条形码识别技术
- 格式:doc
- 大小:256.11 KB
- 文档页数:17
条形码识别技术原理引言:在现代社会,条形码已经成为商品流通和管理的重要工具。
条形码识别技术作为一种快速、准确的自动识别技术,被广泛应用于商品的管理、物流追踪、库存管理等领域。
本文将介绍条形码识别技术的原理,并探讨其在实际应用中的优势和挑战。
一、条形码的基本结构条形码是由一组粗细不同的黑白条纹组成的图形,它通过不同的编码方式表示不同的信息。
条形码由起始符、数据字符和终止符组成,起始符和终止符用于标识条形码的开始和结束,数据字符用于表示实际的信息。
二、条形码的编码方式条形码的编码方式有多种,常见的编码方式包括EAN-13、UPC-A、Code 39等。
这些编码方式根据需求的不同,采用不同的字符集和编码规则,以实现对不同类型信息的表示和识别。
三、条形码的识别原理条形码的识别主要包括图像采集、图像预处理、条纹定位、条纹切割、条纹解码等过程。
1. 图像采集条形码的识别首先需要通过扫描仪、相机等设备将条形码图像采集下来。
采集的图像应保证条形码清晰可见,避免模糊、变形等问题。
2. 图像预处理采集的图像可能受到光线、噪声等因素的影响,需要进行图像预处理,以提高后续处理的准确性。
常见的图像预处理方法包括灰度化、二值化、滤波等。
3. 条纹定位条形码图像中的条纹需要进行定位,以确定条形码的边界。
条纹定位主要通过边缘检测、边界追踪等算法实现,以准确定位条形码的起始符和终止符。
4. 条纹切割通过条纹定位后,需要将条形码图像中的条纹进行切割,以便进行后续的解码处理。
条纹切割通常通过像素投影、峰值检测等方法实现,以获取条纹的起始和结束位置。
5. 条纹解码条纹解码是条形码识别的核心过程,其目标是将条纹转换成实际的信息。
条纹解码通常采用模板匹配、字符识别等算法,以将条纹转换成对应的字符。
四、条形码识别技术的优势条形码识别技术具有以下优势:1. 高效准确:条形码识别技术可以快速、准确地读取条形码信息,提高工作效率和准确性。
2. 自动化:条形码识别技术可以实现自动化识别,减少人工干预,降低成本。
第1篇一、实验目的1. 了解条码识别技术的基本原理和应用。
2. 掌握条码识别系统的组成和功能。
3. 熟悉条码识别软件的使用方法。
4. 提高对条码识别技术的实际操作能力。
二、实验原理条码识别技术是一种自动识别技术,通过扫描条码符号,将条码信息转换为数字信息,从而实现信息的高效采集和传输。
条码识别技术广泛应用于商品流通、工业生产、图书管理、仓储标证管理、信息服务等领域。
实验原理主要包括以下三个方面:1. 条码符号的编码规则:条码符号由黑白相间的条形和空隙组成,按照一定的编码规则编制而成。
常见的编码规则有EAN-13、UPC、Code 39、Code 128等。
2. 条码识别系统:条码识别系统主要由条码扫描器、条码识别软件和计算机组成。
条码扫描器负责采集条码图像,条码识别软件负责对条码图像进行处理和识别,计算机负责存储和管理条码信息。
3. 条码识别算法:条码识别算法是条码识别系统的核心,主要包括图像预处理、特征提取、模式识别等步骤。
三、实验设备与材料1. 实验设备:条码扫描器、计算机、条码识别软件。
2. 实验材料:各种条码标签、商品、图书等。
四、实验步骤1. 熟悉条码识别软件的操作界面和功能。
2. 将条码标签粘贴在商品或图书上。
3. 使用条码扫描器对条码标签进行扫描,采集条码图像。
4. 将采集到的条码图像导入条码识别软件。
5. 对条码图像进行预处理,包括去噪、二值化、滤波等。
6. 提取条码特征,如条码的起始符、终止符、数据符等。
7. 使用模式识别算法对条码特征进行匹配,识别条码信息。
8. 将识别结果与商品或图书的标签信息进行比对,验证识别结果。
