新北师大版九年级数学下册练习:3.6圆和圆的位置关系
- 格式:doc
- 大小:172.02 KB
- 文档页数:6
2022-2023学年北师大版九年级数学下册《3.6直线和圆的位置关系关系》同步练习题(附答案)一.选择题1.下列说法正确的是()A.三点确定一个圆B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等D.正多边形一定是中心对称图形2.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M 是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分面积为()A.1+B.1+C.2sin20°+D.3.如图,△ABC中,∠A=90°,AC=3,AB=4,半圆的圆心O在BC上,半圆与AB、AC分别相切于点D、E,则半圆的半径为()A.B.C.D.4.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5B.2C.5或2D.2或﹣1 5.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH =30°时,PE+PF的值是()A.4B.2C.4D.值不确定6.如图,P A,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠P AO=∠PBO=90°B.OP平分∠APBC.P A=PB D.∠AOB=7.如图,在Rt△ABC中,AC⊥BC,过C作CD⊥AB,垂足为D,若AD=3,BC=2,则△ABC的内切圆的面积为()A.πB.(4﹣2)πC.()πD.2π8.已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④9.如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC的大小是()A.40°B.50°C.60°D.70°10.如图:P A切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是()A.∠APO=∠BPO B.P A=PBC.AB⊥OP D.C是PO的中点二.填空题11.如图,P A,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,PO与AB交于点C.若∠APB=60°,OC=1,则△P AB的周长为.12.如图,正方形ABCD的边长为4,M为AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作圆P,当圆P与正方形ABCD的边相切时,CP的长为.13.如图,AB是⊙O的直径,AD、BC是⊙O的切线,P是⊙O上一动点,若AD=3,AB =4,BC=6,则△PDC的面积的最小值是.14.已知正方形ABCD边长为2,DE与以AB的中点为圆心的圆相切交BC于点E,求三角形DEC的面积.15.平面直角坐标系xOy中,以O为圆心,1为半径画圆,平面内任意点P(m,n2﹣9),且实数m,n满足m﹣n2+5=0,过点P作⊙O的切线,切点为A,当P A长最小时,点P 到原点O的距离为.16.如图,I为△ABC的内心,有一直线经过点I且分别与AB、AC相交于点D、点E.若AD=DE=5,AE=6,则点I到BC的距离为.三.解答题17.如图,在四边形ABCD中,AB=AD,CB=CD,圆心在四边形对角线AC上的⊙O与CD边相切于点E.(1)求证:BC是ʘO的切线;(2)若O是AC的中点,点E是CD的中点,∠CAD=30°,⊙O的半径R=3,求CD 的长.18.已知:如图,AB是⊙O的直径,AB⊥AC,BC交⊙O于点D,点E是AC的中点,ED 与AB的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若∠F=30°,BF=2,求△ABC外接圆的半径.19.如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.20.△ABC内接于⊙O,∠BAC的平分线交⊙O于D,交BC于E(BE>EC),过点D作⊙O 的切线DF,交AB的延长线于F.(1)求证:DF∥BC;(2)连接OF,若tan∠BAC=,BD=,DF=8,求OF的长.21.如图,在Rt△ABC中,∠C=90°,在AC上取一点D,以AD为直径作⊙O,与AB 相交于点E,作线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是⊙O的切线;(2)若AC=3,BC=4,⊙O的半径为1.求线段EN与线段AE的长.22.如图,AB、AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P,连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=6,求由劣弧AC、线段AC所围成图形的面积S.23.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,D是的中点,DE⊥BC交BC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=8,求BD的长.参考答案一.选择题1.解:A.不在同一条直线上的三个点确定一个圆,故A不符合题意;B.任何三角形有且只有一个内切圆,故B符合题意;C.在同圆或等圆中,相等的圆心角所对的弧相等,故C不符合题意;D.正多边形一定是轴对称图形,不一定是中心对称图形,故D不符合题意;故选:B.2.解:连接OT、OC,∵PT切⊙O于点T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中点,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠TOC=180°﹣2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足为H,则CH=OC=1,S阴影=S△AOC+S扇形OCB=+=1+,故选:A.3.解:连接OE,OD,∵圆O切AC于E,圆O切AB于D,∴∠OEA=∠ODA=90°,∵∠A=90°,∴∠A=∠ODA=∠OEA=90°,∵OE=OD,∴四边形ADOE是正方形,∴AD=AE=OD=OE,设OE=AD=AE=OD=R,∵∠A=90°,∠OEC=90°,∴OE∥AB,∴△CEO∽△CAB,同理△BDO∽△BAC,∴△CEO∽△ODB,∴=,即=,解得:R=,故选:A.4.解:设直角三角形ABC内切圆的圆心为点I,半径为r,三边上的切点分别为D、E、F,连接ID、IE、IF,得正方形,则正方形的边长即为r,如图所示:当BC为直角边时,AC==10,根据切线长定理,得AD=AF=AB﹣BD=6﹣r,CE=CF=BC﹣BE=8﹣r,∴AF+FC=AC=10,即6﹣r+8﹣r=10,解得r=2;当BC为斜边时,AC==2,根据切线长定理,得BD=BF=6﹣r,CE=CF=2﹣r,∴BC=BF+CF=6﹣r+2﹣r=8,解得r=﹣1.答:这个三角形的内切圆的半径是2或﹣1.故选:D.5.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.6.解:∵P A,PB分别与⊙O相切于点A,B,∴∠P AO=∠PBO=90°,OP平分∠APB,P A=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.7.解:∵在Rt△ABC中,AC⊥BC,过C作CD⊥AB ∴△ADC∽△CDB∴CD2=AD•DB∴CD2=3DBRt△CDB中,CB2=CD2+DB2∴4=3DB+DB2解得DB=1或DB=﹣4(舍去)∴CB=2∴AC=2设△ABC内切圆半径为r,内心为O,连OA、OB、OC由面积法可知S△ABC=S△AOC+S△BOC+S△AOB∴∴r==∴内切圆半径为π()2=(4﹣2)π故选:B.8.