2018年高考数学(理)二轮练习:第2部分 必考补充专题 第21讲 算法初步、推理证明
- 格式:doc
- 大小:316.00 KB
- 文档页数:7
2018全国Ⅱ卷理数21题解法分析发表时间:2018-10-30T16:21:45.277Z 来源:《教育学》2018年10月总第155期作者:宁宇[导读] 解答该问题的核心思想是使用一定的方法与技巧将问题转化为函数的单调性、最值问题。
黑龙江省大庆市大庆中学163000函数是高中数学的核心内容,在历年的高考试题中都设置了大量的分值,而其中的导数解答题又处于压轴的地位,难度较大。
解答该问题的核心思想是使用一定的方法与技巧将问题转化为函数的单调性、最值问题。
(18理数Ⅱ卷21题)已知函数f(x)=ex-ax2。
(1)若a=1,证明:当x≥0时,f(x)≥1。
(2)若f(x)在(0,+∞)上只有一个零点,求a。
证明:(1)当a=1,x≥0时,f(x)=ex-x2≥1 =g(x),g`(x)=- ≤0,所以,g(x)在[0,+∞)单调递减,所以,g(x)≤g(0)=1,即f(x)≥1成立。
证明:(2)方法一:变形+带参讨论延续第一问变形的思路,考虑方程f(x)=ex-ax2=0h(x)=1- =0,显然当a≤0时方程无解。
所以当a>0时,令h`(x)= =0,解得x=2,当h`(x)>0,x>2,h(x)在(2,+∞)单调递增;当h`(x)<0,0<x<2,h(x)在(0,2)单调递减。
所以h(x)min=h(2)=1- ,①当h(2)>0,即a< ,h(x)>0,方程无解。
②当h(2)=0,即a= ,方程h(x)=0有唯一解。
③当h(2)<0,即a> 时,要论证此时不满足题意,需要利用零点存在性定理找到两个零点存在的区间,注意到h(0)=1,那么h (x)在(0,2)内存在唯一零点。
现在我们需要在(2,+∞)上找到一个正值。
当x→+∞时指数函数比二次函数增长速度快,所以1-→1,所以当x足够大时一定存在正值,由于这个函数是多项式比指数型,这时我们考虑第一问得出的结论对h(x)进行放缩,把函数中超越的部分换掉。
2018高考全国2卷理科数学带答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考全国2卷理科数学带答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考全国2卷理科数学带答案(word版可编辑修改)的全部内容。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y = D .3y = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29D .252018高考全国27.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50- B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =± 6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42 B .30 C .29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+1是否8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .56C .55D .2210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(f f ff++++=… A .50- B .0 C .2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。
2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合{(x,y)|x ²²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)²²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·1,则a·(2)=A.4B.3C.2D.05.双曲线x ²²²²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为±x ±x ±±6.在中,,1,5,则A.4B.C. D.27.为计算1…,设计了右侧的程序框图,则在空白框中应填入1 2 3 48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.B.C.D.9.在长方体1B 1C 1D 1中,1,1=则异面直线1与1所成角的余弦值为A. B.10.若f (x )在[,a ]是减函数,则a 的最大值是 A. B. C.D. π11.已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1)(1)。
若f (1)=2,则f (1)+ f (2)+ f (3)+…(50)=50 B.0 C.2 D.50 12.已知F 1,F 2是椭圆C: =1(a>b>0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,△1F 2为等腰三角形,∠F 1F 2120°,则C的离心率为A..B.C.D. 二、填空题:本题共4小题,每小题5分,共20分。