五、实验结果与分析1. 实验结果:本次实验成功识别了多种条码标签,包括EAN-13、UPC、Code 39、Code 128等。
识别准确率达到100%。
2. 分析:(1)条码识别系统的组成和功能:本次实验使用的条码识别系统由条码扫描器、条码识别软件和计算机组成,能够满足实际应用需求。
条形码技术在零售业中的应用随着科技的发展,人们的生活越来越便利。
在零售业中,条形码技术的应用已经成为一种常见的商业技术手段,大大提高了商家和消费者的效率和便利程度。
本文将探讨条形码技术在零售业中的应用以及对零售业的影响。
一、条形码技术的原理条形码(Barcode)是一种图形识别技术,是由许多纵向的条纹和空白区域组成的一种特殊图形。
它的原理是通过扫描读取条形码上的信息来识别每一件商品。
这种技术可以实现商品的自动识别、快速查询商品信息和快捷结算。
二、1. 商品信息管理条形码技术可以通过自动扫描识别商品上的条形码来对商品信息进行管理。
每一个条形码相当于一种商品的身份证明,它包含了商品的基本信息,如商品名称、价格、规格、生产日期等。
商家可以利用这些信息进行库存管理、进货计划以及销售跟踪等。
2. 顾客购买条形码技术可以通过扫描读取商品上的条形码,对购买商品的顾客进行快速结算。
在超市等大型商场,商品种类繁多,顾客购买往往需要花费大量的时间,而条形码技术的应用可以大大缩短购物时间,提高购物的效率和便捷性。
3. 售后服务条形码技术可以帮助商家对售后服务进行管理。
当顾客需要退换商品时,商家只需要通过扫描商品的条形码就可以进行商品的退换,避免了手工输入信息产生的错误和耗费时间。
三、条形码技术的优势1. 提高工作效率商家可以通过扫描条形码快速查询商品信息,减少工作量。
同时,顾客可以通过扫描条形码来快速结算,大大减少顾客等待时间,提高工作效率。
2. 降低成本条形码系统可以提高物流管理的准确性和速度,减少商家的成本,提高库存的精度。
同时,条形码技术还可以简化工作流程,减少人员的工作量和配备时间,降低了运营成本。
3. 提升客户体验条形码技术的应用可以让顾客更加便利地购物。
顾客可以通过自助终端进行扫码,自由选择商品,自行结算,快速完成购物。
这样,可以提高顾客的购物体验,增加忠实度,从而提高商家的收益。
四、应用展望随着数字化浪潮的不断演进,条形码技术在零售业中的应用面临着广阔的应用空间。
条形码及RFID识别的原理
1、条形码识别的原理:
条形码是由条纹、黑点或字母数字等组合而成的一种二维码,它可将任意长度、任意组合的字符转变成有限长度的特定格式代码。
条形码识别过程如下:识读器首先扫描条形码,计算出相应的角度差,以及条形码横列之间的距离;然后,根据标准规定,对扫描得到的数据进行解码,把其扫描出来的条形码信息转换成可以显示的字符序列;最后,将可显示的字符序列编码成各种类型的电子信息,如电文、计算机信息等,完成信息的传输或存储工作。
2、RFID识别的原理:
RFID(Radio Frequency Identification)是一种无线射频识别技术,利用无线信号实现物体的互联和追踪管理,RFID识别过程如下:RFID技术组件包括RFID 读写器和RFID标签,一般读写器和标签都安装了射频天线,标签还包含一个射频芯片;读写器通过发射射频信号,发射出一个周期非常短的激励信号,当该信号发射到RFID标签上,标签接收到激励信号后,射频芯片会读取存储在芯片内的数据信息,并以指定的格式发射给读写器,然后读写器就会将该数据信息解码显示出来。
条形码识别原理
条形码识别原理是通过扫描条形码上的黑白条纹来解码信息。
条形码由一系列精确宽度的黑白条纹组成,每个条纹的宽度和颜色都代表不同的数字或字符。
识别设备(如扫描枪或手机摄像头)通过光源照射条形码,然后通过光敏元件接收被反射回的光线。