解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故选:A.9.解:∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠BCA,∵∠DIB+∠EIC=195°,∴∠DIE+∠BIC=165°,由折叠过程知∠BAC=∠DIE,∴∠BAC+∠BIC=165°∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠BAC,∴∠IBC+∠ICB=90°﹣∠BAC,又∵∠BIC+(∠IBC+∠ICB)=180°,∠BIC+(90°﹣∠BAC)=180°,∴∠BIC=90°+∠BAC,∴∠BAC+90°+∠BAC=165°,∴∠BAC=50°故选:B.10.解:∵P A、PB是⊙O的切线,切点是A、B,∴P A=PB,∠BPO=∠APO,∴选项A、B错误;∵P A=PB,∠BPO=∠APO,∴OP⊥AB,∴选项C错误;根据已知不能得出C是PO的中点,故选项D正确;故选:D.二.填空题11.解:∵P A、PB是⊙O的两条切线,∴OA⊥P A,OB⊥PB,OP平分∠APB,P A=PB,∵∠APB=60°,∴△P AB是等边三角形,AB=2AC,PO⊥AB,∴∠P AB=60°,∴∠OAC=∠P AO﹣∠P AB=90°﹣60°=30°,∴AO=2OC,∵OC=1,∴AO=2,∴AC=,∴AB=2AC=2,∴△P AB的周长=6.故答案为:6.12.解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=22+(4﹣x)2,∴x=2.5,∴CP=2.5;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC 是矩形.∴PM=PK=CD=2BM,∴BM=2,PM=4,在Rt△PBM中,PB==2,∴CP=BC﹣PB=4﹣2.综上所述,CP的长为2.5或4﹣2.故答案是:2.5或4﹣2.13.解:由CD是固定的,所以当P到CD的距离最小时△PCD的面积最小,如图,过P 作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,∴OH=(AD+BC)=4.5,过D作DM⊥BC于点M,则DM=AB=4,MC=BC﹣AD=3,∴CD=EF=5,由切线长定理可知AE=EP,BF=PF,∴AE+BF=EF=5,∴OG=(AE+BF)=2.5,∴GH=OH﹣OG=4.5﹣2.5=2,又∵OP=2,且=,∴=,∴PQ=1.6,∴S△PCD=PQ•CD=×1.6×5=4,故答案为:4.14.解:设∴DE与圆O相切于点F,∵四边形ABCD是正方形,∴∠OAD=∠OBC=∠C=90°,AB=BC=AD=CD=2,∵OA、OB是圆O的半径,∴DA与圆O相切于点A,EB与圆O相切于点B,∵DE与圆O相切于点F,∴DA=DF=2,EB=EF,设EB=EF=x,则EC=BC﹣EB=2﹣x,DE=DF+EF=2+x,在Rt△DEC中,DC2+CE2=DE2,∴22+(2﹣x)2=(2+x)2,解得:x=,∴EC=BC﹣EB=2﹣x=,∴三角形DEC的面积=EC•DC=××2=1.5,故答案为:1.5.15.解:如图,连接OA,∵m﹣n2+5=0,∴n2=m+5,∴n2﹣9=m+5﹣9=m﹣4,∴点P的坐标为(m,m﹣4),即点P在直线y=x﹣4上,当x=0时,y=﹣4,当y=0时,x=4,∴OB=OC=4,∴BC=4,∵P A与⊙O相切于点A,∴OA⊥AP,∵OA=1,∴当OP最小时,P A最小,当OP⊥BC时,OP最小,此时OP=BC=2,答:当P A长最小时,点P到原点O的距离为2.故答案为:2.16.解:根据题意点I在DE上,连接AI,作IG⊥AB于点G,IJ⊥BC于点J,作IH⊥AC 于点H,作DF⊥AE于点F,如右图所示:∵AD=DE=5,AE=6,DF⊥AE,∴AF=3,∠AFD=90°,∴DF===4,设IH=x,∵I为△ABC的内心,∴IG=IJ=IH=x,∵S△ADE=S△ADI+S△AEI,∴=+,解得x=,∴IJ=,即I点到BC的距离是.故答案为:.三.解答题17.(1)证明:连接OE,过点O作OF⊥BC,垂足为F,∵CD与⊙O相切于点E,∴OE⊥CD,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∴OF=OE,∵OE是⊙O的半径,∴BC是ʘO的切线;(2)解:∵O是AC的中点,点E是CD的中点,∴OE是△ACD的中位线,∴OE∥AD,∴∠COE=∠CAD=30°,在Rt△OCE中,OE=3,∴CE=OE tan30°=3×=,∴CD=2CE=2.18.(1)证明:连接OD,∵AB⊥AC,∴∠CAB=90°,∴∠CAD+∠DAO=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,∵点E是AC的中点,∴EA=ED=AC,∴∠EAD=∠EDA,∵OA=OD,∴∠OAD=∠ODA,∴∠EDA+∠ODA=90°,∴∠ODE=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:∵∠F=30°,BF=2,∠ODF=90°,∴OF=2OD,∴OB+2=2OD,∵OD=OB,∴OD=OB=2,∵∠DOF=90°﹣∠F=60°,∴△DOB是等边三角形,∴∠OBD=60°,在Rt△ABC中,AB=2OB=4,∴BC===8,∵△ABC外接圆的半径=BC=4,∴△ABC外接圆的半径为:4.19.(1)证明:如图1,延长DB至H,∵DG∥BC,∴∠CBH=∠D,∵∠A=∠D,∴∠A=∠CBH,∵AB是⊙O的直径∴∠ACB=90°,∴∠A+∠ABC=90°,∴∠CBH+∠ABC=90°,∴∠ABD=90°,∴BD与⊙O相切;(2)解:解法一:如图2,连接OF,∵CF平分∠ACB,∴∠ACF=∠BCF,∴,∴OF⊥AB,∵BD⊥AB,∴OF∥BD,∴△EFO∽△EDB,∴,∵AE=OE,∴,∴=,∴OF=4,∴BE=OE+OB=2+4=6,∴DE===6.解法二:如图2,连接OF,∵AE=OE,∴OA=OF=2OE,Rt△OEF中,tan∠OEF==2,Rt△BED中,tan∠OEF===2,∴BE=6,由勾股定理得:DE===6.20.(1)证明:连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵AD平分∠BAC,∴∠BAD=∠CAD,∴,∴OD⊥BC,∴DF∥BC;(2)解:连接OB,∵,∴∠BOD=∠BAC,由(1)知OD⊥BC,∴tan∠BOD=,∵tan∠BAC=2,∴,设ON=x,BN=2x,由勾股定理得:OB=3x,∴OD=3x,∴DN=3x﹣x=2x,Rt△BDN中,BN2+DN2=BD2,∴,x=2或﹣2(舍),∴OB=OD=3x=6,Rt△OFD中,由勾股定理得:OF===10.21.解:(1)证明:如图,连接OE,∵NM是BE的垂直平分线,BN=EN,∴∠B=∠NEB,∵OA=OE∴∠A=∠OEA,∵∠C=90°,∴∠A+∠B=90°,∴∠OEN=90°,即OE⊥EN,∵OE是半径,∴EN是⊙O的切线;(2)如图,连接ON,设EN长为x,则BN=EN=x∵AC=3,BC=4,⊙O的半径为1,∴CN=4﹣x,OC=AC﹣OA=3﹣1=2,∴OE2+EN2=OC2+CN2,∴12+x2=22+(4﹣x)2,解得x=,∴EN=.连接ED,DB,设AE=y,∵AC=3,BC=4,∴AB=5,∵⊙O的半径为1.