化工原理——干燥
- 格式:doc
- 大小:287.50 KB
- 文档页数:7
化工原理干燥实验化工原理中,干燥是一项重要的工艺过程,在化工生产中具有广泛的应用。
干燥是指将物料中的水分蒸发或者挥发出去的过程,以达到降低物料含水量的目的。
干燥实验是化工原理课程中的重要实践环节,通过干燥实验,可以了解不同干燥方法的原理和特点,掌握干燥过程中的关键参数及其影响规律,为工业生产中的干燥操作提供理论依据和实践指导。
一、实验目的。
本次干燥实验的目的是通过对不同物料进行干燥实验,掌握不同干燥方法的原理和特点,了解干燥过程中的关键参数及其影响规律,提高学生对化工原理的理论认识和实践操作能力。
二、实验原理。
干燥是通过热量传递,使物料中的水分蒸发或者挥发出去的过程。
常见的干燥方法包括自然风干、日晒干、空气干燥、真空干燥、喷雾干燥等。
不同的干燥方法适用于不同的物料和工艺要求,具有各自的特点和适用范围。
三、实验步骤。
1. 准备不同物料样品,如粉状物料、颗粒状物料、纤维状物料等。
2. 分别采用自然风干、日晒干、空气干燥、真空干燥、喷雾干燥等不同干燥方法进行实验,记录每种干燥方法的操作步骤和关键参数。
3. 观察并记录不同干燥方法下物料的干燥效果,包括干燥时间、干燥后的含水量、物料的外观和质地等。
4. 分析比较各种干燥方法的优缺点,总结不同干燥方法适用的物料范围和工艺要求。
四、实验数据记录与分析。
在实验中,我们记录了不同干燥方法下物料的干燥效果数据,并进行了分析比较。
通过实验数据的记录与分析,我们可以得出不同干燥方法的优缺点,了解不同干燥方法适用的物料范围和工艺要求,为工业生产中的干燥操作提供理论依据和实践指导。
五、实验结论。
通过本次干燥实验,我们掌握了不同干燥方法的原理和特点,了解了干燥过程中的关键参数及其影响规律。
同时,我们也对不同干燥方法的优缺点有了更深入的理解,可以根据物料的特性和工艺要求选择合适的干燥方法。
这对于化工生产中的干燥操作具有重要的指导意义。
六、实验注意事项。
1. 在进行干燥实验时,应严格按照操作规程进行,注意安全防护。
化工原理干燥概念的理解
干燥是将湿物质中的水分去除,使其达到一定的干燥程度的过程。
化工原理中的干燥通常通过热风、真空、压缩空气等方式进行。
在干燥过程中,湿物质中的水分会被蒸发并转化为水蒸气,然后通过不同的方式将水蒸气从湿物质中分离出来。
干燥的目的是降低湿物质的水分含量,可以提高其质量稳定性、延长保存期限、改善物质的加工性能等。
干燥的方式可以根据具体的工艺要求和物质特性来选择。
常见的干燥方式包括:
1. 热风干燥:通过提供热风,使湿物质中的水分蒸发,然后将水蒸气带走。
热风干燥常用于湿物质的表面干燥,如烘干机、烘箱等设备。
2. 真空干燥:在低压环境下进行干燥,可以降低水分的沸点,快速将水分转化为水蒸气并抽走。
真空干燥适用于对热敏物质的干燥,如药品、食品等。
3. 压缩空气干燥:通过经过冷凝和膨胀等处理,使湿空气中的水分冷凝成水,并将其分离出来。
压缩空气干燥广泛应用于工业生产中对空气质量的要求,如气体净化、压缩空气干燥等。
化工干燥过程中的关键参数包括干燥温度、湿物质的水分含量和湿物质的性质等。
不同的物质要求不同的干燥方式和工艺参数,以达到最佳的干燥效果。
第六章干燥第一节概述在化工生产中有许多原料、半成品或产品是固体物料。
固体物料在去湿前与湿分(水或其它液体,多为水分)形成悬浮液、糊状体或胶状物。
为了使这些物料便于进一步的加工、运输和使用,往往需要将湿分从物料中除去,这种除去湿分的操作称为去湿。
例如:药物,食品中去湿,以防失效变质,中药冲剂,片剂,糖,咖啡等去湿(干燥) 塑料颗粒若含水超过规定,则在以后的注塑加工中会产生气泡,影响产品的品质。
一、工业去湿方法1、机械脱水:沉降或过滤,该法实质上是固、液相的分离过程。
湿分不发生相变,能耗少,费用低,但湿分去除不彻底,只适用于物料间大量水分的去除,一般用于初步去湿,为进一步干操作准备。
2、物理除湿:用吸湿性较强的化学药品(如无水氯化钙、苛性纳等)或吸附剂(如分于筛、硅胶等)来吸收或吸附物料中水分,该法适用于除少量湿分。
3、干燥:通过加热汽化去除湿分。
借助于热能,使物料中的湿分汽化,并将产生的蒸汽加以排除或带离物料。
去湿过程中湿分发生相变,耗能大,费用高,但湿分去除较为彻底,可去除物料表面以致内部的湿分。
