史密斯图原理
- 格式:pdf
- 大小:74.69 KB
- 文档页数:2
史密斯圆图的原理及应用一、史密斯圆图的概述史密斯圆图(Smith Chart)是一种常用的电路设计工具,广泛应用于微波电路的设计与分析。
它可以通过坐标变换的方式将复抗匹配器的阻抗表示在一个圆图上,方便工程师快速计算和优化电路。
二、史密斯圆图的原理史密斯圆图的构建基于复平面的坐标转换技术,将复抗匹配器的阻抗表示在一个单位圆上。
具体步骤如下:1.将复抗匹配器的阻抗表示为复平面上的点,以阻抗的实部和虚部作为横纵坐标。
2.将复抗匹配器的阻抗归一化到一个标准的单位圆上,使得阻抗归一化到圆上的点表示为单位圆上的点。
3.在单位圆上绘制一系列等效电阻德曼圆,并标记常用的阻抗值。
这些等效电阻德曼圆的半径是固定的,通过变换得到的阻抗点在不同等效电阻德曼圆上的位置。
4.通过在复平面上作圆的平移和旋转操作,将复抗匹配器的阻抗点转换成单位圆上的点。
5.将复抗匹配器转换后的阻抗点与等效电阻德曼圆上的点连接,得到史密斯圆图。
三、史密斯圆图的应用1. 阻抗匹配•利用史密斯圆图可以方便地进行阻抗匹配的计算和设计。
通过在史密斯圆图上移动阻抗点,可以得到与之匹配的负载阻抗或源阻抗。
工程师可以根据需要,选择合适的匹配器或变换线来实现阻抗的最大传输。
2. 反射系数的计算•史密斯圆图也可以方便地计算反射系数。
通过在史密斯圆图上读取阻抗点对应的反射系数,工程师可以快速了解电路中的反射情况,并根据需要进行相应的优化调整。
3. 变换线设计•史密斯圆图可以帮助工程师设计不同类型的变换线,如电阻性变换线、电容性变换线和电感性变换线。
通过在史密斯圆图上进行阻抗点的变换,可以得到满足特定要求的变换线参数。
4. 频率扫描分析•在频率扫描分析中,史密斯圆图可以帮助工程师分析电路在不同频率下的阻抗变化情况。
通过在史密斯圆图上绘制多个频率下的阻抗点,可以得到电路的频率响应特性。
5. 负载匹配•史密斯圆图也可以应用于负载匹配。
通过在史密斯圆图上绘制负载阻抗曲线和源阻抗曲线,可以找到使得负载与源之间产生最小干扰的最佳匹配点。
史密斯圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。
在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。
Smith chart 就是其中最常用一种。
1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。
阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。
1.1 等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+ 其中00arctan(/)Lv u θ=ΓΓ。
图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000L j j z in u v in Z Z j e eZ Z θβ--Γ==Γ+Γ=Γ+ 其中220u v Γ=Γ+Γ,arctan(/)L v u θ=ΓΓ。
椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。
图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。
不管这是今天1、是2、为3、干1、是该图“在我史密当中管多么经典的射是什么东东?天解答三个问题是什么? 为什么? 干什么?是什么?表是由菲利普我能够使用计算密斯图表的基本的Γ代表其线射频教程,为什题: 普·史密斯(Phillip 算尺的时候,我本在于以下的算线路的反射系数从容面对“史什么都做成黑白p Smith)于193我对以图表方式算式。
数(reflection coe 史密斯圆图白的呢?让想理39年发明的,当式来表达数学上efficient)”,不再懵逼理解史密斯原图当时他在美国的上的关联很有兴图的同学一脸懵的RCA 公司工作兴趣”。
懵逼。
作。
史密斯曾说说过,即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。
当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。
简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。
2、为什么?我们现在也不知道,史密斯先生是怎么想到“史密斯圆图”表示方法的灵感,是怎么来的。
很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。
我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给“掰弯”了。
我在表述这个“掰弯”的过程,你就理解,这个图的含义了。
(坐标系可以掰弯、人尽量不要“弯”;如果已经弯了,本人表示祝福)现在,我就掰弯给你看。
世界地图,其实是一个用平面表示球体的过程,这个过程是一个“掰直”。
史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。
2.1、首先,我们先理解“无穷大”的平面。
首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。
