《27.3 位似(第2课时)》教学设计-人教九下优质课精品
- 格式:doc
- 大小:105.00 KB
- 文档页数:5
教学过程设计对应点连线都交于位似中心,对应线段平行或在一条直线上.
二、自主探究
1.如图,在平面直角坐标系
中,有两点A(6,3),B(6,0).以
A(2,3),B(2,1),C(6,2),以点O
,将△ABC放大,观察对应顶点坐标的
位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.在平面直角坐标系中,用图形的坐标的变化来表示图形的位似变换的关键是要确定位
四、课堂小结
1.掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化
的规律.
3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在
复杂图形中找出这些变换.
38
用心爱心专心 2
用心爱心专心 3。
27.3位似位似(第2课时)学习目标1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.学习过程一、自主预习1.在前面我们学习了哪些图形的变换?答:2.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2).(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1,B1,C1三点的坐标:.(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2,B2,C2的坐标:.(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3,B3,C3三点的坐标:.二、新知探究【探究1】(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为1,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?归纳总结:位似变换中对应点的坐标的变化规律:【探究2】用另一种方法完成课本P49例题.解:【探究3】在如图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?答:三、尝试应用1.已知△ABO的顶点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F坐标.解:2.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.解:四、总结反思1.位似变换中对应点坐标的变化规律是什么?答:2.平移、轴对称、旋转和位似四种图形变换有什么不同点?答:评价作业【基础巩固】1.(8分)将平面直角坐标系中某个图案的各点坐标作如下变化,其中属于位似变换的是()A.将各点的纵坐标乘2,横坐标不变B.将各点的横坐标乘2,纵坐标不变C.将各点的横坐标、纵坐标都乘2D.将各点的纵坐标都减2,横坐标都加22.(8分)如图所示,在平面直角坐标系中,以原点为位似中心,将△AOB扩大为原来的2倍,得到△OA'B'.若点A的坐标是(1,2),则点A'的坐标是()A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)3.(8分)如图所示,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为1,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)4.(8分)在平面直角坐标系中,已知E(-4,2),F(-2,-2),以原点O为位似中心,相似比为1,把△EFO缩小,则点E的对应点E'的坐标是()A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)5.(8分)如图所示的是△AOB和△COD,它们是位似图形,则△COD与△AOB的相似比是.6.(8分)△ABO的顶点坐标分别为A(-3,3),B(3,3),O(0,0),试将△AOB缩小为△A'OB',使△A'B'O与△ABO的相似比为1∶2,且A与A'在O点同侧,则A'点的坐标为,B'点的坐标为.7.(8分)如图所示,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则E点的坐标为.8.(8分)某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示),则小鱼上的点(a,b)对应大鱼上的点是.9.(8分)如图所示的平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△AB'O'是△ABO关于A的位似图形,且O'的坐标为(-1,0),则点B'的坐标为.10.(12分)如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;=(不写解答过程,直接写出结(3)求△A1B1C1与△A2B2C2的面积比,即△111△果).11.(16分)如图所示的△ABC中,BC=1,AC=2,∠C=90°.(1)在图(1)中,画△A'B'C',使△A'B'C'∽△ABC,且相似比为2∶1;(2)若将(1)中△A'B'C'称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在图(2)中设计一个以点O为对称中心,并且以直线l为对称轴的图案.