通常的做法是先采用机械脱水除去大部分水分,再用干燥的方法将物料中少量的水分除去以达到产品的要求。
因此,干燥技术在工业上得到广泛的应用。
二、干燥过程分类1、按操作压强来分:(1)常压干燥:多数物料的干燥采用常压干燥(2)真空干燥:适用于处理热敏性,易氧化或要求产品含湿量很低的物料(实验室用的真空干燥箱、真空干燥器)2、按操作方式来分:(1)连续式:湿物料从干燥设备中连续投入,干品连续排出特点:生产能力大,产品质量均匀,热效率高和劳动条件好。
(2)间歇式:湿物料分批加入干燥设备中,干燥完毕后卸下干品再加料如烘房,适用于小批量,多品种或要求干燥时间较长的物料的干燥。
3、按供热方式来分:分为传导干燥,对流干燥和辐射干燥传导干燥:热能通过传热壁面以传导的方式传给湿物料,使其中的水分汽化,然后,所产生的蒸汽被干燥介质带走,或用真空泵抽走的干燥操作过程。
第九章干燥本章学习要求1.熟练掌握的内容湿空气的性质及其计算;湿空气的湿度图及其应用;连续干燥过程的物料衡算与热量衡算;恒定干燥条件下的干燥速率与干燥时间计算。
2.理解的内容湿物料中水分的存在形态及其;水分在气-固两相间的平衡关系;干燥器的热效率;各种干燥方法的特点;对干燥器的基本要求。
3.了解的内容常用干燥器的主要结构特点与性能;干燥器的选用。
* * * * * * * * * * * *§9.1 概述干燥是利用热能除去固体物料中湿分(水分或其它液体)的单元操作。
在化工、食品、制药、纺织、采矿、农产品加工等行业,常常需要将湿固体物料中的湿分除去,以便于运输、贮藏或达到生产规定的含湿率要求。
例如,聚氯乙烯的含水量须低于0.2%,否则在以后的成形加工中会产生气泡,影响塑料制品的品质;药品的含水量太高会影响保质期等。
因为干燥是利用热能去湿的操作,能量消耗较多,所以工业生产中湿物料一般都采用先沉降、过滤或离心分离等机械方法去湿,然后再用干燥法去湿而制得合格的产品。
一、固体物料的去湿方法除湿的方法很多,化工生产中常用的方法有:1.机械分离法。
即通过压榨、过滤和离心分离等方法去湿。
耗能较少、较为经济,但除湿不完全。
2.吸附脱水法。
即用干燥剂(如无水氯化钙、硅胶)等吸去湿物料中所含的水分,该方法只能除去少量水分,适用于实验室使用。
3.干燥法。
即利用热能使湿物料中的湿分气化而去湿的方法。
该方法能除去湿物料中的大部分湿分,除湿彻底。
干燥法耗能较大,工业上往往将机械分离法与干燥法联合起来除湿,即先用机械方法尽可能除去湿物料中的大部分湿分,然后再利用干燥方法继续除湿而制得湿分符合规定的产品。
干燥法在工业生产中应用最为广泛,如原料的干燥、中间产品的去湿及产品的去湿等。
二、干燥操作方法的分类1、按操作压强分为常压干燥和真空干燥。
真空干燥主要用于处理热敏性、易氧化或要求产品中湿分含量很低的场合。
2、按操作方式分为连续操作和间歇操作。
化工原理实验报告干燥化工原理实验报告:干燥概述:干燥是化工过程中常见的一种操作,用于除去物料中的水分或其他溶剂,以提高产品质量或满足后续工艺的需要。
本实验旨在探究干燥的原理及其在化工工艺中的应用。
一、干燥的原理干燥是通过将物料暴露在适当的条件下,使水分或其他溶剂从物料中蒸发出来,达到去除水分的目的。
常见的干燥方法包括自然干燥、加热干燥、真空干燥等。
1. 自然干燥自然干燥是将物料暴露在自然环境下,利用自然界的温度、湿度和风力等因素,使水分逐渐蒸发。
这种方法操作简单,但速度较慢,且受环境因素的影响较大。
2. 加热干燥加热干燥是通过加热物料,提高其表面温度,使水分蒸发。
常见的加热干燥方法包括烘箱干燥、喷雾干燥等。
烘箱干燥是将物料放入烘箱中,利用热空气对物料进行加热,使水分蒸发。
喷雾干燥是将物料以液滴形式喷入热空气中,通过瞬间蒸发的方式进行干燥。
3. 真空干燥真空干燥是在低压条件下进行干燥,通过降低环境压力,使水分在较低温度下蒸发。
真空干燥适用于对热敏性物料的干燥,能够避免物料的热分解或变质。
二、干燥在化工工艺中的应用干燥在化工工艺中具有广泛的应用,以下是几个常见的例子:1. 化工产品的干燥在化工生产中,很多产品需要经过干燥操作,以去除其中的水分或其他溶剂。
例如,某些化工产品在含水状态下容易发生反应或降解,因此需要进行干燥以提高稳定性和保存性。
2. 溶剂的回收在溶剂回收过程中,通常需要对溶剂进行干燥,以去除其中的水分或其他杂质。
