二元一次方程解决实际问题 (2)
- 格式:ppt
- 大小:2.12 MB
- 文档页数:32
用二元一次方程组解决实际问题(一)对大小牛的含量估计1、某班学生参加运土劳动,一部分同学抬土,另一部分同学挑土,已知全班同学共用土筐59个,扁担36根,问抬土和挑土的同学各有多少人?2、某课外小组学生准备分组外出活动,若每组7人,则余下3人,若每组8人,则少5人,求学生有多少人?3、某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?4、两地相距280千米,一轮船在其间航行,顺流用14小时,逆流用20小时,求轮船在静水中的速度?5、已知一铁桥长1000米,有一列火车从桥上通过,测得火车开始上桥到完全过桥共用1分钟,整列火车在桥是的时间为40秒,求火车的速度和列车的长分别是多少?6、一个两位数的数字之和为10,十位数字与个位数字互换后,所得新数比原数小36,求原来的两位数是多少?7、某车间有28个工人生产某种螺栓和螺母,每人每天能生产螺栓12个或螺母18个,为了合理分配劳动,使生产的螺栓和螺母配套(一个螺栓和两个螺母)应分配多少人生产螺栓?8、甲、乙两家超市销售同一价格的某种商品,甲超市分两次降价,每次降价10%,乙超市一次性降价20%,那么顾客到哪家超市购此种商品最合算?8、要修一段420千米长的公路,甲工程队先干2天,乙工程队加入,两队再合干2天完成任务,如果乙队先干2天,两队两队再合干3天完成任务,问两个队每天各能修多少千米?(二)调动问题行程问题中常用到的等量关系:路程=____________________相遇问题:同时两地相向而行,________ ×相遇时间=出发地间的距离追击问题:同时两地同向而行,________ ×追击时间=出发地间的距离环行问题:同时同地同向而行,则快的行的路程-慢的行的路程=n×环形的周长(n为相遇次数)同时同地反向而行,则快的行的路程+慢的行的路程= n×环形的周长(n为相遇次数)1、两人练习跑步,如果乙先跑16米,甲8秒可以追上乙,如果乙先跑2秒,则甲4秒可以追上乙,求甲、乙两人每秒各跑多少米?2、甲、乙两人从同一地点出发,同向而行,甲骑车,乙步行,如果乙先行12千米,那么甲1小时就能追上乙,如果乙先走1小时,那么甲只用0.5小时就能追上乙,则乙的速度是多少?3、张华与李明两个同学相距15千米,同时出发,若同向而行,张华3小时追上李明,若相向而行,两人1小时后相遇,则张华与李明的速度分别是多少?4、一批货物要运往某地,货主准备租用汽车运输公司的甲乙两种货车,已知过去两次租用这两种货车的现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,部货主应付运费多少元?5、北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台,已知重庆需要8台,武汉需要6台,从北京、上海将仪器运往重庆、武汉的费用如下表所示。
利用二元一次方程组求解实际问题。
就拿2023年来说,预计在这一年里,我国经济将进一步发展,但同时还会伴随着一些新的问题。
在这篇文章中,我将结合一些实际情景,阐述如何利用二元一次方程组去解决问题。
1.解决消费问题:在未来,人们的生活水平会逐渐提高,消费水平也会相应地提高,但是人们的收入水平也一定会受到影响。
那么如何解决消费问题呢?我们可以利用二元一次方程组来攻克这个难题。
我们需要知道每个人的收入情况,然后再进行细致分析。
假设某市一个家庭的月收入为X,月支出为Y,且所得税率为10%,现在要求这个家庭必须达到一定的储蓄量,那么我们就可以列出方程组:X-0.1X=Y+AY-B=S其中,A代表储蓄量,B代表固定支出,S代表储蓄需求量。
通过求解这个方程组,我们就可以得到该家庭的收支平衡状态,并从而更好地规划家庭的每月开支。
2.解决生产问题:未来,我国经济建设将进一步深入,各个产业都将面对重大的发展机遇和挑战。
为了解决生产问题,我们可以利用二元一次方程组。
例如,在某工厂中,一种产品的单位成本为C元,单位售价为S元,每年销售量为M件,每年生产量为N件,那么我们可以列出方程组:CN=N(A+B)+M(C-D)SM=N(S-E)+M(F-G)其中,A代表固定成本,B代表可变成本,C代表一件产品的生产成本,D代表一件产品的销售成本,E代表一件产品的销售售价,F代表一件产品的利润,G代表一件产品的销售费用。
由此,我们可以求解出这种产品的生产成本、销售成本、利润等各项数据,并据此制定出更加合理的生产计划和定价策略。
3.解决环境问题:未来环境保护问题也将成为亟待解决的问题。
我们可以通过利用二元一次方程组来分析环保相关问题的数据和经济经验。
例如,某个城市的空气质量指数为Q,环境污染治理费用为M,环保条例罚款为C,那么我们可以列出方程组:Q=A-BM-CFM+NF=P其中,A、B、C、F、N、P分别代表各种影响环保的因素。
通过解方程,我们可以得出治理费用和罚款应该如何分担的方案,从而更好地发挥环境保护的效果。