光敏元件将接收到的光线转换为电信号,然后通过信号处理算法解码出条形码所代表的信息。
识别设备会首先识别条形码的起始和结束位置,以确定读取的起点和终点。
然后,设备会根据所采集到的黑白条纹的宽度来解码每个字符的数字或字符,并将它们组合起来形成完整的信息。
为了确保准确性和可靠性,条形码识别原理中使用了差错校验算法。
当设备识别到一段数字或字符时,它会使用校验位来验证是否读取正确。
校验位是通过对条形码中的数字或字符进行运算获得的结果,如果运算结果与校验位相符,则说明识别正确,否则就需要重新读取。
此外,条形码的识别速度也得到了大幅提升。
现代的扫描枪或手机摄像头可以以极高的速度扫描条形码,识别出信息并迅速传输给相关应用程序进行处理。
这使得条形码的应用范围更加广泛,例如在商业领域用于商品的库存管理和销售跟踪,以及在物流领域用于追踪货物的流向和状态。
条形码识别原理条形码是一种将数据编码成一系列粗细不同的条纹,用以在商品、包裹等物品上进行识别的技术。
条形码的识别原理是利用光学扫描设备对条形码进行扫描,并通过解码软件将条形码转换为数字或文字信息。
下面将介绍条形码的识别原理及其相关技术。
1. 条形码的结构。
条形码通常由黑白条纹组成,条纹的宽窄和间距不同代表着不同的信息。
条形码的结构包括起始符、数据字符、校验字符和终止符。
起始符和终止符用于标识条形码的起始和结束位置,数据字符用于存储实际的数据信息,校验字符用于验证数据的准确性。
2. 条形码的扫描原理。
条形码的扫描原理是利用光学扫描设备对条形码进行扫描,将条形码的黑白条纹转换为电信号。
光学扫描设备通常包括光源、镜头和光电传感器。
光源发出光线照射在条形码上,镜头接收反射光线并将其转换为电信号,光电传感器将电信号转换为数字信号。
3. 条形码的解码原理。
扫描得到的数字信号需要经过解码软件进行解析,将条形码转换为实际的数据信息。
解码软件通常包括解码算法和数据处理模块。
解码算法用于识别条形码的起始符、终止符和数据字符,数据处理模块用于验证校验字符并将数据转换为数字或文字信息。
4. 条形码的识别技术。
目前,常见的条形码识别技术包括激光扫描、CCD扫描和摄像头扫描。
激光扫描技术利用激光束对条形码进行扫描,适用于大距离和高速扫描。
CCD扫描技术利用CCD传感器对条形码进行扫描,适用于近距离和高精度扫描。
摄像头扫描技术利用摄像头对条形码进行拍照,适用于移动设备和复杂环境下的扫描。
5. 条形码的应用领域。
条形码技术已广泛应用于商品管理、物流配送、图书馆管理、票据识别等领域。
随着物联网和人工智能技术的发展,条形码的应用将进一步扩大,为人们的生活和工作带来更多便利。
总结。
条形码的识别原理是利用光学扫描设备对条形码进行扫描,并通过解码软件将条形码转换为数字或文字信息。
条形码的结构包括起始符、数据字符、校验字符和终止符,扫描原理包括光源、镜头和光电传感器,解码原理包括解码算法和数据处理模块,识别技术包括激光扫描、CCD扫描和摄像头扫描。
条形码识别原理是什么
条形码识别原理是通过光电转换器将条形码上的黑白条纹转换为电信号,然后再利用解码器对电信号进行解码。
具体原理如下:
1. 投射光源:一般使用红外线或激光投射器作为光源,照射到条形码上。
光源照射后,条形码上的白条反射光线,黑条则吸收光线。
2.光电转换器:光线被反射后,通过光电转换器,将光信号转
换为电信号。
光电转换器一般通过光敏器件(如光电二极管或光敏电阻)来实现。
3.电信号解码:光电转换器产生的电信号经过放大、滤波和信
号处理等环节,被传送到解码器中进行解码。
解码器可以是硬件解码器或软件解码器。
4.解码:解码器对接收到的电信号进行解码,识别出条形码中
所包含的信息,如商品编号、价格等。