通过干燥,可以提高溶剂的纯度和再利用率,减少资源的浪费。
3. 催化剂的干燥在催化反应中,催化剂的活性往往与其表面的水分有关。
因此,在使用催化剂之前,通常需要对其进行干燥,以提高催化剂的活性和稳定性。
4. 原料的干燥在某些化工工艺中,原料的水分含量会影响反应的速率和产物的质量。
因此,在反应之前,需要对原料进行干燥,以确保反应的顺利进行和产物的质量。
结论:干燥是化工过程中常见的一种操作,通过去除物料中的水分或其他溶剂,提高产品质量或满足后续工艺的需要。
化工原理干燥现象的原理
干燥是指将湿物质中的水或其他溶剂除去的过程。
化工原理中的干燥现象主要涉及到物质传质、热传导和质量平衡等原理。
1. 物质传质:湿物质中的水分子存在着与固体或其他溶质之间的相互作用力。
在干燥过程中,水分子需要克服这些相互作用力,才能从湿物质中逸出到气相中,实现传质过程。
传质通常是由高浓度到低浓度的方向进行,即从湿物质表面到气相中。
2. 热传导:在干燥过程中,通过向湿物质提供热量,可以提高物质的温度,促进水分子的蒸发和传质过程。
热传导的速度取决于热传导系数、温度梯度和物质的热容等因素。
3. 质量平衡:在干燥过程中,湿物质中的水分子通过蒸发从湿物质中逸出,同时空气中的水分子通过扩散等方式进入湿物质。
这种水分子的进出平衡使得湿物质中的水分子的含量逐渐减少,直到达到物料表面的饱和度。
综上所述,干燥现象主要是通过物质传质、热传导和质量平衡等原理来实现湿物质中水分子的从湿物质中蒸发并逸出的过程。
化工原理知识点总结干燥干燥是指将含水物质中的水分除去的过程,广泛应用于化工、冶金、食品、药品、农业等行业中。
干燥工艺可以提高产品质量,延长产品保存期限,增加产品附加值。
本文将从干燥的基本原理、传热传质机理、常见的干燥设备和干燥过程中的控制因素等方面对干燥做出总结。
一、基本原理1.1水分除去过程干燥的基本原理是将物质中的水分除去,水分从物质中逸出,物质变得更干燥。
水分除去的方式分为蒸发和挥发两种。
蒸发是指物质表面的水分被热能所吸收,转化为水蒸气散发出去;挥发是指水分通过物质内部的孔隙、裂缝等介质被蒸发并逸出。
1.2干燥速率干燥速率是指在干燥过程中,单位时间内从物质中脱除的水分量。
干燥速率受温度、湿度、空气流速等因素的影响。
1.3干燥曲线干燥曲线是指在干燥过程中,物质含水量随着时间变化的曲线。
常见的干燥曲线有初始下降期、常速期和末速期。
二、传热传质机理2.1传热机理干燥中传热主要通过对流传热和辐射传热两种方式实现。
对流传热是指通过对流换热将热量传递给物质表面,将水分蒸发出去;辐射传热是指通过辐射换热将热能传递给物质表面,促使水分蒸发。
2.2传质机理干燥中传质主要通过扩散传质实现,即水分从物质内部向外部扩散传递。
传质速率受物质的性质、温度、湿度、压力等因素的影响。
三、常见的干燥设备3.1流化床干燥流化床干燥是指将物料通过气体流化,使得气体均匀地穿透物质,从而提高传热传质效率。
流化床干燥适用于颗粒状、粉末状的物料。
3.2喷雾干燥喷雾干燥是指通过将液态物料雾化成细小颗粒,然后与热空气接触,使得水分蒸发,从而实现干燥。
喷雾干燥适用于液态物料的干燥。
3.3真空干燥真空干燥是指在低压条件下进行的干燥过程。
通过减压降低水的沸点,从而实现水分的除去。
真空干燥适用于对热敏感物料的干燥。
3.4离心干燥离心干燥是指将物料通过高速旋转的离心机,使得水分被甩出物料的表面,从而达到干燥的目的。
离心干燥适用于颗粒状、液态的物料。
1、湿空气的水汽分压 s p p φ= 相对湿度 * 饱和蒸汽压2、湿度绝干气绝干气总kg kg 03230.0kg kg 936.4100936.4622.0622.0=-⨯=-=p p p H3、密度 湿空气湿空气33HH m kg 06.1m kg 9737.00323.011=+=+=υρH湿空气的比体积()Pt H 5H 10013.1273273244.1772.0⨯⨯+⨯+=υ0.9737= m 3湿空气/kg 绝干气4、湿空气的H –I 图由180t =℃、100.009H H ==kg/kg 绝干气在H -I 图上确定空气状态点,由该点沿等I 线向右下方移动与80%φ=线相交,交点为离开干燥器时空气的状态点,由该点读出空气离开干燥器时的湿度20.027H =kg/kg 绝干气。