在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。
阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。
Smith 圆图—原理与分析
Smith 圆图是一种用于分析电路中的匹配网络的工具。
它由美国电气工程师Phillip H. Smith于1950年提出,并被广泛应用于射频电路设计和天线设计领域。
Smith 圆图的原理基于复阻抗的概念。
在Smith 圆图中,电路中的每个点都可
以表示为一个复阻抗,即由实部和虚部组成的复数。
这样,整个电路可以表示为一个复阻抗的集合。
Smith 圆图将复阻抗表示为一个圆形图形,其中圆心表示纯电阻,圆的边界表
示纯电抗。
圆的半径表示电阻的大小,而圆的位置表示电抗的大小和相位。
通过在Smith 圆图上绘制电路中的复阻抗,可以直观地分析电路的匹配情况。
当电路的复阻抗位于Smith 圆图的边界上时,表示电路是纯电抗的,即无功。
当电路的复阻抗位于Smith 圆图的圆心时,表示电路是纯电阻的,即有功。
通过分析Smith 圆图上的复阻抗,可以确定电路的匹配情况。
匹配是指电路中
的负载阻抗与发射源或传输线的特性阻抗相匹配。
在Smith 圆图中,当负载阻抗与特性阻抗相匹配时,负载阻抗位于Smith 圆图的边界上,此时电路的反射系数为零,表示无反射。
Smith 圆图还可以用于计算电路中的反射系数、驻波比、传输线的特性阻抗等
参数。
通过在Smith 圆图上测量复阻抗的位置,可以直接读取这些参数的数值。
总之,Smith 圆图是一种简单直观的工具,可以帮助工程师分析电路中的匹配
情况,并优化电路设计。
它在射频电路设计和天线设计中具有重要的应用价值。
Smith圆图—原理与分析2-5 Smith 圆图微波工程,即传输线工程问题,主要讨论(最基本的运算是)工作参数ρΓ, Z, 之间的数量关系和传输匹配问题――怎样传输得好,没有反射,而没有反射传输就是匹配。
一般是在已知特征参数βZ和长度l 的基础上进行。
、Smith圆图正是把特征参数和工作参数形成一体,用图论的方法解决工程问题。
它是一种专用Chart,自三十年代出现以来,已历经六十年而不衰,可见其简单,方便和直观.一、Smith图圆的基本思想Smith圆图,亦称阻抗圆图。
其基本思想有三条:1. 归一化思想――特征参数归一化特征参数归一思想,是形成统一Smith圆图的最关键点,它包含了阻抗归一和电长度归一。
阻抗千变万化,极难统一表述。
现在用Z0归一,统一起来作为一种情况加以研究。
在应用中可以简单地认为Z0=1。
电长度归一不仅包含了特征参数β,而且隐含了角频率ω。
由于上述两种归一使特征参数Z0不见了;而另一特征参数β连同长度均转化为反射系数Γ的转角。
――什么阻抗都通用,什么波长都能用。
2. 反射系数Γ作基底①以系统不变量|Γ|作为Smith圆图的基底――它是一个有限量,②在无耗λ为一个周期。
所传输线中,|Γ|是系统的不变量,③Γ是频率的周期量,以2以由|Γ|从0到1的同心圆作为Smith圆图的基底,使我们可能在一有限空间表示全部工作参数Γ、Z(Y)和ρ。
βj l j l z j l e e e z l ||||) ()2( 2Γ=Γ=Γ=Γ--θ的周期是1/2λg 。
这种以|Γ|圆为基底的图形称为Smith 圆图。
3. 套覆上jx r Z +=――――把阻抗(或导纳),驻波比关系套覆在|Γ|圆上。
这样,Smith 圆图的基本思想可描述为:消去特征参数Z 0,把β归于Γ相位;工作参数Γ为基底,套覆Z(Y)和ρ。
二、Smith 圆图的基本构成1. 反射系数Γ图为基底图 7-1 反射系统Γ图反射系数图最重要的概念是相角走向。
史密斯(Smith)圆图知识史密斯圆图史密斯圆图是由很多圆周交织在一起的一个图。
正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。
图1. 阻抗和史密斯圆图基础史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。
反射系数也可以从数学上定义为单端口散射参数,即s 11。
我们知道反射系数定义为反射波电压与入射波电压之比:负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。
反射系数的表达式定义为:i r OL O L inc reflL j Z Z Z Z V V Γ⋅+Γ=+-==Γ (1) 由于阻抗是复数,反射系数也是复数。
为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。
这里Zo (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50、75、100和600。
于是我们可以定义归一化的负载阻抗:jx r Z jX R Z Z z O O L +=+==/)(/ (2)据此,将反射系数的公式重新写为:1111/)(/)(++-+=+-=+-=+-=Γ⋅+Γ=Γjx r jx r z z Z Z Z Z Z Z Z Z Z Z j O O L O O L O L O L i r L (3)从上式我们可以看到负载阻抗与其反射系数间的直接关系。
但是这个关系式是一个复数,所以并不实用。