∴AD=2,则DE2=AD2﹣AE2=22﹣y2,∵CD=AC﹣AD=3﹣2=1,∴DB2=CD2+BC2=17,∵AD为直径,∴∠AED=∠DEB=90°,∴DE2+EB2=DB2,即22﹣y2+(5﹣y)2=17,解得y=,∴EN=,AE=.22.(1)证明:连接OC,∵P A是半⊙O的切线,A为切点,∴∠OAP=90°,∵OD⊥AC,OD经过圆心O,∴CD=AD,∴OP是AC的垂直平分线,∴PC=P A,∵OC=OA,OP=OP,∴△OCP≌△OAP(SSS),∴∠OCP=∠OAP=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵AB是⊙O的直径,AB=6,∴OA=OB=3,∵∠ADO=90°,∠CAB=30°,∴OD=OA=,∴AC=2AD=,∴S△AOC=AC•OD=,∵∠CAB=30°,∴∠COB=2∠CAB=60°,∴∠AOC=180°﹣60°=120°,∴S扇形AOC=,∴S=S扇形AOC﹣S△AOC=.23.(1)证明:连接OD,∵DE⊥BC,∴∠DEC=90°,∵D是的中点,∴=,∴∠ABD=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ODE=180°﹣∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作DF⊥AB,垂足为F,由(1)得:∠ABD=∠CBD,∴BD平分∠ABC,∵DF⊥AB,DE⊥BC,∴DF=DE,∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB+∠DCE=180°,∴∠A=∠DCE,∵∠DF A=∠DEC=90°,∴△ADF≌△CDE(AAS),∴AF=EC,∵∠DFB=∠DEC=90°,BD=BD,∴△BDF≌△BDE(AAS),∴BF=BE,设AF=EC=x,则BE=BF=8+x,∵AB=10,∴AF+BF=10,∴x+8+x=10,∴x=1,∴BF=9,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴BD2=BF•BA,∴BD2=90,∴BD=3.。
北师大版数学九年级下册3.6《直线和圆的位置关系》教案1一. 教材分析北师大版数学九年级下册3.6《直线和圆的位置关系》是本节课的主要内容,这部分内容是在学生已经掌握了直线、圆的基本性质的基础上进行学习的。
通过学习直线和圆的位置关系,可以让学生更好地理解直线和圆之间的相互关系,为后续学习圆的方程和解决实际问题打下基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对直线和圆的基本性质有了初步的了解。
但是,对于直线和圆的位置关系的理解和应用还有一定的困难。
因此,在教学过程中,需要引导学生通过观察、思考、探究,从而理解直线和圆的位置关系,并能够运用到实际问题中。
三. 教学目标1.让学生理解直线和圆的位置关系,并能够运用到实际问题中。
2.培养学生的观察能力、思考能力和探究能力。
3.培养学生的合作意识和交流能力。
四. 教学重难点1.直线和圆的位置关系的理解和应用。
2.如何引导学生通过观察、思考、探究来理解直线和圆的位置关系。
五. 教学方法1.观察法:通过观察直线和圆的位置关系,让学生直观地理解直线和圆的位置关系。
2.讨论法:引导学生通过小组讨论,共同探究直线和圆的位置关系。
3.练习法:通过适量的练习,让学生巩固对直线和圆的位置关系的理解。
六. 教学准备1.准备一些直线和圆的图片,用于导入和呈现。
2.准备一些练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过展示一些直线和圆的图片,让学生观察并思考直线和圆之间的相互关系。
引导学生提出问题,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT或者黑板,呈现直线和圆的位置关系的定义和性质。
引导学生理解直线和圆的位置关系,并能够运用到实际问题中。
3.操练(10分钟)让学生进行一些实际的操作,例如画出给定直线和圆的位置关系,或者找出给定直线和圆的位置关系。
通过操作,让学生加深对直线和圆的位置关系的理解。
4.巩固(10分钟)让学生做一些练习题,巩固对直线和圆的位置关系的理解。
数学初三下北师大版3.6圆与圆的位置关系练习【一】选择题1.两圆的圆心坐标分别为〔3,0〕和〔0,1〕,它们的半径分别为3和5,那么这两个圆的位置关系是〔〕A.相离B.相交C.内切D.外切2.假设⊙O1与⊙O2的半径分别是3cm和2cm,圆心距为6cm,作直线与两圆同时相切,那么如此的直线最多能够作〔〕A.1条B.2条C.3条D.4条3.如图2所示,三个半径为3的圆两两外切,且△ABC的每一边都与其中的两个圆相切,那么△ABC的周长是〔〕图2A.12+6 3B.18+6 3C.18+12 3D.12+12 34.如图3,半径分别为1,2,3的三个圆两两外切,那么此三个圆的圆心的连线构成的三角形的面积等于〔〕图3A.6B.7C.8D.9【二】填空题5.如图4,施工工地的水平面上,有三根半径基本上1m 的水泥管,两两相切地堆放在一起,其最高点到地面的距离是________图46.⊙O1与⊙O2内切于T 点,半径分别为2和3,自T 作射线分别交两圆于A 、B 两点,那么TA TB 的值是______7.如图5,两半径相等的圆轮叠靠在墙旁,两轮的半径均为R ,那么它们与墙的切点A 与B 之间的距离为________图5【三】解答题8.用半径R =8mm ,r =5mm 的钢球测量口小内大的内孔直径D ,测得钢球顶点与孔口平面的距离分别为a =12.5mm ,b =10.5mm 〔如下图〕,计算出内孔直径D 的大小9.:两个等圆⊙O1和⊙O2相交于A 、B 两点,⊙O1通过点O2,点C是AO2B上的任一点〔不与A、O2、B重合〕,连接BC并延长交⊙O2于D,连接AC、AD〔1〕操作、测量〔供操作测量用,测量时可使用刻度尺或圆规〕:据图7,观看或度量AC、AD、CD三条线段的长短,说出三条线段长度之间存在怎么样的关系?________〔2〕猜想结论〔求证部分〕,并证明你的猜想10.如下图,⊙O1和⊙O2切于点C,过点C任引一条直线交两圆于点A、点B,那么AC与BC之比是定值.你能求出那个定值吗?并说明理由参考答案【一】选择题1.C方法点拨两圆的位置关系与圆的半径及圆心距的大小有关.内切、外切分别对应着d=R-r和d=R+r2.D3.B4.A【二】填空题5.〔3+2〕m方法点拨遇到此类型题,能够取三个圆的圆心连成一个等边三角形,求出其高h 后加上两个半径的长确实是最高点到地面的距离6.237.2R【三】解答题8.解O1A =a +R -b -r =12.5+8-10.5-5=5〔mm 〕,O1O2=R +r =8+5=13〔mm 〕在Rt △O1O2A 中,O2A =O1O22-O1A2=132-52=12〔mm 〕∴直径D =O2A +R +r =12+8+5=25〔mm 〕9.解〔1〕AC =CD =AD.〔2〕结论:△ACD 是等边三角形.证明如下:连接AO2、BO2、AO1、O1O2〔图略〕∵⊙O1、⊙O2是等圆,且⊙O1通过点O2,∴AO2=O1O2=AO1.∴∠AO2O1=60°.∴∠AO2B =120°,∴∠D =12∠AO2B =12×120°=60°∵∠ACB =∠AO2B =120°∴∠ACD =60°∴△ACD 是等边三角形.10.解那个定值是两圆半径之比.理由如下:连接O1A 、O1C 、O2B 、O2C 〔图略〕,那么O1A =O1C. ∴∠O1AC =∠O1CA.∵O2B =O2C ,∴∠O2CB =∠O2BC.∵⊙O1与⊙O2外切于点C ,∴O1、C 、O2在一条直线上.∴∠ACO1=∠O2CB.∴∠O1AC =∠O2BC∴O1A ∥O2B.∴AC BC =O1A O2B .∴AC 与BC 的比是定值,那个定值是两圆半径之比。