知识点:二元一次方程组的概念及解法:代入法和加减法二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)相似题:鸡兔同笼问题(1)1、野鸡和兔子共有39只,它们的腿共有100条,求野鸡和兔子各有多少只。
2、已知板凳和木马共有33个,腿共有101条。
板凳和木马各有多少个?(注:板凳4条腿,木马3条腿)3、某文艺团体为“希望工程”募捐组织了一场义演。
其中成人票每张8元,学生票每张5元,共售出1000张票,共筹得票款6950元。
问成人票与学生票各售出多少张?分析:两个相等关系:①;②。
4、某校买了甲、乙两种型号的彩电共7台,花去人民币15900元。
已知这两种型号的彩电的价格分别是3000元和1300元,问该校两种彩电各买了多少台?鸡兔同笼问题(2)1、某校150名学生参加数学考试,平均每人55分,其中及格的学生人均77分,不及格的学生人均47分。
及格、不及格的学生各有多少人?2、一队敌军一队狗,两队并成一队走;脑袋共有八十个,数腿却有二百条;请君仔细算一算,多少敌军多少狗3、现有大人、幼儿共100人,大人一餐吃4个面包,幼儿4人一餐吃一个面包,一餐刚好吃光100个面包,问大人、幼儿各有几人?分配问题(1)【例】栖树一群鸦,鸦树不知数;三只坐一棵,五只没去处;五只栖一棵,闲了一棵树;请你列式算,鸦树各几何?分析:两个等量关系:①3⨯树的棵数+5=乌鸦的只数;②5⨯(树的棵数-1)=乌鸦的只数。
解:设乌鸦有x只,树有y棵。
1、某单位召开会议,安排参加会议人员住宿,若每间宿舍住12人,便有34人没有住处;若每间住14人便多处4间宿舍没人住。
求参加会议的人数和宿舍数。
分析:两个相等关系:①;②。
第1课时利用二元一次方程组解决实际问题一般步骤:(1)审:审题、弄清题意及题目中的数量关系;(2)设:设未知数,可直接设元,也可以间接设元;(3)找:找出等量关系;(4)列:列方程组,根据题目中能表示全部含义的相等关系列出方程,并组成方程组;(5)解:解方程组,并检验是否符合问题的实际意义;(6)答:写出答案,作答。
1、产品配套问题:加工总量成比例例1、用白铁皮做罐头盒。
每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒。
现有150张白铁皮,用多少张制盒身,多少张制盒底,可以刚好配套?等量关系:练1-1、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?等量关系:练1-2、某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个。
两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?等量关系:练1-3、某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应分配多少人生产螺栓,多少人生产螺母,才能使一个螺栓配2个螺母刚好配套?等量关系:练1-4、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?等量关系:2、航速问题①顺流(风):航速=静水(无风)中的速度+水(风)速;②逆流(风):航速=静水(无风)中的速度-水(风)速;例2、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。
练2-1、两地相距280km,一艘轮船在其间航行,顺流用了14h,逆流用了20h,那么这艘轮船在静水中的速度是。
等量关系:练2-2、一只船顺水每小时行17千米,逆水每小时行13千米,求这只船在静水中的速度和水流速度?等量关系:3、工程问题工作量=工作效率×工作时间;①工作总量已知;②工作总量未知时,一般设为“单位1”。
二元一次方程组在应用题(实际问题)中的应用二元一次方程组解实际问题的方法步骤:对于含有多个未知数的问题,利用列方程组来解,一般要比列一元一次方程解题容易,列方程组解应用题有以下几个步骤: 1. 选取定几个未知数;2. 依据已知条件列出与未知数的个数相等的独立方程,组成方程组; 3. 解方程组,得到方程组的解;4. 检验求得的未知数的值是否符合题意,符合题意即为应用题的解.\例题分析: 例:某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x -+= 解这个方程,得 x =92484928360x -=⨯-=答:该同学看中的随身听单价为360元,书包单价为92元。
解法二:设书包的单价为x 元,随身听的单价为y 元 根据题意,得x y y x +==-⎧⎨⎩45248解这个方程组,得x y ==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A 购买随身听与书包各一件需花费现金: 45280%3616⨯=.(元) 因为3616400.<,所以可以选择超市A 购买。
在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金: 3602362+=(元)因为362400<,所以也可以选择在超市B 购买。