故1 m 3原空气获得的水分量为:原湿空气原湿空气33H12m kg 0214.0m kg 84.0009.0027.0=-=-υH H5、空气的焓 湿基物料的焓 ()11s 1187.4θX c I +=' 6、两混合气中绝干气的质量比为1:3,则 02m 134H H H +=02m 134I I I +=7、1 kg 绝干空气在预热器中焓的变化为:()绝干气绝干气kg kJ 61kg kJ 4310401=-=-=∆I I I1 m 3原湿空气焓的变化为:湿空气湿空气33Hm kJ 6.72m kJ 84.061==∆υI()00001.01 1.882490I H t H =+⨯+8、干基含水量绝干料绝干料kg kg 25.0kg kg 20100201111=-=-=w w X w 湿物料的湿基含水量绝干料绝干料kg kg 05263.0kg kg 510051222=-=-=w w X绝干物料()()hkg 800h kg 2.011000111=-=-=绝干料w G G蒸发水量 ()()hkg 9.157h kg 05263.025.080021水水=-=-=X X G W绝干空气用量 20()L H H W -= h kg 8.5444h kg 005.0034.09.15702绝干气绝干气=-=-=H H W L新鲜空气用量 L 0=()h kg 5472h kg 005.18.544410新鲜气新鲜气=⨯=+H L 9、预热器的加热量P 010(1.01 1.88)()Q L H t t =+-()01P I I L Q -=10、干燥器的热效率 ()2W 2490 1.88t Qη+=11、对干燥器做热量衡算得:12、恒速段干燥速率''1122L LI GI LI GI Q +=++''D 2121L ()()0Q L I I G I I Q =-+-+=c w tw()U t t αγ=-13、恒速干燥阶段干燥时间:14、降速段干燥时间:前提:降速干燥阶段干燥速率与物料的自由含水量(X —*X )成正比,因此,临界点处:15、总干燥时间:●9. 在一常压逆流的转筒干燥器中,干燥某种晶状的物料。
化工原理干燥化工原理干燥是指利用热能将物料中的水分或其他挥发性成分蒸发或挥发出来的过程,是化工生产中常见的一种操作。
干燥是化工生产中非常重要的一环,它直接影响产品的质量和生产效率。
在化工生产中,干燥通常用于固体物料的处理,比如粉末、颗粒、块状物料等。
干燥的原理主要是通过加热,使物料中的水分或其他挥发性成分蒸发或挥发出来,从而使物料变得干燥。
在干燥过程中,除了加热外,通常还会利用空气或其他气体来帮助传递热量,加快物料中水分的蒸发速度。
化工原理干燥的方法有很多种,常见的有自然干燥、空气干燥、真空干燥、喷雾干燥、流化床干燥等。
每种干燥方法都有其适用的范围和特点,根据不同的物料和生产要求,选择合适的干燥方法非常重要。
在进行化工原理干燥时,需要考虑一些关键因素,比如物料的性质、干燥温度、干燥时间、干燥介质、干燥设备等。
物料的性质包括其初始水分含量、粒度、形状等,这些都会影响干燥的效果。
干燥温度和时间是直接影响干燥效果的因素,合理的温度和时间可以提高干燥效率,同时也要考虑避免物料过热或过干。
选择合适的干燥介质和干燥设备也是非常重要的,不同的介质和设备对干燥效果有着不同的影响。
化工原理干燥在化工生产中有着广泛的应用,比如在食品加工、药品生产、化肥生产、化工原料生产等领域都需要进行干燥操作。
通过合理选择干燥方法和控制干燥参数,可以提高产品的质量,降低生产成本,提高生产效率。
在进行化工原理干燥时,需要严格遵守操作规程,确保操作安全。
同时,也需要定期对干燥设备进行检查和维护,保持设备的正常运转。
只有在严格遵守操作规程和保持设备良好状态的情况下,才能保证干燥操作的顺利进行,确保产品质量和生产效率。
总之,化工原理干燥是化工生产中非常重要的一环,它直接影响产品的质量和生产效率。
通过合理选择干燥方法和控制干燥参数,可以提高产品的质量,降低生产成本,提高生产效率。
同时,严格遵守操作规程和保持设备良好状态也是确保干燥操作顺利进行的关键。
化工原理干燥的基本原理干燥是去除物质中水分的过程,它是化工生产过程中非常重要的一环。
干燥的基本原理是利用各种干燥设备将物质与饱和蒸气接触,以增加物质表面的蒸发面积,使水分从物质中转移到蒸汽中,从而实现物质的干燥。