参考答案学习过程一、自主预习1.答:有平移、轴对称、旋转等2.(1)A1(-1,3)B1(-1,1)C1(3,2)(2)A 2(2,-3)B 2(2,-1) C 2(6,-2)(3)A 3(-2,-3) B 3(-2,-1) C 3(-6,-2) 二、新知探究 【探究1】归纳总结:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形与原图形对应点的坐标比等于k 或-k.【探究2】解:如图所示,把A ,B ,O 的坐标分别乘-,得到A″(3,-6),B″(3,0),O (0,0),顺次连接A″,B″,O ,所得到的△A″B″O 就是另一个图形.【探究3】解:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形……三、尝试应用1.解:∵A (-1,4),B (3,2),O (0,0),∴以O 点为位似中心,相似比为2.5,将△ABC 放大,则它的对应顶点E 和点F 坐标是:(-2.5,10),(7.5,5)或(2.5,-10),(-7.5,-5).2.解:观察图形可知,变化后的三角形各顶点的坐标等于变化前三角形各顶点坐标的5,因此其相似比为5,面积比为95.四、总结反思1.答:一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k ,那么与原图形上的点(x ,y )对应的位似图形上的点的坐标为(kx ,ky )或(-kx ,-ky ).2.答:图形经过平移、旋转、轴对称后,图形的位置虽然改变了,但是图形的大小和形状没有改变,即两个图形是全等的;而图形经过位似变换后,图形是相似的.评价作业1.C2.C3.A4.D5.3∶56. -7.( )8.(-2a,-2b)9.5-410.解:(1)如图所示的△A1B1C1即为所求.(2)如图所示的△A2B2C2即为所求.(3)1∶411.解:答案不唯一.(1)如图(1)所示. (2)如图(2)所示.。
27.2 位似(2)教学内容本节课主要学习27.2.3平面直角坐标系下的位似变换教学目标知识技能会用图形的坐标的变化来表示图形的位似变换.数学思考在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.解决问题利用图形的位似解决一些简单的实际问题,并在有关的学习和运用过程中发展学生的数学应用意识,发展初步的演绎推理能力。
情感态度进一步培养学生动手操作的良好习惯。
重难点、关键重点:用图形的坐标的变化来表示图形的位似变换难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律关键:探究出位似变换中对应点的坐标的变化规律教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、情景引入1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2).(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点的坐标;(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.【活动方略】教师提出问题;学生思考,回答问题.【设计意图】以旧引新,帮助学生建立新旧知识间的联系.二、 探索新知探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为31,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k例1如图,四边形ABCD 的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O 为位似中心,相似比为 21的位似图形分析:问题的关键是要确定位似图形各个顶点的坐标.根据前面的规律,点A的对应点A’的坐标为:即A’(-3,3),类似地,可以确定其它顶点的坐标.解:解:如图,利用位似变换中对应点的坐标的变化规律,分别取点AA’(-3,3),B’(-4,1),C’(-2,0),D’(-1,2).依次连接点A’、B’、C’、D’四边形A’B’C’D’就是要求的四边形ABCD的位似图形.【活动方略】教师出示问题;学生小组讨论,归纳出有效的方法,并动手实践。
人教版数学九年级下册27.3《位似》教学设计(二)一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似图形、相似比等概念的基础上进一步学习的知识。
本节内容主要介绍位似的定义、性质和运用。
通过本节课的学习,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对相似图形、相似比等概念有一定的了解。
但在学习本节课时,学生可能对位似的理解存在一定的困难,因此需要通过大量的实例和练习来帮助学生理解和掌握位似。
三. 教学目标1.知识与技能:理解位似的定义,掌握位似的性质,能够运用位似解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:位似的定义和性质。
2.难点:位似在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和几何模型,引导学生观察、操作、思考,激发学生的学习兴趣。