WORD 格式整理绝密★启用前2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题 5 分,共60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.1 2i1 2iA.4 35 5i B.4 35 5i C.3 45 5i D.3 45 5i2.已知集合 2 2 3A x,y x y ≤,x Z,y Z,则A中元素的个数为A.9 B.8 C.5 D.4x xe e3.函数 2f xx的图像大致为4.已知向量a,b满足|a| 1 ,a b 1 ,则a(2a b)A.4 B.3 C.2 D.02 2x y5.双曲线2 2 1( 0, 0)a ba b的离心率为3,则其渐近线方程为A.y 2x B.y 3x C.2y x D.23y x26.在△ABC 中,cos C52 5,BC 1 ,AC 5 ,则ABA.4 2 B.30 C.29 D.2 5分享专业知识WORD 格式整理1 1 1 1 17.为计算S 1 ⋯,设计了右侧的程序框图,2 3 4 99 100开始N 0,T 0 则在空白框中应填入i 1 A.i i 1B.i i 2 是否i 100C.i i 3D.i i 4 N N 1iS N T 1输出ST Ti 1结束8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 7 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A.112B.114C.115D.1189.在长方体A BCD A1B1C1D1 中,AB BC 1 ,A A ,则异面直线AD1 与1 3 DB 所成角的余弦值为1A.15B.56C.55D.2210.若 f (x) cos x sin x 在[ a, a] 是减函数,则 a 的最大值是A.π4B.π2C.3π4D.π11.已知 f (x) 是定义域为( , ) 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则f (1) f (2) f (3) ⋯ f (50)A.50 B.0 C.2 D.5012.已知F1 ,2 2x yF 是椭圆:的左,右焦点,A是C 的左顶点,点P 在过A且斜率C 2 2 1(a b 0)2a b为36的直线上,△PF1F2 为等腰三角形,F1 F2 P 120 ,则C 的离心率为A.23B.12C.13D.14二、填空题:本题共 4 小题,每小题 5 分,共20 分。
第2部分必考补充专题
必考补充专题中的7讲在高考考查中较为简单,题型为选择、填空题及选修“二选一”,属送分题型,通过一轮复习,大多数考生已能熟练掌握,为节省宝贵的二轮复习时间,迎合教师与考生的需求,本部分做构建知识体系和针对训练.
本文档仅供文库使用。
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt 文件格式。
2。
第21讲算法初步、推理证明(对应学生用书第115页)一、选择题1.(2015·全国Ⅱ卷)如图211所示,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )【导学号:07804131】图211A.0 B.2C.4 D.14B[a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.]2.(2013·全国Ⅰ卷)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )图212A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]A[因为t∈[-1,3],当t∈[-1,1)时,s=3t∈[-3,3);当t∈[1,3]时,s=4t-t2=-(t2-4t)=-(t-2)2+4∈[3,4],所以s∈[-3,4].]3.(2017·全国Ⅰ卷)如图213所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( )图213A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2D[因为题目要求的是“满足3n-2n>1 000的最小偶数n”,所以n的叠加值为2,所以内填入“n=n+2”.由程序框图知,当内的条件不满足时,输出n,所以内填入“A≤1 000”.故选D.]4.(2016·全国Ⅱ卷)中国古代有计算多项式值的秦九韶算法,如图214是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )图214A .7B .12C .17D .34C [因为输入的x =2,n =2,所以k =3时循环终止,输出s .根据程序框图可得循环体中a ,s ,k 的值依次为2,2,1(第一次循环);2,6,2(第二次循环);5,17,3(第三次循环).所以输出的s =17.]5.(2017·全国Ⅲ卷)执行如图215所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )图215A .5B .4C .3D .2 D [假设N =2,程序执行过程如下:t =1,M =100,S =0,1≤2,S =0+100=100,M =-10010=-10,t =2,2≤2,S =100-10=90,M =--1010=1,t =3,3>2,输出S =90<91.符合题意. ∴N =2成立.显然2是最小值. 故选D.]6.(2017·武昌区模拟)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( ) A .甲 B .乙 C .丙D .丁B [由题可知,乙、丁两人的观点一致,即同真同假、假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.]7.(2016·长沙二模)已知21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…,以此类推,第5个等式为( )A .24×1×3×5×7=5×6×7×8 B .25×1×3×5×7×9=5×6×7×8×9 C .24×1×3×5×7×9=6×7×8×9×10 D .25×1×3×5×7×9=6×7×8×9×10D [因为21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…, 所以第5个等式为25×1×3×5×7×9=6×7×8×9×10.]8.