(代入消元法)教案
- 格式:doc
- 大小:134.50 KB
- 文档页数:6
代入消元法解二元一次方程组教学目标1、会用代入消元法解一些简单的二元一次方程组。
2、理解解二元一次方程组的思路是消元,体会化归思想。
教学重难点教学重点:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元。
教学难点:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。
体会代入消元法和化未知为已知的数学思想。
教学过程设计一、创设情境,提出问题问题1:篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。
设胜x场,负(10-x)场。
根据题意,得2x+(10-x)=16x=6,则胜6场,负4场。
教师追问:你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:能.设胜x场,负y场.根据题意,得我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组.二、互动新授问题2:对比上面的方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个y 都是这个队的负场数,由此可以由一个方程得到y 的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。
师生活动:根据上面分析,你们会解这个方程组了吗?学生回答:会.⎩⎨⎧16 =y +2x 10 =y +x 由①,得y=10-x ③把③代入②,得2x+(10-x)=16x=6问题3:教师追问:你能把③代入①吗?试一试?师生活动:学生回答:不能,通过尝试,x 抵消了.设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。
让学生实际操作,得到体验,更好地认识这一点.教师追问:你能求y 的值吗?师生活动:学生回答:把x=6代入③得y=4教师追问:还能代入别的方程吗?学生回答:能,但是没有代入③简便教师追问:你能写出这个方程组的解,并给出问题的答案吗?学生回答:x=6,y=4,这个队胜6场,负4场设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。
7.2二元一次方程组的解法(代入消元法)教学设计一、教学内容:初中数学华东师大2011课标版七年级下册第七章第二节二元一次方程组的解法。
二、教学目标1、使学生通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而初步体会消元的思想;2、了解把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。
三、教学重难点:重点:用代入消元法解二元一次方程组的解题步骤;难点:如何正确消元。
四、教具、学具准备:教具:课件、电脑投影、导学案等;学具:签字笔、草稿纸、课本等。
五、设计理念这一堂课的学习目标是“探索二元一次方程组的解法”,通过学生身边熟悉的事情,建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的“最近发展区”,愉悦地接受教学活动.这是我备课时的设计意图。
六、教学流程(一)创设情境上课一开始,我就把学生学过的、熟悉的问题提出来,引导学生解答,说:“同学们,在生活中,我们时常遇到这样的问题,你能用前面我们学过的知识解决这个问题吗?问题1:小明到商店购买签字笔和作业本,签字笔价格是作业本价格的2倍,小明购买一支笔和一个作业本共花了6元钱,请你算一算签字笔和作业本的价格分别是多少元?学生活动:独立完成问题1的解答教师活动:通过巡视,发现问题的解答有可能会出现两种,一种是列一元一次方程解,另一种是列二元一次方程解,分别让学生将两种解法写在黑板上。
师:“同学们,黑板上两位同学用了不同的方法来解决这个问题,你认为哪一种方法是正确的呢?那我想请一位同学来说一说这两种方法分别是用到了前面我们学过的什么知识?那列出来的这个二元一次方程组和这个一元一次方程有没有什么联系呢,我们又该如何求解呢?这就是今天我们要一起探讨的内容,请同学们翻开书27页,并熟悉本节课的学习目标。
设计意图:当学生看到自己所学的知识与“现实世界”息息相关时,学习通常会更主动。
“与其拉马喝水,不如让它口渴”。