2.合作学习法:引导学生分组讨论和交流,培养学生的团队合作意识和几何思维能力。
3.问题解决法:通过解决实际问题,引导学生运用位似知识,提高学生的问题解决能力。
六. 教学准备1.教学课件:制作课件,包括位似的定义、性质和实例等。
2.几何模型:准备一些几何模型,如正方形、矩形等,用于引导学生观察和操作。
3.实际问题:准备一些实际问题,如建筑设计、地图绘制等,用于引导学生运用位似知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如建筑设计、地图绘制等,引导学生思考这些问题与位似的关系。
2.呈现(10分钟)利用课件呈现位似的定义和性质,引导学生观察和理解。
同时,配合几何模型,让学生直观地感受位似的特点。
3.操练(10分钟)分组讨论和交流,让学生通过操作几何模型,探索位似的性质。
“自学互帮导学法”课堂教学设计新授课修改意见课题位似(2)课时 1 课型教学目标1.巩固位似图形及其有关概念.无2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.教学重点用图形的坐标的变化来表示图形的位似变换.无教学难点把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.无学情分析无学法指导小组探究讨论、合作交流,类比学习无教学过程教学环节教师活动学生活动效果预测(可能出现的问题)设计意图情境引入合作学习,探索新知识例复习回顾1.什么叫位似图形?2.位似图形的性质3.位似图形与中心对称图形有何关系?4.利用位似可以把一个图形放大或缩小提问:如何把三角形ABC放大为原来的2倍?探索1:在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,位似比为3:1,把线段AB缩小.[.Com]在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为3:1,把线段AB缩小.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图独立思考后表达交流,得出结论对应点连线都交于________对应线段以小组为单位先猜想,再通过合作探究,得出结论后表达交流先独立思考,再以小组为单位先猜想,再通过合作探究,得出结论后表达交流并对其判定进行数学语言表。
让学生把刚学到的知识在应用的我过程中得到熟悉,并理解数学来源于实际,是用来解决实际问题的题分析,巩固新师生互动,归纳小结形对应点的坐标的比等于k或-k.练一练:1.如图表示△ABC把它缩小后得到的△COD,求它们的相似比2.如图△ABC的三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.[.Com]小结:收获与疑惑示小组合作探究得出解决问题的办法,并进行验证独立思考完成从知识、方法、情感态度等方面谈收获,谈体会,并结合本节教学目标,发现在学习中学会了什么,还存在哪些问题。
27.3位似(第2课时)
一、内容和内容解析
1.内容
在平面直角坐标系中,以原点为位似中心的位似图形(有一个顶点为原点、有一条边在横坐标轴上)的对应点的坐标之间的关系.
2.内容解析
相似与轴对称、平移、旋转一样,也是图形之间的一种变换,学生在前面学过轴对称、平移的坐标表示.位似是一种特殊的相似,位似图形对应点的坐标也存在一定的规律.研究这种规律,可以借助数加强对形的理解,同时渗透用代数方法研究几何变换的思想.教科书通过作线段AB和△AOC的以原点为位似中心的位似图形,总结出了位似图形对应点的坐标之间的关系.运用这个关系,在平面直角坐标系中可准确地作出一个图形的位似图形,体现数形结合的思想.
基于以上分析,确定本节课的教学重点是:探究在平面直角坐标系中,以原点为位似中心的位似图形对应点的坐标之间的关系.
二、目标和目标解析
1.教学目标
(1)了解在平面直角坐标系中,以原点为位似中心的位似图形的对应点的坐标之间的关系.
(2)利用平面直角坐标系中,以原点为位似中心的位似图形的对应点的坐标之间的关系作位似图形.
2.目标解析
达成目标(1)的标志是:给出一个图形上的一点,会写出它的以原点为位似中心的位似图形的对应点的坐标.
达成目标(2)的标志是:会用描点法画出以原点为位似中心的已知图形的一个位似图形.
三、教学问题诊断分析
这节课是位似的第二课时,学生不难在平面直角坐标系中画出以原点为位似中心的已知图形的一个位似图形,但可能遗漏了另一种情形.画出位似图形后,学生可能不容易发现变化前后图形的对应点的坐标之间的关系.
本节课的教学难点是:探究平面直角坐标系中,以原点为位似中心的位似图形的坐标之间的关系.
四、教学过程设计 1.回顾旧知,类比引入
问题1 如图1,△ABC 三个顶点坐标分别为A (2,3),B (2,1),C (6,2). (1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1,B 1,C 1三点的坐标; (2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2,B 2,C 2的坐标; (3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3,B 3,C 3三点的坐标.
师生活动:学生自主解答.教师指出:在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换.相似也是一种图形变换,一些特殊的相似(如位似)也可以用两个图形坐标之间的关系来表示.