5. 输出信息:解码器将识别出的信息传送给计算机或其他设备,以便后续处理或存储。
条形码识别原理基于条形码的特征,即黑白条纹的不同宽度和间距来编码信息。
解码器根据条纹的宽度和间距的变化规律来识别条形码中编码的信息,从而实现条形码的识别。
1.条码技术概述条码技术是在计算机的应用实践中产生和发展起来的一种自动识别技术,条码应用技术就是应用条码系统进行的信息处理技术。
条码技术的研究始于20世纪中期,是继计算机技术应用和发展应运而生的。
随着70年代微处理器的问世,标志着“信息化社会”的到来,它要求人们对社会上各个领域的信息、数据实施正确、有效、及时的采集、传递和管理。
因此如何代替人的视觉、人的手工操作、或者在复杂的环境中正确、迅速地获取信息并加以识别,成为人们普遍关心和有关人员精心研究的课题。
条码技术具有以下几个方面的优点:1、可靠准确。
有资料可查键盘输入平均每300个字符一个错误,而条码输入平均每15000个字符一个错误。
如果加上校验位出错率是千万分之一。
2、数据输入速度快。
与键盘输入相比较,用条形码扫描读入电脑的速度大约是键盘输入的100倍,并且能够实现“即时数据输入”,一个每分钟打90个字的打字员1.6秒可输入12个字符或字符串,而使用条码,做同样的工作只需0.3秒,速度提高了5倍。
3、经济便宜。
与其它自动化识别技术相比较,推广应用条码技术,所需费用较低。
4、灵活、实用。
条码符号作为一种识别手段可以单独使用,也可以和有关设备组成识别系统实现自动化识别,还可和其他控制设备联系起来实现整个系统的自动化管理。
同时,在没有自动识别设备时,也可实现手工键盘输入。
5、自由度大。
识别装置与条码标签相对位置的自由度要比OCR大得多。
条码通常只在一维方向上表达信息,而同一条码上所表示的信息完全相同并且连续,这样即使是标签有部分缺欠,仍可以从正常部分输入正确的信息。
6、设备简单。
条码符号识别设备的结构简单,操作容易,无需专门训练。
7、易于制作,可印刷,称作为“可印刷的计算机语言”。
条码标签易于制作,对印刷技术设备和材料无特殊要求。
正因为条码具有上述迅速,准确,廉价,使用方便,适应性强等优点,克服了其他输入方法的不足,所以他在各个行业中的发展可谓突飞猛进,最初应用于物流管理,最引人注目的是pos系统,它使商店的定货管理,盘点,库存管理,库存查询,验货管理,收款等各项工作得到极大地提高。
条形码识别原理引言条形码是一种用于表示商品信息的图形编码,它在商业领域得到了广泛应用。
条形码识别技术是指将条形码图像转化为可读的数字或字符信息的过程。
本文将深入探讨条形码识别的原理,包括条形码的结构和编码方式,以及常用的条形码识别算法和技术。
条形码的结构和编码方式条形码由一组粗细不同的黑白条纹组成,其中黑条代表数字“1”,白条代表数字“0”。
条形码通常包括起始符、数据字符、校验字符和结束符等部分。
起始符起始符用于标识条形码的开始位置,通常由一组特定的条纹组成。
不同的条形码类型有不同的起始符。
数据字符数据字符是条形码中用于表示实际数据信息的部分。
不同的条形码类型使用不同的编码方式,常见的编码方式包括EAN-13、UPC、Code 39等。
校验字符校验字符用于验证条形码的正确性,一般根据一定的算法计算得出。
校验字符的存在可以提高条形码的识别准确性。
结束符结束符用于标识条形码的结束位置,通常由一组特定的条纹组成。
不同的条形码类型有不同的结束符。
条形码识别算法和技术条形码识别算法是指将条形码图像转化为可读的数字或字符信息的过程。
下面介绍几种常用的条形码识别算法和技术。
基于灰度图像的条形码识别该算法通过将彩色图像转化为灰度图像,然后进行图像分割和特征提取,最后利用分类器判断条形码的类型和内容。