3.6圆和圆的位置关系一、选择题1.已知⊙O1的半径r为3 cm,⊙O2的半径R为4 cm,两圆的圆心距O1O2为1 cm,则这两圆的位置关系是( )A.相交B.内含C.内切D.外切2. (2014年广西钦州,第9题3分)如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()A.60°B.45°C.30° D.20°3.(2014•青岛,第5题3分)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切4.如图3-131所示,圆与圆之间不同的位置关系有( )A.2种B.3种C.4种D.5种5(2014•柳州,第8题3分)如图,当半径分别是5和r的两圆⊙O1和⊙O2外切时,它们的圆心距O1O2=8,则⊙O2的半径r为()A.12 B.8 C.5 D.3二、填空题6.某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上.向内放入两个半径为5 cm的钢球,测得上面一个钢球的最高点到底面的距离DC=16 cm(钢管的轴截面如图3-132所示),则钢管的内径AD的长为cm.7.如图3-133所示,某城市公园的雕塑由3个直径为1 m的圆两两相垒立在水平的地面上,则雕塑的最高点到地面的距离为m.(结果精确到0.1 m) 8.若两圆外切和内切时的圆心距分别为13和5,则两圆的半径分别为.9.如图3-134所示,两等圆⊙O1和⊙O2相交于A,B两点,且⊙O1过点O2,则∠O1AB 的度数是.10..(2014•福建龙岩,第17题3分)如图,∠AOB=60°,O1,O2,O3…是∠AOB平分线上的点,其中OO1=2,若O1,O2,O3…分别以为圆心作圆,使得⊙O1,⊙O2,⊙O3…均与∠AOB的两边相切,且相邻两圆相外切,则⊙O2014的面积是(结果保留π)三、解答题11.如图3-135所示,⊙O1和⊙O2相交于A,B两点,过点A的直线分别交两圆于点C,D,点M是CD的中点,直线BM分别交两圆于点E,F,连接CE.(1)求证CE∥DF;(2)求证ME=MF.12. (2014•福建三明,第23题10分)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.参考答案1.C2.C3.C4.D5.C[提示:有两圆外切的,有两圆内切的,有两圆内含的,有两圆外离的.故选C .]6.18[提示:△O 1O 2O 3为直角三角形,O 1O 2=10 cm ,O 1O 3=6 cm .由勾股定理,知O 2O 3=221213O O O O -=8(cm),∴AD =O 2O 3+2r =18(cm).故填18.]7.1.9[提示:连接一个圆心,得到一个正三角形,则所求距离为该三角形的高与两圆半径的和.]8.4,9[提示:列方程组得13,5,R r R r +=⎧⎨-=⎩解得9,4.R r =⎧⎨=⎩] 9.30°[提示:连接AO 2,O 1O 2,则△AO 1O 2为正三角形,且AB 平分∠O 1AO 2,所以∠O 1AB =12∠O 1AO 2=12×60°=30°.] 10.解:设⊙O 1,⊙O 2,⊙O 3…与OB 的切点分别为C ,D ,E ,连接CO 1,DO 2,EO 3,∴CO 1⊥BO,DO 2⊥BO,EO 3⊥BO,∵∠AOB=60°,O 1,O 2,O 3…是∠AOB 平分线上的点,其中OO 1=2,∴∠O 1OC=30°,∴CO 1=1,∴DO 2=(2+1+DO 2),∴DO 2=3,同理可得出:EO 3=9,∴⊙O 2014的半径为:32013,∴⊙O 2014的面积是π×(32013)2=34026π. 故答案为:34026π.11.证明:(1)连接AB,则∠ABE=∠C,∠ABF=∠D,∴∠C=∠D,∴CE∥DF.(2)∵点M是CD的中点,∴CM=DM.又∵∠CME=∠DMF,∠C=∠D,.∴△CME≌△DMF,∴ME=MF.12.解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°﹣2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.。
2018-2019学年九年级数学下册第三章圆3.6 直线与圆的位置关系3.6.2 圆的切线的判定同步练习(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学下册第三章圆3.6 直线与圆的位置关系3.6.2 圆的切线的判定同步练习(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学下册第三章圆3.6 直线与圆的位置关系3.6.2 圆的切线的判定同步练习(新版)北师大版的全部内容。
课时作业(二十六)[第三章 6 第2课时圆的切线的判定]一、选择题1.下列直线是圆的切线的是( )错误!A.和半径垂直的直线B.和圆有公共点的直线C.到圆心的距离等于直径的直线D.经过半径的外端且垂直于这条半径的直线2.在△ABC中,∠C=90°,CD⊥AB于点D,则直线AC与△BDC的外接圆的位置关系是() A.相离 B.相切C.相交 D.无法确定3.2017·十堰期末如图K-26-1,点O为△ABC的外心,点I为△ABC的内心,若∠BOC =140°,则∠BIC的度数为链接听课例3归纳总结()图K-26-1A.110° B.125°C.130° D.140°4.2017·武汉已知一个三角形的三边长分别为5,7,8,则其内切圆的半径为( )A。
错误! B。
错误!C.错误! D.2 错误!5.如图K-26-2,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()图K-26-2A.DE=DO B.AB=ACC.CD=DB D.AC∥OD二、填空题6.如图K-26-3,⊙P的半径为2,圆心P在函数y=错误!(x>0)的图象上运动,当⊙P 与x轴相切时,点P的坐标为________.图K-26-37.如图K-26-4,已知⊙O是边长为2的等边三角形ABC的内切圆,则⊙O的面积为________.图K-26-48.如图K-26-5,在△ABC中,AB=AC,∠B=30°,以点A为圆心,3 cm长为半径作⊙A,当AB=________cm时,BC与⊙A相切。
3.6 圆和圆的位置关系学习目标:经历探索两个圆位置关系的过程,理解圆与圆之间的位置关系,了解两圆外切、内切与两圆圆心距d,半径R和r的数量关系的联系.学习重点:两圆的位置关系,相切两圆的性质.两圆的五种位置关系的描述性定义,要注意数学语言的严谨性和准确性,必须注意讲清关键性词语(如谁在谁的外部、内部、惟一公共点等).圆与圆的位置关系也可以与点和圆、直线和圆的位置关系类比记忆,每种位置关系可归纳为相离、相交、相切三类.相切两圆的性质是由圆的对称性决定的,两个圆组成的图形也是轴对称的,对称轴是连心线.学习难点:相切两圆位置关系的性质的理解.学习方法:教师讲解与学生合作交流探索法.学习过程:一、例题讲解:【例1】已知⊙A、⊙B相切,圆心距为10cm,其中⊙A的半径为4cm,求⊙B的半径.【例2】定圆O的半径是4cm,动圆P的半径是1cm.当两圆相切时,点P与点O的距离是多少?点P可以在什么样的线上移动?【例3】已知两个圆互相内切,圆心距是2cm,如果一个圆的半径是3cm,那么另一个圆的半径是多少?【例4】已知⊙O1和⊙O2的半径分别为1和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切【例5】如图,施工工地的水平地面上,有三根外径都是1m的水泥管,两两相切地堆放在一起,其最高点到地面的距离是.【例6】一个等腰梯形的高恰好等于这个梯形的中位线.若分别以这个梯形的上底和下底为直径作圆,这两个圆的位置关系是()A.相离B.相交C.外切D.内切【例7】两圆的圆心坐标分别是(3,0)和(0,1),它们的半径分别是3和5,则这两个圆的位置关系是()A.