设计意图:通过实例,回顾平移、轴对称、旋转(中心对称)等变换的坐标表示,体会数与形的联系,激发学生探究用坐标的变化规律表示位似的兴趣.
2.作图观察,发现新知
问题2 (1)如图2,在平面直角坐标系中,有两点A (6,3),B (6,0).以原点O 为位似中心,相似比为
3
1
,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现? (2)如图3,△ABC 三个顶点坐标分别为A (4,4),O (0,0),C (5,0),以点O 为位似中心,相似比为2,将△AOC 放大.观察对应顶点坐标的变化,你有什么发现?
图1
师生活动:(1)学生先自主探究解答,教师再组织学生交流.教师及时引导,关注学生能否作出两种情形的图形,能否发现变换前后图形的对应点坐标之间的关系.
(2)教师用《几何画板》对相似比取任意k (k >0)时,位似图形对应点坐标之间的关系进行演示,从而引导学生发现规律:在平面直角坐标系中,如果以原点为位似中心,新图形与旧图形的相似比为k ,那么与原图形上的点(x ,y )对应的新图形上的点的坐标为(k x ,
k y )或(-k x ,-k y ).
设计意图:先通过作图,写出对应点的坐标,让学生总结特殊图形发生位似变换后的坐标变化规律;再通过《几何画板》的形象演示,引导学生总结更一般化的规律.使学生经历从特殊到一般的认知过程.
3.典例示范,应用新知
例 如图4,△ABO 的三个顶点的坐标分别为A (-2,4),B (-2,0),O (0,0).以原点O 为位似中心,画出一个三角形,使它与△ABO 的相似比为
2
3.
师生活动:学生自主完成,教师关注学生解答此题的方法,一种是用几何法做,一种是用代数法(即根据规律,找出位似图形各个顶点的坐标,再描点画图).教师组织学生交流两种做法,比较哪一种方法更为简便.
图2
图3
图4
设计意图:通过典型例题,加深学生对位似图形对应点的坐标之间的关系的认知.让学生切实感受到运用新知解决问题的简便性,从而获得成就感.
4.习题精练,巩固新知 教科书第50页练习第1,2题. 师生活动:学生自主解答,师生点评.
设计意图:通过练习,进一步巩固本节课所学内容. 5.反思盘点,整合新知
教师和学生一起回顾本节课的学习,请学生回答下列问题: (1)以原点为位似中心的位似图形对应点的坐标有什么关系? (2)用坐标表示位似图形的对应点时要注意什么?
设计意图:引导学生对本节课的知识进行小结,完善知识结构. 6.布置作业
教科书习题27.3第3,5题. 五、目标检测设计
1.如图,表示△AOB 和把它放大后得到的△COD ,则△AOB 与△COD 的相似比为( ).
A .2∶5
B .5∶2
C .2∶3
D .3∶2
设计意图:考查平面直角坐标系中的位似变换.
2.在平面直角坐标系中,把△ABC 以原点O 为位似中心放大,得到△A'B'C'.若点A 和它的一个对应点A'的坐标分别为(2,5),(-6,-15),则△ABC 与△A'B'C'的相似比为( ).
A .3
B .
3
1 C .3- D .3
1-
设计意图:考查位似变换中坐标的变化规律.
3.在平面直角坐标系中,△ABC 顶点A 的坐标为(2,3),若以原点O 为位似中心,画
(第4题)
(第1题)
△ABC 的位似图形△A'B'C',使△ABC 与△A'B'C'的相似比等于3
2
,则点A'的坐标为 ( ).
A .(
3
4
,6) B .(-3
4
,-6) C .(3,
29)或(-3,-2
9) D .(
34,6)或(-3
4
,-6) 设计意图:考查位似变换中坐标的变化规律.
4.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上.如果△OA'B'与△OAB 关于点O 位似,且△OA'B'的面积等于△OAB 的面积的4
1
,那么点B'的坐标是 .
设计意图:结合相似三角形面积的比与相似比的关系,考查位似变换中坐标的变化规律.。