1.图像分割:将灰度图像中的条纹和背景进行分离,常用的方法有阈值分割、边缘检测等。
2.特征提取:提取条纹的宽度、间距等特征,用于后续的识别过程。
3.分类器:利用机器学习算法或模式匹配算法对提取到的特征进行分类,从而判断条形码的类型和内容。
基于模板匹配的条形码识别该算法通过事先准备好的条形码模板,将模板与待识别图像进行匹配,从而实现条形码的识别。
1.模板生成:根据不同的条形码类型,生成相应的条形码模板。
2.图像匹配:将待识别图像与模板进行匹配,计算匹配度,选取匹配度最高的模板作为识别结果。
基于深度学习的条形码识别近年来,深度学习技术在图像识别领域取得了显著的进展,条形码识别也不例外。
一维条形码生成与识别技术一、引言条形码(简称条码)技术是集条码理论、光电技术、计算机技术、通信技术、条码印制技术于一体的一种自动识别技术。
条形码是由宽度不同、反射率不同的条(黑色)和空(白色),按照一定的编码规则编制而成,用以表达一组数字或字母符号信息的图形标识符。
条形码符号也可印成其它颜色,但两种颜色对光必须有不同的反射率,保证有足够的对比度。
条码技术具有速度快、准确率高、可靠性强、寿命长、成本低廉等特点,因而广泛应用于商品流通、工业生产、图书管理、仓储标证管理、信息服务等领域。
二、EAN-13条形码简介一维条码主要有EAN和UPC两种,其中EAN码是我国主要采取的编码标准。
EAN是欧洲物品条码(European Article Number Bar Code)的英文缩写,是以消费资料为使用对象的国际统一商品代码。
只要用条形码阅读器扫描该条码,便可以了解该商品的名称、型号、规格、生产厂商、所属国家或地区等丰富信息。
EAN通用商品条码是模块组合型条码,模块是组成条码的最基本宽度单位,每个模块的宽度为0.33毫米。
在条码符号中,表示数字的每个条码字符均由两个条和两个空组成,它是多值符号码的一种,即在一个字符中有多种宽度的条和空参与编码。
条和空分别由1~4个同一宽度的深、浅颜色的模块组成,一个模块的条表示二进制的“1”,一个模块的空表示二进制的“0”,每个条码字符共有7个模块。
即一个条码字符条空宽度之和为单位元素的7倍,每个字符含条或空个数各为2,相邻元素如果相同,则从外观上合并为一个条或空,并规定每个字符在外观上包含的条和空的个数必须各为2个,所以EAN码是一种(7,2)码。
EAN条码字符包括0~9共10个数字字符,但对应的每个数字字符有三种编码形式,左侧数据符奇排列、左侧数据符偶排列以及右侧数据符偶排列。
这样十个数字将有30种编码,数据字符的编码图案也有三十种,至于从这30个数据字符中选哪十个字符要视具体情况而定。
在这里所谓的奇或偶是指所含二进制“1”的个数为偶数或奇数[2]。
2.1 EAN-13码的格式EAN条形码有两个版本,一个是13位标准条码(EAN-13条码),另一个是8位缩短条码(EAN-8条码)。
EAN-13条码由代表13位数字码的条码符号组成,如图1所示[1]。
图 1前2位(~,欧共体12国采用)或前3位( ~,其他国家采用)数字为国家或地区代码,称为前缀码或前缀号。
例如:我国为690,日本为49*,澳大利亚为93*等(其中的“*”表示0~9的任意数字)。
前缀后面的5位( ~ )或4位( ~ )数字为商品制造商的代码,是由该国编码管理局审查批准并登记注册的。
厂商代码后面的5位( ~ )数字为商品代码或商品项目代码,用以表示具体的商品项目,即具有相同包装和价格的同一种商品。
最后一位数字为校验码,用以提高数据的可靠性和校验数据输入的正确性,校验码的数值按国际物品编码协会规定的方法计算。
2.2 EAN-13条形码的构成EAN-13条形码的构成如图2所示。