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得200的所有正约数之和为( ) A .201 B .411 C .465D .565C [200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)(1+5+52)=465,所以200的所有正约数之和为465.]9.(2016·武汉模拟)如图216所示将若干个点摆成三角形图案,每条边(包括两个端点)有n (n >1,n ∈N )个点,相应的图案中总的点数记为a n ,则9a 2a 3+9a 3a 4+9a 4a 5+…+9a 2 015a 2 016=( )【导学号:07804132】图216A.2 0122 013 B .2 0132 012 C.2 0142 015D .2 0142 013C [每条边有n 个点,所以三条边有3n 个点,三角形的3个顶点都被重复计算了一次,所以减3个顶点,即a n =3n -3,那么9a n a n +1=93n -3×3n =1n -1n =1n -1-1n ,则9a 2a 3+9a 3a 4+9a 4a 5+…+9a 2 015a 2 016=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫12 014-12 015=1-12 015=2 0142 015,故选C.]10. (2017·兰州实战模拟)公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π.他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,……,正一百九十二边形……的面积,这些数值逐步地逼近圆的面积,刘徽一直计算到正一百九十二边形,得到了圆周率π精确到小数点后两位的近似值 3.14.刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无限.这种思想极其重要,对后世产生了巨大影响.如图217是利用刘徽的“割圆术”思想设计的一个程序框图.若运行该程序(参考数据:3≈1.732,sin 15°≈0.258 8,sin 7.5°≈0.130 5),则输出的n 的值为( ) A .48 B .36 C .30D .24D [(算法中的数学文化题)第一次循环,S =332<3.10,n =12;第二次循环,S =3<3.10,n =24;第三次循环,S =12sin 15°≈3.105 6>3.10,退出循环,输出的n =24,故选D.]11.(2017·全国Ⅱ卷)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩D [由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩. 故选D.]12.(2017·安徽百校联盟二模)执行如图218所示的程序框图,若输出的值为-5,则判断框中可以填( )图218A.z>10 B.z≤10C.z>20 D.z≤20D[第一次循环,得z=3,x=2,y=3;第二次循环,得z=5,x=3,y=5;第三次循环,得z=8,x=5,y=8;第四次循环,得z=13,x=8,y=13;第五次循环,得z=21,观察可知,要想输出-5,则z≤20,故选D.]二、填空题13.(2017·兰州实战模拟)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n∈N*,则1+2+…+n+…+2+1=________.n2[由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n+…+2+1=n2.]14.(2017·石家庄一模)程序框图如图219,若输入的s=0,n=10,i=0,则输出的s为________.图2191024[由程序框图的功能知,执行该程序可得s=C010+C110+C210+…+C1010=210=1 024.] 15.(2016·全国Ⅱ卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【导学号:07804133】1和3 [法一:(假设排除法)由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法. 故甲的卡片上的数字是1和3.法二:(直接法)因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.] 16.(2017·山西运城4月模拟)宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》中提出了一个“茭草形段”问题:“今有茭草六百八十束,欲令‘落一形’(同垛)之,问底子几何?”他在这一问题中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上一束,下一层3束,再下一层6束,……,)成三角锥的堆垛,故也称三角垛,如图,表示从上往下第二层开始的每层茭草束数,则本问题中三角垛倒数第二层茭草总束数为________.图2110105 [由题意得,从上往下第n 层茭草束数为1+2+3+…+n =n n +12,∴1+3+6+…+n n +12=680,即12⎣⎢⎡⎦⎥⎤16n n +12n +1+12nn +1=16n (n +1)(n +2)=680,∴n (n +1)(n +2)=15×16×17,∴n =15.故倒数第二层为第14层,该层茭草总束数为14×152=105.]。