点周期为1b,所以碰撞前两清块的动量分别为:11110.215s p mv a abs b ==⋅=⨯, 32230.215sp mv a abs b==⋅=⨯.因为运动方向相反,所以碰前两物块总动量为12130.2()p p p ab s s ==--,碰后两滑块的总动量22'20.415s p a abs b=⋅=⨯.【总结升华】本题是验证性实验,与探究性实验是有区别的.类型三、利用平抛运动探究碰撞中的不变量例3.某同学用图1-1-6甲所示装置通过半径相同的A B 、两球的碰撞来寻找不变量,图中PQ 是斜槽,QR 为水平槽.实验时先使A 球从斜槽上某一固定位置G 由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹,重复上述操作10次,得到10个落点痕迹;再把B 球放在水平槽上靠近槽末端的地方,让A 球仍从位置G 由静止开始滚下,和B 球碰撞后,A B 、球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图中D 是水平槽末端口在记录纸上的垂直投影点,P 为未放被碰小球B 时A 球的平均落点,M 为与B 球碰后A 球的平均落点,N 为被碰球B 的平均落点.若B 球落点痕迹如图1-1-6乙所示,其中米尺水平放置,且平行于OP ,米尺的零点与O 点对齐.(1)碰撞后B 球的水平射程应为________cm .(2)在以下选项中,哪些是本次实验必须进行的测量? 答:________(填选项号).A .水平槽上未放B 球时,测量A 球落点位置到O 点的距离 B .A 球与B 球碰撞后,测量A 球落点位置到O 点的距离C .测量A 球或B 球的直径D .测量A 球和B 球的质量E .测量G 点相对于水平槽面的高度【思路点拨】该题中利用平抛运动的规律,巧妙地提供了一种测量碰撞前后速度的方法,首先由所给信息,均做平抛运动的小球,必须要测出小球的速度。