在干燥过程中,需要注意物质的热传导、质量传递以及能量转移等过程。
首先,热传导是干燥过程中的重要环节。
干燥设备通常会提供热能,用于加热物质和水分,使水分蒸发出来。
热能通过物质的热传导,从外部传导到物质内部,使水分的温度升高。
在干燥设备中,通过提供热源、调整温度和温差,可以控制物质的热传导速度,从而实现物质的干燥。
其次,质量传递也是干燥过程中的关键步骤。
在接触到饱和蒸汽的过程中,物质表面的水分会与蒸汽发生质量传递。
水分从物质中转移到蒸汽中,从而实现物质的干燥。
质量传递的速率取决于物质与饱和蒸汽之间的浓度差异、温度差异、相对湿度差异等因素。
通过调整干燥设备的操作条件,可以改变物质内部的水分传递速率,从而实现干燥效果的控制。
最后,能量转移是干燥过程中的另一个重要方面。
在干燥设备中,通过外部提供能量,使水分从物质中蒸发。
能量的转移涉及到物质和水分的热量吸收和释放、温度和湿度的变化等过程。
通过调整干燥设备的供热方式、温度控制和湿度控制等参数,可以实现水分从物质中的蒸发过程。
此外,干燥过程还会受到一些其他因素的影响。
例如,物质的物理性质、化学性质、形状和尺寸等都会对干燥过程产生影响。
不同的物质具有不同的干燥特性,需要根据物质的特点选择合适的干燥方式和设备。
同时,干燥过程也受到环境条件的影响,如温度、湿度、压力等。
总之,化工干燥的基本原理是利用干燥设备提供的热能、质量传递和能量转移过程,将物质中的水分转移到蒸汽中,实现物质的干燥。
干燥过程涉及热传导、质量传递和能量转移等多个方面,也受物质和环境条件的影响。
通过合理控制干燥设备的操作条件,可以实现物质干燥的控制和优化。
化工原理干燥
在化工原理中,干燥是一种常见的操作过程,用于去除物料中的水分或其他溶剂。
干燥的目的是提高物料的质量和稳定性,同时也有助于后续的加工和储存。
干燥的原理可以根据物料和工艺的不同而有所区别。
常见的干燥方法包括热风干燥、真空干燥、喷雾干燥、冷冻干燥等。
在热风干燥中,通过加热空气并将其送入干燥室,物料与热空气进行热交换,从而使物料中的水分蒸发。
这种干燥方法适用于水分含量较高的物料,可以快速去除大部分的水分。
真空干燥是在低压下进行的干燥过程。
通过降低环境压力,使物料中的水分在较低温度下蒸发,从而减少热量对物料的影响。
真空干燥适用于对温度敏感的物料,可以保持其原有的质量和活性。
喷雾干燥是将物料以细小颗粒的形式喷雾进入干燥室,通过热空气的作用使水分蒸发,从而干燥物料。
这种方法适用于对颗粒度要求较高的物料,可以获得均匀的干燥效果。
冷冻干燥是在低温条件下进行的干燥过程。
物料先被冷冻,然后通过升温使水分从固态直接转变为气态,从而干燥物料。
冷冻干燥适用于对物料品质要求较高的情况,可以保持原有的味道、香气和营养成分。
除了选择适当的干燥方法外,干燥过程中还需要注意一些关键
参数,如温度、湿度、干燥时间等。
恰当地控制这些参数可以避免物料过热或过干,从而保证产品质量。
总之,干燥作为一种重要的化工操作过程,在化工原理中发挥着关键作用。
选择适当的干燥方法和优化干燥参数对于提高产品质量和工艺效果至关重要。
实验八干燥实验一、实验目的1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。
2. 掌握恒定条件下物料干燥速率曲线的测定方法。
3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。
4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。
二、实验内容1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其影响因素。
2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。
三、基本原理干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。
干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。
由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。