《代⼊消元法》教学设计【初中数学⼈教版七年级下册】第⼋章⼆元⼀次⽅程组8.2 消元——解⼆元⼀次⽅程组代⼊消元法这节课的主要内容是⽤代⼊消元法解⼆元⼀次⽅程组,本节的知识是反映客观世界数量关系的有效模型,不仅能培养学⽣分析问题和解决问题能⼒的重要内容,也为今后学⽣学习三元⼀次⽅程组埋下伏笔.1.会⽤代⼊消元法解⼆元⼀次⽅程组.2.初步体会解⼆元⼀次⽅程组的基本思想――“消元”.【教学重点】⽤代⼊消元法解⼆元⼀次⽅程组.【教学难点】探索如何⽤代⼊法将“⼆元”转化为“⼀元”的消元过程.师:在8.1节中我们已经看到,直接设两个未知数:胜x场、负y场,可以列⽅程组10216x yx y+=+=①②表⽰本章引⾔中问题的数量关系.如果只设⼀个未知数:胜x场,那么这个问题能⽤⼀元⼀次⽅程来解决吗?(抛出问题引发思考)师⽣活动:教师引出本节课内容,我们在上节课列出了⽅程组,并通过列表找公共解的办法◆教材分析◆教学⽬标◆教学重难点◆教学过程得到了这个⽅程组的解,显然这样的⽅法需要⼀个个尝试,有些⿇烦,所以这节课我们就来探究如何解⼆元⼀次⽅程组.⼆、探究新知⽣:……2x+(10-x)=16师:思考⼀下,上⾯的⼆元⼀次⽅程组和⼀元⼀次⽅程有什么关系?(让学⽣⽐较①与②之间的关系,y ⽤x 表⽰,感受换元思想在消元中的作⽤)师:那么怎样求解⼆元⼀次⽅程组呢?上⾯的⼆元⼀次⽅程组和⼀元⼀次⽅程的关系⼤家⼀定有了深刻的认识.下⾯我们来学习如何利⽤“代⼊消元”法解⼆元⼀次⽅程组.师⽣活动:通过对实际问题的分析,认识⽅程组中的两个⽅程中的y 都是这个队负的场数,具有相同的实际意义.因此可以由⼀个⽅程得到y 的表达式,并把它代⼊另⼀个⽅程,从⽽把⼆元⼀次⽅程组转化为⼀元⼀次⽅程.先求出⼀个未知数,再求另⼀个未知数.教师总结:这种将未知数的个数由多化少、逐⼀解决的思想,叫做消元思想.三、应⽤新知师:⾸先请⼤家花3分钟预习⼀下例1,学习如何⽤代⼊法解⼆元⼀次⽅程组.(预留时间)师:哪位同学把你学习到的⽅法与⼤家分享⼀下?⽣:……(让学⽣充分的表达⾃⼰的观点)教师总结并板书演⽰:解:由①,得x=y+3 ①把①代⼊①,得3(3)814y y +-=解这个⽅程,得y=-1把y=-1代⼊①,得x=2所以这个⽅程组的解是21x y =??=-? 例2 根据市场调查,某种消毒液的⼤瓶装(500g )和⼩瓶装(250g )两种产品的销售数量(按瓶计算)⽐为2:5.某⼚每天⽣产这种消毒液22.5t ,这些消毒液应该分装⼤、⼩瓶两种产品各多少瓶?(幻灯⽚出⽰问题)师:请同学们分析⼀下这个问题.并思考这个问题中有哪些重要的关系.这些关系对你有什么启发?⽣:……师⽣共同总结:问题中包含两个条件:①⼤瓶数:⼩瓶数=2:5②⼤瓶所装消毒液+⼩瓶所装消毒液=总⽣产量.通过这两组关系我们可以知道由两个未知得量,可以分别⽤字母设出来列⼀个⼆元⼀次⽅程组.师:那么这个问题得步骤该如何完善呢?由哪位同学能⾛上讲台,在⿊板上演⽰⼀下你得解题过程呢?(对学⽣得每⼀个步骤给与相应评价)教师出⽰过程:解:设这些消毒液应该分装x ⼤瓶、y ⼩瓶.根据⼤、⼩瓶数的⽐,以及消毒液分装量与总⽣产量的数量关系,得52 50025022500000 x y x y ?=??+=??①②由①,得52y x = ③把③代⼊②,得5500250225000002x x +?= 解这个⽅程,得20000x =把20000x =代⼊③,得50000y =所以这个⽅程组的解是2000050000x y =??=?答:这些消毒液应该分装20000⼤瓶和50000⼩瓶⿎励同学们提出不同得解题⽅法,例如⽤y 表⽰x 消去x.若没有同学消x ,⽼师可⾃⼰提出来让学⽣思考.设计意图:分析解题思路,并对⽐、确定消哪⼀个元计算更简捷.使学⽣再次经历代⼊法解⼆元⼀次⽅程组的过程,让学⽣体会程序化思想.四、巩固练习1.把下列⽅程写成⽤含x 的式⼦表⽰y 的形式:(1)2x -y =3 (2)3x +y -1=0(3)5x-3y = x + y (4)-4x+y = -22.解下列⽅程组:3:215x y x y =??+=?2524x y x y +=??+=?(给学⽣充分得时间分享⾃⼰得练习成果)五、课堂⼩结:本节课你学习到了哪些新的知识?①代⼊法的基本思路(⼆元变⼀元);②主要步骤:将其中的⼀个⽅程中的某个未知数⽤含有另⼀个未知数的代数式表现出来,并代⼊另⼀个⽅程中,从⽽消去⼀个未知数,化⼆元⼀次⽅程组为⼀元⼀次⽅程.略.◆教学反思◆。
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
8.2 代入消元法教学目标1、会用代入法解二元一次方程组。
2、初步体会解二元一次方程组的基本思想——“消元”。
3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。
重点:代入消元法解简单的二元一次方程组;难点:体会解二元一次方程组的思路是“消元;教学过程一、创设情境,引入课题根据篮球比赛规则:赢一场得2分,输一场得1分.在某次篮球联赛中,七(1)班, 打完22场比赛后积40分,问该球队赢了多少场?输了多少场?二、目标导学,探索新知目标导学1:掌握代入消元法的解题步骤问题1你能根据问题中的等量关系列出二元一次方程组吗?问题2这个实际问题能列一元一次方程求解吗?解:设胜x场,则负(22-x)场.2x +(22-x)=40.问题3对比方程和方程组,你能发现它们之间的关系吗?活动1把下列方程改写成用含有一个未知数的代数式表示另一个未知数的形式:【教学备注】逐步探究中规范解法,总结代入法的解题步骤。