相离B.相交C.外切D.内切【例8】两枚如图3-6-4同样大小的硬币,其中一个固定,另一个沿其周围滚动,滚动时两枚硬币总是保持有一点相接触(相外切),当滚动的硬币沿固定的硬币周围滚动一圈,回到原来的位置时,滚动的那个硬币自转的周数是多少【例9】⊙O1、⊙O2、⊙O3两两外切,切点为A、B、C,它们的半径为r1、r2、r3.(1)若△O1O2O3是直角三角形,r2:r3=2:3,用r2表示r1;(2)若△O1O2O3与以A、B、C为顶点的三角形相似,则r1、r2、r3必须满足什么条件?二、课内练习:1.已知半径为1厘米的两圆外切,半径为2厘米且和这两圆都相切的圆共有个.2.三角形三边长分别为5厘米、12厘米、13厘米,以三角形三个顶点为圆心的三个圆两两外切,则此三个圆的半径分别为.三、课后练习:1.以平面直角坐标系中的两点O1(0,3)和O2(4,0)为圆心,以8和3为半径的两圆的位置关系是()A.内切B.外切C.相离D.相交2.两圆半径之比为3:2,当此两圆外切时,圆心距是10cm,那么,当此两圆内切时,其圆心距为()A.大于2cm且小于6cm B.小于2cmC.等于2cm D.非以上取值范围3.已知⊙O1、⊙O2的半径分别为6和3,O1、O2的坐标分别是(5,0)和(0,6),则两圆的位置关系是()A.相交B.外切C.内切D.外离4.R、r是两圆的半径(R>r),d是两圆的圆心距,若方程x2-2Rx+r2=d(2r-d)有等根,则以R、r为半径的两圆的位置关系是()A.外切B.内切C.外离D.相交5.已知半径分别为r和2r的两圆相交,则这两圆的圆心距d的取值范围是()A.0<d<3r B.r<d<3r C.r<d<2r D.r≤d≤3r6.下列说法正确的是()A.没有公共点的两圆叫两圆外离 B.相切两圆的圆心距必须经过切点C.相交两圆的交点关于连心线对称D.若⊙O1、⊙O2的半径为R、r,圆心距为d,当两圆同心时,R-r>d7.已知两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过O2,则四边形O1AO2B是()A.平行四边形B.菱形C.矩形D.正方形8.半径分别为1、2、3的三圆两两外切,则以这三个圆的圆心为顶点的三角形的形状为()A.钝角三角形B.等腰三角形C.等边三角形D.直角三角形9.半径分别为1cm和2cm的两圆外切,那么与这两个圆都相切且半径为3cm的圆的个数是()A.5个B.4个C.3个D.2个10.两圆的半径分别是方程x2-12x+27=0的两个根,圆心距为9,则两圆的位置关系一定是.11.已知两圆外离,圆心距等于12,大圆的半径是7,那么小圆的半径所可能取的整数值是.12.已知两圆半径的比为3:5,当两圆内切时,圆心距为4cm,那么当此两圆外切时,圆心距应为.13.平面上两圆的位置关系可以归纳为三类,即、和.14.已知两圆直径为3+r,3-r,若它们圆心距为r,则两圆的位置关系是.15.两个半径分别为6cm的圆,它们的圆心分别在另一个圆上,则其公弦的长是.16.已知⊙O1和⊙O2相内切,且⊙O1的半径6,两圆的圆心距为3,则⊙O2的半径为.17.两圆的半径之比是5:3,外切时圆心距是32,那么当这两个圆内切时,圆心距为.18.在直角坐标系中,分别以点A(0,3)与点B(4,0)为圆心,以8与3为半径作⊙A和⊙B,则这两个圆的位置关系为.19.(1)如图1两个半径为r的等圆⊙O1与⊙O2外切于点P.将三角板的直角顶点放在点P,再将三角板绕点P旋转,使三角板的两直角边中的一边PA与⊙O1相交于A,另一边PB与⊙O2相交于点B(转动中直角边与两圆都不相切),在转动过程中线段AB的长与半径r 之间有什么关系?请回答并证明你得到的结论;(2)如图2,设⊙O1和⊙O2外切于点P,半径分别为r1、r2(r1>r2),重复(1)中的操作过程,观察线段AB的长度与r1、r2之间有怎样的关系,并说明理由.3.6圆和圆的位置关系本节课要学习的内容是圆和圆的位置关系,其中包括利用平移实验直观地探索圆和圆之间的几种位置关系,通过讨论两圆圆心之间的距离d与两圆半径R和r之间的关系来确定两圆的位置关系.重点和难点是通过学生动手操作和互相交流探索出圆和圆之间的几种位置关系.在教学中教师不要只强调结论,要关注学生的动手操作过程,关注他们互相交流的过程.看学生是否能积极地投入到数学活动中去,在他们困难的时候要适时地给予帮助,要多加鼓励,提高他们学习数学的兴趣,只要学生有了兴趣就成功了一半,他们就能敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验通过学习本节课的内容,使学生具备一定的识图能力,体会数学活动充满着探索性和创造性,敢于发表自己的观点,并尊重和理解他人的见解,能从交流中获益教学目标(一)教学知识点1.了解圆与圆之间的几种位置关系.2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.(二)能力训练要求1. 经历探索两个圆之间位置关系的过程,训练学生的探索能力.2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力. (三)情感与价值观要求1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.教学重点探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.教学难点探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.教学方法教师讲解与学生合作交流探索法教具准备投影片三张第一张:(记作§ 3.6 A)第二张:(记作§3.6 B)第三张:(记作§ 3.6 C)教学过程Ⅰ.创设问题情境,引入新课[师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.Ⅱ.新课讲解一、想一想[师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?[生]如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.[师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨沦这些位置关系分别是什么.二、探索圆和圆的位置关系在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?[师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.[生]我总结出共有五种位置关系,如下图:[师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑.[生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.[师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?[生]外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.[师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.经过大家的讨论我们可知:投影片(§3.6 A)(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离外离外切,相切内含内切三、例题讲解投影片(§ 3.6 B)两个同样大小的肥皂泡黏在一起,其剖面如图所示(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OP O°即可.