开关电源干扰耦合的两种方式
- 格式:docx
- 大小:14.61 KB
- 文档页数:1
抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。
根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。
1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。
电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。
电源进线端通常采用如图1 所示的EMI 滤波器电路。
该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。
在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。
而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。
抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。
当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
因此,即使在大负载电流的情况下,磁芯也不会饱和。
而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。
2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。
采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。
可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。
开关电源中常用的几种抑制电磁干扰的措施形成电磁干扰的三要素是干扰源、传播途径和受扰设备。
因而,抑制电磁干扰也应该从这三方面着手。
首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径(见图2);第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。
目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。
常用的方法是屏蔽、接地和滤波。
图1 共模干扰采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。
例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底板上。
器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网传播的途径。
为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。
电源某些部分与大地相连可以起到抑制干扰的作用。
例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。
电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。
因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连.在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。
因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近接到该参考地上。
开关电源产生干扰的四条主要原因1.开关电源本身的电磁干扰:开关电源采用高频开关器件进行开关操作,这会引起较高频率的电流和电压波形,并产生大量的电磁噪声。
这些高频噪声会通过电源线、输入滤波器和输出滤波器等途径进入其他电路和设备,引起干扰。
2.输入电源的电磁干扰:不同的设备可能共享相同的输入电源线路,当一个设备使用开关电源时,其产生的高频电磁噪声会通过共享的电源线路传播给其他设备,从而对它们产生干扰。
3.输出线路干扰:开关电源输出端连接的电源线路和负载线路也可能成为干扰源。
由于开关电源的开关操作会引起电流和电压的突变,这可能会在输出线路中产生较大的尖峰电流和瞬时电压斜率,同时伴随着较高频率的电流波形,进而对连接的负载产生干扰。
4.开关电源引起的电磁互感干扰:由于开关电源中的高频开关操作,其导线和电感元件之间会产生一定强度的电磁场。
当这些元件和其他线路或元件之间存在电磁耦合时,会发生电磁互感干扰。
这种耦合可能发生在电源线、输出线路和周围环境中,通过干扰线路中的电感元件或导线,引起其上产生的感应电流或感应电压,从而产生干扰。
为了减少开关电源产生的干扰,可以采取以下措施:1.优化开关电源的设计:通过合理选择高频开关器件和合适的电源变压器,以减少开关操作时产生的电磁噪声。
2.加强输入滤波:在开关电源的输入端添加滤波电路,能够有效滤除输入电源中的高频噪声,减少其对其他设备的干扰。
3.加强输出滤波:在开关电源的输出端添加输出滤波器,可以滤除输出线路中的高频噪声和尖峰电流,减少对连接设备的干扰。
4.电磁屏蔽措施:对开关电源所在的外壳进行屏蔽处理,防止其产生的电磁辐射波传播到周围环境中。
总之,开关电源产生的干扰主要与其本身设计和工作原理有关,通过合理设计、滤波和屏蔽措施,可以有效减少这些干扰,并保证设备的正常运行。
1 前言电源产品在做验证时,经常会遭遇到电磁干扰(EMI)的问题,有时处理起来需花费非常多的时间,许多工程师在对策电磁干扰时也是经验重于理论,知道哪个频段要对策那些组件,但对于理论上的分析却很欠缺。
笔者从事开关电源设计多年,希望能藉由之前对策的经验与相关理论基础做个整理,让目前正从事或未来想从事开关电源设计的人员对电磁干扰防制技术能有初步的认识。
开关电源的电磁干扰测试可分为传导测试与辐射测试,一般开关电源的传导测试频段是指150K~30MHz之间,而辐射干扰的频段是指30M~300MHz,300MHz之后的频段一般皆不是电源所产生,因此大都可以给予忽略。
下面内容章节包括开关电源的传导测试法规,测试与量测方式,基本概念,抑制传导干扰的滤波器设计,布线与变压器设计等章节。
2 传导测试的法规传导的法规因产品别的不同,其所适用之条文亦不同,一般是使用欧洲的EN-55022或是美国的FCC part15来定义其限制线,又可以区分为CLASS A与CLASS B两种标准,CLASS A为产品在商业与工业区域使用,CLASS B为产品在住宅及家庭区域使用,笔者所设计的产品为3C的家用电源,传导测试频段为150K~30MHz,在产品测试前请先确认申请的安规为何,不同的安规与等级会有不同的标准线。
图1举例为EN-55022CLASS B的限制线图,红色线为准峰值(QP, Quasi-peak)的限制线,粉红色为平均值(AV, Average)的限制线,传导测试最终的目地,就是测试的机台可以完全的低于其限制线,不论是QP值或AV值;一般在申请安规时,虽然只有在限制线下方即可申请,但多数都会做到低于2dB的误差以预防测试场地不同所导致的差异,而客户端有时会要求必需低于4~6dB来预防产品大量生产后所产生的误差。