概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。
目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。
干燥实验的目的是用来测定干燥曲线和干燥速率曲线。
为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。
本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。
测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。
物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。
但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。
ω与X 的关系为:X =-ωω1(8—1) 式中: X —干基含水量 kg 水/kg 绝干料;ω—湿基含水量 kg 水/kg 湿物料。
物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。
化工原理干燥实验原理
干燥实验是一种将湿润或含水物质转化为干燥状态的过程。
在化工工艺中,干燥是一项重要的操作,它可以用于去除物质中的水分或其他挥发性成分,以改变物质的性质和应用。
干燥可以通过多种方法实现,如加热、通风、压缩等。
干燥的原理主要涉及湿润物质中水分或其他挥发性成分的蒸发和扩散。
当湿润物质受热后,水分或其他挥发性成分会转化为气态,并从物质中逸出。
而通过通风或压缩,可以加速气态成分的扩散和远离物质表面,从而降低物质的湿度。
干燥实验的目的是通过实验方法验证和确定最佳的干燥条件。
这些条件可以包括温度、湿度、通风速度、压力等。
通常,实验中会通过称量、加热、定时等方法来监测物质在不同条件下的干燥过程。
通过比较实验结果,可以确定最佳的干燥条件,以提高干燥效率和质量。
实验中还可能涉及到干燥曲线的绘制。
干燥曲线是指在不同时间下,物质湿度与干燥时间之间的关系曲线。
通过绘制干燥曲线,可以更好地了解物质在不同条件下的干燥特性,并为工业生产提供参考和指导。
总之,干燥实验是一种用于确定最佳干燥条件和了解物质干燥特性的重要方法。
通过实验验证,可以为化工工艺提供基础数据和参考,以实现高效、质量优良的干燥操作。
第七章 干燥【例7-1】 已知湿空气的总压p t =101.3kPa ,相对湿度ϕ=0.6,干球温度t =30℃。
试求:①湿度H ;②露点t d ;③绝热饱和温度;④将上述状况的空气在预热器中加热至100℃所需的热量。
已知空气质量流量为100kg (以绝干空气计)/h ;⑤送入预热器的湿空气体积流量,m 3/h 。
解:已知p t =101.3kPa ,ϕ=0.6,t =30℃。
由饱和水蒸气表查得水在30℃时的蒸气压p s =4.25kPa ①湿度H 可由式7-4求得:01602546031012546062206220.......p p p .H s t s =⨯-⨯⨯=-=ϕϕkg/kg②按定义,露点是空气在湿度不变的条件下冷却到饱和时的温度,现已知 55225460...p p s =⨯==ϕkPa 由水蒸气表查得其对应的温度t d =21.4℃。
③求绝热饱和温度t as 。
按式(7-18)()()H H c r t t as H as as --=/ (a )已知t =30℃并已算出H =0.016kg/kg ,又c H =1.01+1.88H =1.01+1.88×0.016=1.04kJ/kg ,而r as 、H as 是t as 的函数,皆为未知,可用试差法求解。
设t as =25℃,p as =3.17kPa ,H as =0.62202.017.33.10117.3622.0=-=-as t as p p p kg/kg ,r as =2434kJ/kg ,代入式(a )得t as =30-(2434/1.04)(0.02-0.016)=20.6℃<25℃。
可见所设的t as 偏高,由此求得的H as 也偏高,重设t as =23.7℃,相应的p as =2.94kPa ,H as =0.622×2.94/(101.3-2.94)=0.0186kg/kg ,r as =2438kJ/kg ,代入式(a )得t as =30-(2438/1.04)(0.0186-0.016)=23.9℃。