左侧空白起始符左侧数据符6位数字中间分隔符右侧数据符6位数字校验符1位数字终止符右侧空白图2 典型EAN-13条形码的构成(1)左、右侧空白:没有任何印刷符号,通常是空白,位于条码符号的两侧。
用以提示阅读,准备扫描条码符号,共有18个模块组成(其中左侧空白不得少于9个模块宽度),一般左侧空白11个模块,右侧空白7个模块。
(2)起始符:条形码符号的第一位字符是起始符,它特殊的条空结构用于识别条形码符号的开始。
由3个模块组成。
(3)左侧数据符:位于中间分隔符左侧,表示一定信息的条码字符,由42个模块组成。
(4)中间分隔符:位于条码中间位置的若干条与空,用以区分左、右侧数据符,由5个模块组成。
(5)右侧数据符:位于中间分隔符右侧,表示一定信息的条码字符,由35个模块组成。
(6)条码校验符:表示校验码的条码字符,用以校验条码符号的正确与否,由7个模块组成。
(7)终止符:条形码符号的最后一位字符是终止符,它特殊的条空结构用于识别条形码符号的结束。
由3个模块组成。
一个条形码图案是数条黑色和白色线条组成,如图3所示。
图3 条形码图案实例图案分成五个部分,从左至右分别为:起始部分、第一数据部分、中间部分、第二数据部分和结束部分。
(1)起始部分:由11条线组成,从左至右分别是8条白线,一条黑线,一条白线和一条黑线。
(2)第一数据部分:由42条线组成,是按照一定的算法形成的,包含了左侧数据符( ~ )这些数字的信息。
(3)中间部分:由5条线组成,从左到右依次是白线,黑线,白线,黑线,白线。
(4)第二数据部分:由42条线组成,是按照一定的算法形成的,包含了右侧数据符( ~)这些数字的信息。
(5)结尾部分:由11条线组成,从左至右分别是一条黑线,一条白线和一条黑线,8条白线。
2.3 EAN-13的编码规则EAN-13的编码是由二进制表示的。
它的数据符、起始符、终止符、中间分隔符编码见表1。
表1 EAN-13编码左侧数据符有奇偶性,它的奇偶排列取决于前置符,所谓前置符是国别识别码的第一位,该位以消影的形式隐含在左侧六位字符的奇偶性排列中,这是国际物品编码标准版的突出特点。
前置符与左侧六位字符的奇偶排列组合方式的对应关系见表2,实际上由表2这种编码规定可看出,与这种组合方式是一一对应固定不变的。
例如:中国的国别识别码为“690”,因此它的前置符为“6”,左侧数据符的奇偶排列为“OEEEOO”[3],“E”表示偶字符,“O”表示奇字符。
表2 左侧数据符奇偶排列结合方式2.4 EAN-13条形码的校验方法校验码的主要作用是防止条形码标志因印刷质量低劣或包装运输中引起标志破损而造成扫描设备误读信息。
作为确保商品条形码识别正确性的必要手段,条形码用户在标志设计完成后,代码的正确与否直接关系到用户的自身利益。
对代码的验证,校验码的计算是标志商品质量检验的重要内容之一,应该谨慎严格,需确定代码无误后才可用于产品包装上。
下面是EAN-13条形码的校验码验算方法,步骤如下[3]:(1)以未知校验位为第1位,由右至左将各位数据顺序排队(包括校验码);(2)由第2位开始,求出偶数位数据之和,然后将和乘以3,得积;(3)由第3位开始,求出奇数位数据之和,得;(4)将和相加得和;(5)用除以10,求得余数,并以10为模,取余数的补码,即得校验位数据值;(6)比较第1位的数据值与C的大小,若相等,则译码正确,否则进行纠错处理。
例如,设EAN-13码中数字码为6901038100578(其中校验码值为8),该条码字符校验过程为:,,= + =82,除以10的余数为2,故,译码正确。
3 EAN-13条形码的生成条形码的生成方法如下[3]:(1)由根据表3产生和~ 匹配的字母码,该字母码有6个字母组成,字母限于A和B。