解:∵OP=OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2× 90°-60°=120°四、想一想如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?[如图(2)][师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点了是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.证明:假设切点丁不在O1O2上.因为圆是轴对称图形.所以T关于O1O2的对称点广也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假没不成立.则T在O1O2上.由此可知图(1)是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.在图(2)中应有同样的结论.通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心线.五、议一议投影片(§ 3.6 C)设两圆的半径分别为R和r.(1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d 与R和r满足这一关系时,这两个圆一定外切吗?(2)当两圆内切时(R>r),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?[师]如图,请大家互相交流.[生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A =R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O 1与⊙O 2只有一个交点A ,即⊙O 1与⊙O 2外切.在图(2)中,⊙O 1与⊙O 2相内切,切点是B.因为切点B 在连心线O 1O 2,所以O 1O 2=O 1B-O 2B ,即d =R-r :反之,当d =R-r 时,圆心距等于两半径之差,即O 1O 2=O 1B-O 2B ,说明O 1、O 2、B 在一条直线上,B 既在⊙O 1上,又在⊙O 2上,所以⊙O 1与⊙O 2内切.[师]由此可知,当两圆相外切时,有d=R+r ,反过来,当d=R+r 时,两圆相外切,即两圆相外切 d =R+r当两圆相内切时,有d=R-r ,反过来,当d =R-r 时,两圆相内切,即两圆相内切d =R-r . Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:1.探索圆和圆的五种位置关系;2.讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位置关系;3.探讨在两圆外切或内切时,圆心距d 与R 和r 之间的关系.Ⅴ.课后作业Ⅵ.活动与探究已知图中各圆两两相切,⊙O 的半径为2R ,⊙O 1、⊙O 2的半径为R ,求⊙O 3的半径. 分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O 3的半径为r ,则O 1O 3=O 2O 3=R+r ,连接OO 3就有OO 3⊙O 1O 2,所以OO 2O 3构成了直角三角形,利用勾股定理可求得⊙O 3的半径r.解:连接O 2O 3、OO 3,∴O 2OO 3=90°,OO 3=2R-rO 2O 3=R+r ,OO 2=R∴(R+r)2=(2R-r)2+R 2.∴r=32R 板书设计3.6圆和圆的位置关系一、1.想一想2.探索圆和圆的位置-关系3.例题讲解4.想一想5.议一议二、课堂练习三、课时小结四、课后作业备课资料参考练习1.⊙O1和⊙O2的半径分别为3 cm和4cm,若两圆外切,则d=_____;若两圆内切;则d=____.2.如果两个圆相切,那么切点和两圆的圆心_____.3.半径为5 cm的⊙O外一点P,则以点P为圆心且与⊙O相切的⊙P能画_______个. 4.两圆半径之比为3:5,当两圆内切时,圆心距为4 cm,则两圆外切时圆心距的长为_____.5.两圆内切时圆心距是2,这两圆外切时圆心距是5,两圆的半径分别是______、6.两圆的半径分别为10 cm和R、圆心距为13 cm,若这两个圆相切,则R的值是。
北师大版九年级数学下册练习:3.6 直线和圆的位置关系3.6 直线和圆的位置关系第1课时直线和圆的位置关系及切线的性质基础题知识点1 直线和圆的位置关系1.下图中直线l是⊙O的切线的图形是(C)2.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为(C)A.相离B.相切C.相交D.无法确定3.已知一条直线与圆有公共点,则这条直线与圆的位置关系是(D)A.相离B.相切C.相交D.相切或相交4.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆(C)A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交A.5B.6C.7D.88.(2019·湘潭)如图,AB是⊙O的切线,点B为切点.若∠A=30°,则∠AOB=60°.9.如图,两同心圆的大圆半径长为 5 cm,小圆半径长为3 cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是8__cm.10.(2019·丽水改编)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.求证:∠A=∠ADE.证明:连接OD.∵DE是切线,∴∠ODE=90°.∴∠ADE+∠BDO=90°.∵∠ACB=90°,∴∠A+∠B=90°.∵OD=OB,∴∠B=∠BDO.∴∠A=∠ADE.易错点OP与直线l的位置关系未考虑全面而漏解11.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是相切或相交.中档题12.(2019·长春)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为(B)A.29°B.32°C.42°D.58°13.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为(B)A.1B.1或5C.3D.514.(2019·泸州)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=3x+23上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为(D)A.3B.2C. 3D. 215.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=1;(2)当m=2时,d的取值范围是1<d<3.16.(2019·河南)如图,在△ABC中,AB=AC,以AB 为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.解:(1)证明:∵AB是⊙O的直径,∴∠BDA=∠BDC=90°.∵BF切⊙O于B,∴AB⊥BF.∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC.∵AB=AC,∴∠ACB=∠ABC.∴∠ACB=∠FCB.∵BD⊥AC,BF⊥CF,∴BD=BF.(2)∵AB=10,AB=AC,CD=4,∴AD=AC-CD=10-4=6.在Rt△ADB中,由勾股定理,得BD=102-62=8,在Rt△BDC中,由勾股定理,得BC=82+42=4 5.综合题17.(2019·随州)如图,AB是⊙O的直径,点C为⊙O 上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC,CN于点D,M两点.(1)求证:MD=MC;(2)⊙O的半径为5,AC=45,求MC的长.