我们可以把史密斯圆图当作上述方程的图形表示。
为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。
首先,由方程求解出;ir ir L L j j jx r z Γ-Γ-Γ+Γ+=Γ-Γ+=+=1111 (4)并且2222211ir r i r r Γ+Γ⋅-Γ+Γ-Γ-= (5) 令等式的实部和虚部相等,得到两个独立的关系式:2222211ir r i r r Γ+Γ⋅-Γ+Γ-Γ-= (6) 22212i r r ix Γ+Γ⋅-Γ+Γ⋅=(7)重新整理等式(6),经过等式(8)至(13)到最终的方程(14)。
史密斯圆图教程史密斯图(Smithchart)是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。
在复平面上采用双线性变换。
简介史密斯图(Smithchart)是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。
在复平面上采用双线性变换。
实部r=常数和虚部x=常数,两族正交直线变化为正交圆并与反射系数|G|=常数和虚部x=常数套用而成。
图表由来该图表是由菲利普·史密斯(PhillipSmith)于1939年发明的,当时他在美国的RCA公司工作。
史密斯也许不是图表的第一位发明者,一位名为Kurakawa的日本工程师声称早于其一年发明了这种图表。
史密斯曾说过,"在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣。
"图表解释史密斯图的基本在于以下的算式:史密斯圆图史密斯圆图当中的Γ代表其线路的反射系数(reflectioncoefficient),即S-parameter里的S11,zL是归一负载值,即ZL/Z0。
当中,ZL是电路的负载值,Z0是传输线的特性阻抗值,通常会使用50Ω。
图表中的圆形线代表电阻抗力的实数值,即电阻值,中间的横线与向上和向下散出的线则代表电阻抗力的虚数值,即由电容或电感在高频下所产生的阻力,当中向上的是正数,向下的是负数。
图表最中间的点(1+j0)代表一个已匹配(matched)的电阻数值(ZL),同时其反射系数的值会是零。
图表的边缘代表其反射系数的长度是1,即100%反射。
在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。
有一些图表是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。
一、资料视频:ADS学习小组第二讲视频:smith圆图课件:ADS第二次交流课件:Smith圆图1.Smith圆图阻抗匹配计算软件原图阻抗匹配计算软件(Smith圆图计算器)是一款计算史密斯圆图的软件,该软件界面简洁,操作方便,体积小巧,功能全面,而且这个做阻抗匹配很好的,但现在还不会用,希望对人家有帮助,也可以用的!而且史密斯圆图演示软件,希望对有需要的朋友有点帮助。
Smith圆图的原理和应用1. 前言Smith圆图是一种用于分析和解决电路中匹配问题的有效工具。
它由英国电气工程师Philip H. Smith于1939年创造,被广泛应用于射频电路、微波电路和天线设计等领域。
本文将介绍Smith圆图的基本原理和其在电路设计中的应用。
2. Smith圆图的基本原理2.1 反射系数和阻抗的关系Smith圆图是基于反射系数和阻抗之间的关系来进行分析的。
在电路中,反射系数表示反射波与入射波之间的关系,它是一个复数,可以用幅值和相位角来表示。
而阻抗则表示电路的负载特性,是一个实数。
Smith圆图将反射系数和阻抗之间的关系以一种直观而又简洁的方式进行了可视化。
2.2 Smith圆图的表示方式Smith圆图以单位圆为基础,将纯虚轴表示为电阻为无穷大的点,将实轴表示为电抗为零的点。
反射系数的值可以通过在Smith圆图上找到相应的点来表示。
例如,反射系数为0时,点位于单位圆的中心,反射系数为1时,点位于单位圆的边缘。
3. Smith圆图的应用3.1 反射系数的测量Smith圆图可以用于测量电路中的反射系数。
通过将电路与信号源和负载连接,可以使用向电路中注入信号的方式来测量反射系数。
通过测量反射系数的幅值和相位角,并将其在Smith圆图上进行标记,可以得到电路的匹配情况。
3.2 阻抗匹配Smith圆图可以帮助我们进行阻抗匹配,即调整电路的参数,以使得电路的输入和输出阻抗相匹配。
在Smith圆图上,我们可以通过移动点的位置来调整电路的参数,直至反射系数最小化。
通过在Smith圆图上定位匹配的点,可以快速找到合适的参数设置。
3.3 确定失配的原因Smith圆图可以帮助我们确定电路中失配的原因。
当电路的反射系数不为零时,可以使用Smith圆图来定位反射点,并判断失配的原因。
例如,如果反射系数位于实轴上,则说明电路存在电抗失配;如果反射系数位于圆心,则说明电路存在电阻失配。
3.4 天线设计Smith圆图在天线设计中也有广泛的应用。
阻抗匹配与史密斯(Smith)圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。
事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
经验:只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。