表3 映射表0 AAAAAA 5 ABBAAB1 AABABB 6 ABBBAA2 AABBAB 7 ABABAB3 AABBBA 8 ABABBA4 ABAABB 9 ABBABA(20 AAAAAA 5 ABBAAB1 AABABB 6 ABBBAA2 AABBAB 7 ABABAB3 AABBBA 8 ABABBA4 ABAABB 9 ABBABA)将~和产生的字母码按位进行搭配,来产生一个数字--字母匹配对。
并通过查表4生成条形码的第一数据部分。
表4 数字--字母映射表数字-字母匹配对二进制信息数字-字母匹配对二进制信息0A 0001101 0B 01001110C 1110010 1A 00110011B 0110011 1C 11001102A 0010011 2B 00110112C 1101100 3A 01111013B 0100001 3C 10000104A 0100011 4B 00111014C 1011100 5A 01100015B 0111001 5C 10011106A 0101111 6B 00001016C 1010000 7A 01110117B 0010001 7C 10001008A 0110111 8B 00010018C 1001000 9A 00010119B 0010111 9C 1110100 (3)将~ 和C进行搭配,并通过查表4生成条形码的第二数据部分。
(4)按照两部分数据绘制条形码:1对应黑线,0对应白线。
例如,假设一个条形码的数据码为:6901038100578。
=6,对应的字母码为ABBBAA, ~和产生的字母码按位进行搭配结果为9A、0B、1B、0B、3A、8A,查表4得第一部分数据的编码分别为0001011、0100111、0110011、0100111、0111101、0110111; ~ 和C进行搭配结果为1C、0C、0C、5C、7C、8C,查表4得第二部分数据的编码分别为1100110、1110010、1110010、1001110、1000100、1001000。
4 条形码识别4.1条码识别的基本原理EAN-13是一种(7, 2)码,即每个字符的总宽度为7个模块宽,交替由两个条和两个空组成,而每个条空的宽度不超过4个模块,如图4所示。
图片看不清楚?请点击这里查看原图(大图)。
图4EAN-13条码宽度的定义图4中表示当前字符中四个相邻条、空的宽度,是一个字符的宽度,满足:, 为整数;且。
用表示当前字符单位模块的宽度,则。
令,。
由的值可以得到编码。
例如:若,且条码的排列为条—空—条—空,则可知当前字符的编码为1000100,是右侧偶字符7。
,且条码的排列为空—条—空—条,则可知当前字符的编码为0001011,是左侧偶字符9。
由于条码印刷和图像采集设备的限制,在图像采集时边缘部分还存在着半像素问题,实际扫描后得到的图像会出现一定程度的边缘模糊,尤其当条码密度较大,条空间距较小时边缘模糊更为明显。
边缘出现模糊时,将导致寻找条空边缘时产生一定偏差,当这个偏差超过半个模块宽度时,便会出现误码。
如果再考虑到流通过程中磨损、水渍浸泡等因素引起的图像缺陷,在这种情况下如果用边缘检测的方法确定条空序列会大大降低条码的识别率。
本文采用的方法为:以起始模块的中心为起始中心、一个单位模块宽度为间距来检测条空序列。
4.2 条形码扫描方向的判别为了能够正确地解译条形码,在解译条形码符号所表示的数据之前,需要先进行条形码扫描方向的判别,EAN-13的起始字符和终止字符的编码结构都是“101”,只能通过它进行码制的判别(对于多种条码识别的时候,其它码制的条码起始字符和终止字符都不是“101”),但是不能通过起始字符和终止字符来判别它的扫描方向。
由EAN-13码的编码结构可知,它的右侧字符为全偶,而左侧字符的奇偶顺序由前置符决定,没有全偶的,从而可以利用此原理来确定EAN-13码的扫描方向。