两者基本相符,可认为t as =23.7℃。
④预热器中加入的热量Q =100×(1.01+1.88×0.016)(100-30) =7280kJ/h 或2.02kW ⑤送入预热器的湿空气体积流量8825.46.03.1013.10127330273294.22100=⎪⎭⎫⎝⎛⨯-⎪⎭⎫ ⎝⎛+⨯⨯=V m 3/h【例7-2】 已知湿空气的总压为101.3kPa 相对湿度为50%,干球温度为20℃。
试用I-H 图求解: (a )水气分压p ;(b )湿度H ; (c )焓I ; (d )露点t d ; (e )湿球温度t W ;(f )如将含500kg/h 干空气的湿空气预热至117℃,求所需热量Q 。
解:见本题附图。
由已知条件:p t =101.3kPa ,ϕ0=50%,t 0=20℃在I-H 图上定出湿空气状态A 点。
(a )水气分压:由图A 点沿等H 线向下交水气分压线于C ,在图右端纵坐标上读得p =1.2kPa 。
(b )湿度H :由A 点沿等H 线交水平辅助轴于点H =0.0075kg 水/kg 绝干空气。
(c )焓I :通过A 点作斜轴的平行线,读得I 0=39kJ/kg 绝干空气。
(d )露点t d :由A 点沿等H 线与ϕ=100%饱和线相交于B 点,由通过B 点的等t 线读得t d =10℃。
(e )湿球温度t W (绝热饱和温度t as ):由A 点沿等I 线与ϕ=100%饱和线相交于D 点,由通过D 点的等t 线读得t W =14℃(即t as =14℃)。
(f )热量Q :因湿空气通过预热器加热时其湿度不变,所以可由A 点沿等H 线向上与t 1=117℃线相交于G 点,读得I 1=138kJ/kg 绝干空气(即湿空气离开预热器时的焓值)。
含1kg 绝干空气的湿空气通过预热器所获得的热量为: Q ′=I 1-I 0=138-39=99kJ/kg每小时含有500kg 干空气的湿空气通过预热器所获得的热量为: Q =500Q ′=500×99=49500kJ/h=13.8kW通过上例的计算过程说明,采用焓湿图求取湿空气的各项参数,与用数学式计算相比,不仅计算迅速简便,而且物理意义也较明确。
【例7-3】 今有一干燥器,湿物料处理量为800kg/h 。
要求物料干燥后含水量由30%减至4%(均为湿基)。
干燥介质为空气,初温15℃,相对湿度为50%,经预热器加热至120℃进入干燥器,出干燥器时降温至45℃,相对湿度为80%。
试求:(a )水分蒸发量W ;(b )空气消耗量L 、单位空气消耗量l ; (c )如鼓风机装在进口处,求鼓风机之风量V 。
解(a )水分蒸发量W已知G 1=800kg/h ,w 1=30%,w 2=4%,则 G c =G 1(1-w 1)=800(1-0.3)=560kg/h 429.03.013.01111=-=-=w w X042.004.0104.01222=-=-=w w XW =G c (X 1-X 2)=560×(0.429-0.042)=216.7kg 水/h (b )空气消耗量L 、单位空气消耗量l由I-H 图中查得,空气在t =15℃,ϕ=50%时的湿度为H =0.005kg 水/kg 绝干空气。
在t 2=45℃,ϕ2=80%时的湿度为H 2=0.052kg 水/kg 绝干空气。
空气通过预热器湿度不变,即H 0=H 1。
4610005.0052.07.2160212=-=-=-=H H W H H W L kg 绝干空气/h 3.21005.0052.01102=-=-=H H l kg 干空气/kg 水(c )风量V 用式(7-14)计算15℃、101.325kPa 下的湿空气比容为()27327315244.1773.00++=H v H()273288005.0244.1773.0⨯⨯+==0.822m 3/kg 绝干空气V =Lv H =4610×0.822=3789.42m 3/h 用此风量选用鼓风机。
【例7-4】采用常压气流干燥器干燥某种湿物料。
在干燥器内,湿空气以一定的速度吹送物料的同时并对物料进行干燥。
已知的操作条件均标于本例附图1中。