【教学提示】在含有一个未知数的式子表示另一个未知数可先示范一例,其他学生完成。
消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的思想叫做.代入消元法:上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
用代入法解二元一次方程组的一般步骤变:1、将方程组里的一个方程变形,用含有一个未知数的式子表示另一个未知数;代:2、用这个式子代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;求:3、把这个未知数的值代入上面的式子,求得另一个未知数的值;写:4、写出方程组的解。
学习目标2:利用代入消元法解题1.用代入法解下列二元一次方程组三、巩固训练,熟练技能1.用代入法解方程组)()(2634152yx yx ,先把方程-(1)--变为-----------,在代入方程------,求得------的值,然后再求-------的值。
一、教案基本信息代入消元法解方程组的教案及说课稿学科领域:数学年级:八年级课时:2课时教学目标:1. 理解代入消元法的概念和意义;2. 学会运用代入消元法解二元一次方程组;3. 提高解决实际问题的能力。
教学内容:1. 代入消元法的定义和步骤;2. 代入消元法在解二元一次方程组中的应用。
二、教学过程第一课时1. 导入:通过复习一元一次方程的解法,引出代入消元法的概念。
2. 新课讲解:(1)介绍代入消元法的定义和意义;(2)讲解代入消元法的步骤;(3)通过例题演示代入消元法的运用。
3. 课堂练习:让学生独立完成练习题,巩固代入消元法的应用。
4. 总结:对本节课的内容进行总结,强调代入消元法的步骤和注意事项。
第二课时1. 复习导入:回顾上节课的内容,引出本节课的主题。
2. 课堂讲解:(1)讲解代入消元法在解二元一次方程组中的应用;(2)通过例题展示解题过程,让学生掌握解题方法。
3. 课堂练习:让学生独立完成练习题,进一步巩固代入消元法的应用。
4. 拓展提高:提出一些实际问题,引导学生运用代入消元法解决问题。
5. 总结:对本节课的内容进行总结,强调代入消元法在实际问题中的应用。
三、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习状态。
2. 练习完成情况:检查学生完成练习题的数量和质量,评价学生对代入消元法的掌握程度。
3. 实际应用:观察学生在解决实际问题时的表现,评价学生运用代入消元法解决问题的能力。
四、教学反思1. 讲解代入消元法时,要清晰地阐述每一步骤,让学生易于理解;2. 举例时要选择具有代表性的题目,便于学生模仿和掌握;3. 课堂练习环节,要关注学生的解题过程,及时发现并纠正错误;4. 在解决实际问题时,引导学生运用代入消元法,提高学生的应用能力。
五、课后作业1. 复习代入消元法的步骤和应用;2. 完成课后练习题,巩固代入消元法的运用;六、教学策略1. 案例教学:通过具体的例题,让学生理解代入消元法的原理和步骤。
代入消元法教案人教版第31篇一、教材依据人民教育出版社七年级数学下册第八章第二节第一课时二、设计思想代入消元法解二元一次方程组是在学生理解二元一次方程组的概念及会解一元一次方程的基础上进行的,求二元一次方程组的解关键是化二元方程为一元方程,因而在教学中首先复习二元一次方程组的相关概念及解一元一次方程,再随势引入新课。
教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。
同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。
三、教学目标知识与能力:通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地运用“代入消元法”解方程组。
过程与方法:通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力。
情感态度与价值观:培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛应用,增强学生学习数学的信心。
四、教学重点根据二元一次方程组的情况,能恰当地运用“代入消元法”解方程组。
五、教学难点用代入的方法实现对消元思想的理解,用恰当的方法将二元方程组转化成一元方程。
六、教学方法:引导发现法、谈话讨论法、练习法、尝试指导法。
七、教学具准备:电脑、投影仪。