图1图2图2为一量测后的例子,一般量测时都会先用峰值量测,因峰值量测是最简单且快速的方法,量测仪器以9KHz为一单位,在150K~30MHz之间用保持最大值(maximum hold)的方式来得到传导的峰值读值,用此来确认电源的最大峰值然后再依此去抓最高峰值的实际QP,AV值来减少扫描时间,图2的蓝色曲线为准峰值的峰值量测结果,一般在峰值量测完后会再对较高的6个频率点做准峰值(QP)与平均值(AV)的量测,就如同图2所标示。
详解几种可有效开关电源的电磁干扰抑制方法
目前,许多大学及科研单位都进行了开关电源EMI(Electromagnetic Interference)的研究,他们中有些从EMI 产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。
这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。
开关电源电磁干扰的产生机理
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种,若按耦合通路来分,可分为传导干扰和辐射干扰两种。
现在按噪声干扰源来分别说明:
1、二极管的反向恢复时间引起的干扰
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN 结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰
功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰
无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播。
开关电源的电磁干扰及其滤波措施1引言开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。
但开关电源的突出缺点是产生较强的电磁干扰(EMI)。
EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。
如果处理不当,开关电源本身就会变成一个干扰源。
随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。
2开关电源产生EMI的原理开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。
它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。
基本整流器的整流过程是产生EMI最常见的原因。
这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。
实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。
变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。
它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。
产生这种脉冲干扰的主要原因是:(1) 开关功率晶体管感性负载是高频变压器或储能电感。
在开关管导通的瞬间,变压器初级出现很大的电流,它在开关管过激励较大时,将造成尖峰噪声。
这个尖峰噪声实际上是尖脉冲,轻者造成干扰,重者有可能击穿开关管。
(2) 由高频变压器产生的干扰。
两种开关电源变压器EMC设计方案分享
对于电源变压器的新产品研发环节来说,EMC抗干扰设计是其中非常重要的一环,也是每个工程师都需要严禁对待的设计步骤。
EMC设计方案的设置合理与否,直接关系到开关电源变压器的工作效率和能耗控制。
今天我们将会分享两种实用性较强的电源变压器EMC设计方案,大家一其来看看吧。
在分享电源变压器的EMC设计方案之前,首先我们需要了解的一个概念是,究竟什幺是传导噪声。
在目前电子设备研发领域中,所谓的传导噪声干扰指的是设备在与供电电网连接工作时以噪声电流的形式通过电源线传导到公共电网环境中去的电磁干扰。
在开关电源变压器的实际抗干扰设置中,这种传导干扰又能够细分为共模干扰与差模干扰两种干扰模式。
共模干扰电流在零线与相线上的相位相等,而差模干扰电流在零线与相线上的相位相反。
差模干扰对总体传导干扰的贡献较小,且主要集中在噪声频谱低频端,较容易抑制。
共模干扰对传导干扰的贡献较大,且主要处在噪声频谱的中频和高频频段。
对共模传导干扰的抑制是电子设备传导EMC设计中的难点,也是最主要的任务。
就目前国内的反激式开关电源应用情况来看,大部分的开关电源电路中都会存在一些电压剧变的节点。
和电路中其他电势相对稳定的节点不同,这些节点的电压包含高强度的高频成分。
这些电压变化十分活跃的节点称为噪声活跃节点。
噪声活跃节点是开关电源电路中的共模传导干扰源,它作用于电路中的对地杂散电容就产生共模噪声电流M。
而电路中对EMI影响较大的寄生电容在电路中的分布如图1所示。
解析几种有效开关电源电磁干扰抑制前关于开关电源EMI(Electromagnetic Interference)的研究,有些从EMI产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。
这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。
◆开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时, 由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。
这种通过电磁辐射产生的干扰称为辐射干扰。
4、其他原因元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。
◆开关电源EMI的特点作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。
开关电源干扰耦合的两种方式开关电源干扰耦合有两种方式:传导耦合方式,辐射耦合方式。
传导耦合是骚扰源与敏感设备之间的主要耦合途径之一。
传导耦合必须在
骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从
骚扰源传输电磁骚扰至敏感设备,产生电磁干扰。
按其耦合方式可分为电路性
耦合、电容性耦合和电感性耦合。
在开关电源中,这3种耦合方式同时存在,
互相联系。
1. 电路性耦合
电路性耦合是最常见、最简单的传导耦合方式。
其又有以下几种:
1)直接传导耦合导线经过存在骚扰的环境时,即拾取骚扰能量并沿导线传
导至电路而造成对电路的干扰。
2)共阻抗耦合由于两个以上电路有公共阻抗,当两个电路的电流流经一个
公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另
一个电路,这就是共阻抗耦合。
形成共阻抗耦合骚扰的有电源输出阻抗、接地线的公共阻抗等。
2. 电容性耦合
电容性耦合也称为电耦合,由于两个电路之生的尖峰电压是一种有较大幅
度的窄脉冲,其频间存在寄生电容,使一个电路的电荷通过寄生电容影响到另
一条支路。
3. 电感性耦合
电感性耦合也称为磁耦合,两个电路之间存在互感时,当干扰源是以电源
形式出现时,此电流所产生的磁场通过互感耦合对邻近信号形成干扰。