试求:(1)新鲜空气消耗量;(2)单位时间内预热器消耗的热量,忽略预热器的热损失; (3)干燥器的热效率。
解:(1)新鲜空气消耗量 先按式(7-27)计算绝干空气消耗量,即 12H H W L -=①求W绝干物料G c =24801.01250122=+=+X G kg 绝干料/hW =G c (X 1-X 2)=248(0.15-0.01)=34.7kg/h②求H 2 因Q L ≠0,故干燥操作为非绝热过程,空气离开干燥器的状态参数不能用等焓线去寻求,下面用解析法求解。
当t 0=15℃、H 0=0.0073kg/kg 绝干空气时,I 1=(1.01+1.88H 0)t 0+r 0H 0=34kJ/kg 绝干空气当t 1=90℃、H 1=H 0=0.0073kg/kg 绝干空气时,同理可得I 1=110kJ/kg 绝干空气。
I 1′=c s θ1+X 1c w θ1=1.156×15+0.15×4.187×15=26.76kJ/kg 绝干料同理 I 2′=1.156×40+0.01×4.187×40=47.91kJ/kg 绝干料围绕本例附图1的干燥器作焓衡算,得 LI 1+G c I 1′=LI 2+G c I 2′+Q L 或 L (I 1-I 2)=G c (I 2′-I 1′)+Q L将已知值代入上式,得L (110-I 2)=248(47.91-26.76)+3.2×3600或 L (110-I 2)=16770 (a)根据式(7-11)可以写出空气离开干燥器时焓的计算式为 I 2=(1.01+1.88H 2)t 2+2490H 2或 I 2=(1.01+1.88H 2)×50+2490H 2=50.5+2584H 2 (b )绝干空气消耗量L=0073.07.34212-=-H H H W (c ) 联立式(a )、式(b )及式(c ),解得H 2=0.02055kg/kg 绝干空气 I 2=103.6kJ/kg 绝干空气 L =2618.9kg 绝干空气/h(2)预热器消耗的热量Q p 用式(7-29)计算,即Q p =L (I 1-I 0)=2618.9(110-34)=199000kJ/h=55.3kW(3)干燥系统的热效率η 若忽略湿物料中水分带入系统中的焓,则用式(7-35)计算干燥系统的热效率,即()%Qt .W 10088124902⨯+=η因Q D =0,故Q =Q p ,因此()()%1.45%1001990005088.124907.34%10088.124902=⨯⨯+=⨯+=Q t W η【例7-5】 有一间歇操作干燥器,有一批物料的干燥速率曲线如图7-15所示。
若将该物料由含水量w 1=27%干燥到w 2=5%(均为湿基),湿物料的质量为200kg ,干燥表面积为0.025m 2/kg 干物料,装卸时间τ′=1h ,试确定每批物料的干燥周期。
解 绝对干物料量 G c ′=G 1′(1-w 1)=200×(1-0.27)=146kg 干燥总表面积 S =146×0.025=3.65m 2将物料中的水分换算成干基含水量 最初含水量37.027.0127.01111=-=-=w w X kg 水/kg 干物料最终含水量053.005.0105.01222=-=-=w w X kg 水/kg 干物料 由图7-15中查到该物料的临界含水量X c =0.20kg 水/kg 干物料,平衡含水量X *=0.05kg 水/kg 干物料,由于X 2<X c ,所以干燥过程应包括恒速和降速两个阶段,各段所需的干燥时间分别计算。
a.恒速阶段τ1由X 1=0.37至X c =0.20,由图7-15中查得U 0=1.5kg/(m 2·h )()()53420037065351146101.....X X SU G c c =-⨯⨯=-'=τhb.降速阶段τ2由X c =0.20至X 2=0.053,X *=0.05代入式(7-42),求得1005.020.05.1*0=-=-=X X U K c X kg/(m 2·h)7.1505.0053.005.020.0ln 65.310146ln *2*2=--⨯=--'=XX X X S K G cX cτhc.每批物料的干燥周期ττ=τ1+τ2+τ′=4.53+15.7+1=21.2h【例7-6】 在气流干燥器中,每小时将3000kg 的粒状湿物料从X 1为0.25干燥到X 2为0.003(均为干基)。