解:(1)证明:连接OC.∵CN为⊙O的切线,∴OC⊥CM.∴∠OCA+∠ACM=90°.∵OM⊥AB,∴∠OAC+∠ODA=90°.∵OA=OC,∴∠OAC=∠OCA.∴∠ACM=∠ODA=∠CDM.∴MD=MC.(2)由题意可知:AB=5×2=10,AC=45,∵AB是⊙O的直径,∴∠ACB=90°.∴BC=102-(45)2=2 5.∵∠AOD=∠ACB,∠A=∠A.∴△AOD∽△ACB.∴ODBC=ADAC,即OD25=545.∴OD=2.5.设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得x=154.∴MC=154.第2课时切线的判定与三角形的内切圆基础题知识点1 切线的判定1.下列说法中,正确的是(D)A.AB垂直于⊙O的半径,则AB是⊙O的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径,那么这条直线是圆的切线2.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是(D)A.AB=4,AT=3,BT=5B.∠B=45°,AB=ATC.∠B=55°,∠TAC=55°D.∠ATC=∠B3.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为∠ABC=90°或AB⊥BC.4.如图,点A,B,D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与⊙O的位置关系为相切.5.(2019·邵阳)如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为D,连接BC,BC平分∠ABD.求证:CD为⊙O的切线.证明:∵BC平分∠ABD,∴∠OBC=∠DBC.∵OB=OC,∴∠OBC=∠OCB.∴∠DBC=∠OCB.∴OC∥BD.∵BD⊥CD,∴OC⊥C D.又∵点C为⊙O上一点,∴CD为⊙O的切线.知识点2 三角形的内切圆6.如图,⊙O是△ABC的内切圆,则点O是△ABC的(B)A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆的半径是(B)A.3 2B.1C.2D.2 38.(2019·湖州)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是70°.易错点1 判断圆和各边相切时考虑不全面而漏解9.如图,在平面直角坐标系第一象限内有一矩形OABC,B(4,2),现有一圆同时和这个矩形的三边都相切,则此圆的圆心P的坐标为(1,1)或(3,1)或(2,0)或(2,2).易错点2 内心与外心概念混淆不清10.(教材P93习题T2变式)如图,△ABC是圆的内接三角形,点P是△ABC的内心,∠A=50°,则∠BPC的度数为115°.中档题11.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是(C)A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)12.(2019·威海)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AE B 的度数为135°.13.(2019·益阳)如图,AB是⊙O的直径,C是⊙O 上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.解:(1)证明:连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A.∴∠ACO=∠A=∠BCD.∴∠BCD+∠OCB=90°,即∠OCD=90°.又∵OC为⊙O的半径,∴CD是⊙O的切线.(2)在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD=OC2+CD2=5.∴BD=OD-OB=5-3=2.14.(2019·黄石)如图,已知A,B,C,D,E是⊙O︵上五点,⊙O的直径BE=23,∠BCD=120°,A为BE的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线. 解:(1)连接DE.∵BE为⊙O的直径,∴∠BDE=90°.∵B,C,D,E四点共圆,∴∠BCD+∠BED=180°.又∵∠BCD=120°,∴∠BED=60°.∴BD=BE·sin60°=23×32=3.(2)证明:连接AE.∵BE为⊙O的直径,∴BA⊥AE.∵点A为弧BE的中点,AB=AP,∴BA=AE=AP.∴△BAE,△PAE为等腰直角三角形. ∴∠AEB=∠AEP=45°.∴∠BEP=90°,即PE⊥BE.又∵OE是⊙O的半径,∴直线PE是⊙O的切线.综合题15.如图,已知⊙O 的直径为AB ,AC⊥AB 于点A ,BC 与⊙O 相交于点D ,在AC 上取一点E ,使得 ED =EA.(1)求证:ED 是⊙O 的切线;(2)当OE =10时,求BC 的长.解:(1)证明:连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE 和△DOE 中,⎩⎪⎨⎪⎧OA =OD ,AE =DE ,OE =OE ,∴△AOE≌△DOE(SSS).∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD 是⊙O 的半径,∴ED 是⊙O 的切线.(2)∵AB 是直径.∴∠ADB=90°,即AD⊥B C.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO.又∵AE=DE ,∴OE⊥AD.∴OE∥BC.∴△AOE∽△ABC.∴OA AB =OE BC =12.∴BC=2OE=20,即BC的长是20.。
北师大版九年级数学下册第三章圆3.6直线和圆的位置关系(第2课时)教学设计第三章圆《直线和圆的位置关系(第2课时)》教学设计一、学情分析之前的课程学生已经学习了与圆有关的概念,如半径、圆周角、圆心角等,学习了圆的性质,学习了直线和圆的三种位置关系,这里将进一步讨论其中的一种情况:相切。
进入初三下学期的学生在观察、操作、猜想能力较强,但逻辑推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。
学生思维活跃,能跟上教师的思路,并用完整的话回答老师的提问;但学生课堂回答问题的气氛不是那么浓厚,学习不具有自觉性,需要教师设计好教学环节,并给予充分的关注和指导。
二、教学任务分析知识与技能(1)能判定一条直线是否为圆的切线.(2)会过圆上一点画圆的切线.(3)会作三角形的内切圆.过程与方法(1)通过判定一条直线是否为圆的切线,训练学生的推理判断能力.(2)会过圆上一点画圆的切线,训练学生的作图能力.情感态度与价值观(1)经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点.(2)经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.教学重点(1)探索圆的切线的判定方法,并能运用.(2)作三角形内切圆的方法.教学难点探索圆的切线的判定方法.三、教学过程分析本节课设计了五个教学环节:引入新课、新课讲解、课堂练习、课时小结、布置作业。