八、教学过程(一)复习教师展示:温故而知新1、什么叫二元一次方程、二元一次方程组、二元一次方程组的解?2、已知方程x-2y=8,用含x的式子表示y,则y =_________________,用含y的式子表示x,则x =________________(二)情境导课教师出示情境:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?学生根据情境,思考并练习。
初一数学教学设计
消元——二元一次方程组的解法(代入消元法)
教学设计思路
在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
教学目标
1.知识目标
通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地应用“代入消元法”解方程组;
会借助二元一次方程组解简单的实际问题;
提高逻辑思维能力、计算能力、解决实际问题的能力。
2.能力目标
通过大量练习来学习和巩固这种解二元一次方程组的方法。
3.情感目标
体会解二元一次方程组中的“消元”思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。
由此感受“划归”思想的广泛应用。
教学重点难点疑点及解决办法
重点是用代入法解二元一次方程组。
难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。
疑点是如何“消元”,把“二元”转化为“一元”。
解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。
教学方法:
引导发现法,谈话讨论法,练习法,尝试指导法
教学过程
从特殊到一般的认识过程。
所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解它。
归纳
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。
这种方法叫做代入消元法,简称代入法[4]
[4]这是对代入法的基本步骤的概括,代入法通过“把一个方程(必要时先做适当变形)代入另一个方程”进行等量替换,用含一个未知数的式子表示另一个未知数,从而实现消元。
同桌交流
学习
学生归纳
展示交流
成果
其他同学
倾听,理
解
教师总结
学生倾听
和理解概
念
总结消元思想。
对概念进行深
入的了解
及时强调让学
生对新知识掌
握得更加完整。
(三)例题教学
例1 用代入法解方程组
分析:方程①中x的系数是1,用含y的式子表示x,比
较简便。
解:由①,得x=y+3。
③
把③代入②,得 ([5]把③代入①可以吗?试试看。
) 3(y十3)一8y=14。
解这个方程,得y=一1。
把y=-l代入③,得 ([6]把y=-1代入①或②可以吗?) x=2
所以这个方程组的解是
[5]由于方程③是由方程①得到的,所以它只能代入方程
②,而不能代入①。
为使学生认识到这一点,可以让其试试把
③代入①会出现什么结果。
[6]得到一个未知数的值后,把它代入方程①②③都能得
到另一个未知数的值。
其中代入方程③最简捷。
为使学生认识到这一点,可以让其试试各种代入法。
思考
独立完成
老师与个
别学生互
动适时指
导
同桌交流
选同学分
析和回答
解题过程
同学回答
正确适当
表扬后提
问[5]
[6]学生
尝试并给
出回答
培养学生思考
及解决问题的
能力
检验学生对知
识的掌握程度。
通过总结,再次
加深学生对知
识的掌握程度,
给学生充分发
挥的空间。
(八)板书设计
消元(一) 代入消元法的概念 例题解题步骤
3.用代入法解下列方程组
(1)⎩⎨⎧=+=5
22x y x y
(六)小结
1.解二元一次方程组的思想:
2.用代入法解二元一次方程组的解题步骤。
3.用代入法解二元一次方程组的技巧:
①变形的技巧; ②代入的技巧.
通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确. 【当堂测试】
1、已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________.
2、已知2316
x mx y y x ny =-=⎧⎧⎨⎨
=--=⎩⎩是方程组的解,则m=_______,n=______. 3、在方程2x +5y =8中,如果5y=10,则x=_______,y=_______. 4、用代入法解下列方程组 (1)⎩⎨⎧=+=522x y x y (2) ⎩
⎨⎧=-=+93112y x y x
集全评议 动手实践 独立完成 交流答案 谈谈本节课的收获
学生独立
完成,下
课后交
上,老师当天批改,学生
当天订
正。
培养学生思考及解决问题的能力。
巩固检验对知识的理解
体现本节课的主要内容和思想方法
对已学知识进行实际的运用,真正达到熟能生巧。
① ②
① ②
教学设计§6﹒3解二元一次方程组第一课时
————代入消元法
2012-2-29
初一数学组。