第一环节引入新课上节课我们学习了直线和圆的位置关系,圆的切线的性质,懂得了直线和圆有三种位置关系:相离、相切、相交.判断直线和圆属于哪一种位置关系,可以从公共点的个数和圆心到直线的距离与半径作比较两种方法进行判断,还掌握了圆的切线的性质、圆的切线垂直于过切点的直径.由上可知,判断直线和圆相切的方法有两种,是否仅此两种呢?本节课我们就继续探索切线的判定条件.第二环节新课讲解活动内容:1.探索切线的判定条件2.做一做3.如何作三角形的内切圆4.补充例题讲解1.探索切线的判定条件如下图,AB是⊙O的直径,直线l经过点A,l与AB的夹角为∠α,当l绕点A旋转时,(1)随着∠α的变化,点O到l的距离(d如何变化?直线l与⊙O的位置关系如何变化?(2)当∠α等于多少度时,点O到l的距离d等于半径r?此时,直线l与⊙O有怎样的位置关系?为什么?实际教学效果:在教学中,教师可以引导学生,画一个圆,并画出直径AB,拿直尺当直线,让直尺绕着点A移动.观察∠α发生变化时,点O到l的距离d如何变化,然后互相交流意见.得出结论:经过直径的一端,并且垂直于这条直径的直线是圆的切线.2.做一做已知⊙O上有一点A,过A作出⊙O的切线.分析:根据刚讨论过的圆的切线的第三个判定条件可知:经过直径的一端,并且垂直于直径的直线是圆的切线,而现在已知圆心O和圆上一点A,那么过A 点的直径就可以作出来,再作直径的垂线即可.如右图.(1)连接OA.(2)过点A作OA的垂线l,l即为所求的切线.3.如何作三角形的内切圆.如下图,从一块三角形材料中,能否剪下一个圆使其与各边都相切.分析:假设符号条件的圆已作出,则它的圆心到三角形三边的距离相等.因此,圆心在这个三角形三个角的平分线上,半径为圆心到三边的距离.解:(1)作∠B、∠C的平分线BE和CF,交点为I(如右上图).(2)过I作ID⊥BC,垂足为D.(3)以I为圆心,以ID为半径作⊙I.⊙I就是所求的圆.∵I在∠B的角平分线BE上,∴ID=IM,又∵I在∠C的平分线CF 上.∵ID=IN,∵ID=IM=IN.这是根据角平分线的性质定理得出的,所以I到△ABC三边的距离相.等因此和三角形三边都相切的圆可以作出一个,因为三角形三个内角的平分线交于一点,这点为圆心,这点到三角形三边的距离相等,这个距离为半径,圆心和半径都确定的圆只有一个.并且只能作出一个,这个圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心(incenter).4.(补充)例题讲解已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.第三环节课堂练习随堂练习1.以边长为3,4,5的三角形的三个顶点为圆心,分别作圆与对边相切,则这三个圆的半径分别是多少?2.分别作出锐角三角形,直角三角形,钝角三角形的内切圆,并说明与它们内心的位置情况?第四环节课时小结本节课学习了以下内容:1.探索切线的判定条件.2.会经过圆上一点作圆的切线.3.会作三角形的内切圆.4.了解三角形的内切圆,三角形的内心概念.第五环节课后作业必做:习题3.8 1,2题四、教学反思1、运用课件实现课堂的连贯性及趣味性,提高了课堂效率。
3.6圆和圆的位置关系
一、选择题
1.已知⊙O1的半径r为3 cm,⊙O2的半径R为4 cm,两圆的圆心距O1O2为1 cm,则这两圆的位置关系是( )
A.相交B.内含C.内切D.外切
2. (2014年广西钦州,第9题3分)如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()
A.60°B.45°C.30° D.20°
3.(2014•青岛,第5题3分)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()
A.内含B.内切C.相交D.外切
4.如图3-131所示,圆与圆之间不同的位置关系有( )
A.2种B.3种
C.4种D.5种
5(2014•柳州,第8题3分)如图,当半径分别是5和r的两圆⊙O1和⊙O2外切时,
它们的圆心距O1O2=8,则⊙O2的半径r为()
A.12 B.8 C.5 D.3
二、填空题
6.某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上.向内放入两个半径为5 cm的钢球,测得上面一个钢球的最高点到底面的距离DC=16 cm(钢管的轴截面如图
3-132所示),则钢管的内径AD的长为cm.
7.如图3-133所示,某城市公园的雕塑由3个直径为1 m的圆两两相垒立在水平的地面上,则雕塑的最高点到地面的距离为m.(结果精确到0.1 m) 8.若两圆外切和内切时的圆心距分别为13和5,则两圆的半径分别为.9.如图3-134所示,两等圆⊙O1和⊙O2相交于A,B两点,且⊙O1过点O2,则∠O1AB 的度数是.
10..(2014•福建龙岩,第17题3分)如图,∠AOB=60°,O1,O2,O3…是∠AOB平分线上的点,其中OO1=2,若O1,O2,O3…分别以为圆心作圆,使得⊙O1,⊙O2,⊙O3…均与∠AOB的两边相切,且相邻两圆相外切,则⊙O2014的面积是(结果保留π)
三、解答题
11.如图3-135所示,⊙O1和⊙O2相交于A,B两点,过点A的直线分别交两圆于点C,D,点M是CD的中点,直线BM分别交两圆于点E,F,连接CE.
(1)求证CE∥DF;
(2)求证ME=MF.
12. (2014•福建三明,第23题10分)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.
(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;
(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,
①AE与OD的大小有什么关系?为什么?
②求∠ODC的度数.
参考答案
1.C
2.C
3.C
4.D
5.C[提示:有两圆外切的,有两圆内切的,有两圆内含的,有两圆外离的.故选C .]
6.18[提示:△O 1O 2O 3为直角三角形,O 1O 2=10 cm ,O 1O 3=6 cm .由勾股定理,知O 2O 3=221213O O O O -=8(cm),∴AD =O 2O 3+2r =18(cm).故填18.]
7.1.9[提示:连接一个圆心,得到一个正三角形,则所求距离为该三角形的高与两圆半径的和.]
8.4,9[提示:列方程组得13,5,R r R r +=⎧⎨-=⎩解得9,4.
R r =⎧⎨=⎩] 9.30°[提示:连接AO 2,O 1O 2,则△AO 1O 2为正三角形,且AB 平分∠O 1AO 2,所以∠O 1AB =12∠O 1AO 2=12
×60°=30°.] 10.解:设⊙O 1,⊙O 2,⊙O 3…与OB 的切点分别为C ,D ,E ,
连接CO 1,DO 2,EO 3,
∴CO 1⊥BO,DO 2⊥BO,EO 3⊥BO,
∵∠AOB=60°,O 1,O 2,O 3…是∠AOB 平分线上的点,其中OO 1=2,
∴∠O 1OC=30°,
∴CO 1=1,
∴DO 2=(2+1+DO 2),
∴DO 2=3,
同理可得出:EO 3=9,
∴⊙O 2014的半径为:32013,
∴⊙O 2014的面积是π×(3
2013)2=34026π. 故答案为:34026π.
11.证明:(1)连接AB,则∠ABE=∠C,∠ABF=∠D,∴∠C=∠D,∴CE∥DF.(2)∵点M是CD的中点,∴CM=DM.又∵∠CME=∠DMF,∠C=∠D,.∴△CME≌△DMF,∴ME=MF.
12.解:(1)如图①,连接OC,
∵OC=OA,CD=OA,
∴OC=CD,
∴∠ODC=∠COD,
∵CD是⊙O的切线,
∴∠OCD=90°,
∴∠ODC=45°;
(2)如图②,连接OE.
∵CD=OA,∴CD=OC=OE=OA,
∴∠1=∠2,∠3=∠4.
∵AE∥OC,
∴∠2=∠3.
设∠ODC=∠1=x,则∠2=∠3=∠4=x.
∴∠AOE=∠OCD=180°﹣2x.
①AE=OD.理由如下:
在△AOE与△OCD中,
∴△AOE≌△OCD(SAS),
∴AE=OD.
②∠6=∠1+∠2=2x.
∵OE=OC,∴∠5=∠6=2x.
∵AE∥OC,
∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.
∴∠ODC=36°.。