植物生理学第11章
- 格式:ppt
- 大小:1.19 MB
- 文档页数:59
第11章 土壤湿度测量11.1概述土壤含水量是影响农作物收成与水保的重要因素之一。
土壤湿度对于制定灌溉进程表、水与溶质流的评价、净太阳辐射潜热与显热的划分等方面都是很重要的。
作为预测水源耗竭模式中的重要参量,土壤湿度在水文学中是很重要的。
在大气数值模式中陆气相互作用的模拟及水气循环的其它参量要求测量土壤湿度,卫星遥感评价的验证也需要直接测量地表土壤水分。
土壤湿度的测量可用土壤含水量与土壤湿度位势的测定来表示。
土壤含水量反映了土壤中水的质量与体积,而土壤湿度位势则反映土壤水分能量状态。
农业学科非常关注土壤水分的测定。
为满足土壤水分状态测量的广泛需求,许多仪器已发展到商业化的程度,使用最普遍的将在下面予以讨论,包括其优点与缺点。
此外,对在将来不久可能被广泛使用的新式仪器也予以简要讨论。
11.1.1定义土壤含水量称重技术是测量土壤含水量最为简单且被广泛运用的方法。
因为此方法简单易行而且是直接测量,所以被用作其它方法参照的标准。
定义在干质基础上的称重土壤湿度g θ可表达为:100⋅=soilwater g M M θ (11.1) 此处water M 为土样中水质量,soil M 为土样中烤干(100-110℃)后的土质量。
对于风干(25℃)的矿物土壤,称重土壤湿度通常少于2%,但随着土壤水分达到饱和,其水含量会增到25%至60%。
但是称重取样法具有破坏性,使得土壤接近饱和时,取得准确的土壤含水量测量结果变得极为困难。
通常,土壤湿度用体积表达。
由于降水、蒸散量和溶质变化参量通常用容量表示,用体积表示的水含量更为有用。
体积水含量v θ可表达为:100⋅soilwater v V V θ (11.2) 此处,water V 为水体积,soil V 为土壤(土+气+水)总体积。
土壤体积含水量的变化可从风干土壤的少于10%到临近饱和的矿物土壤的40-50%间变化。
由于水与土壤体积的准确测定存在困难,体积水含量通常间接测定。
第 11 章 植物的成熟与衰老一、教学大纲基本要求了解花粉的构造、主要成分、花粉萌发和花粉管的生长;掌握被子植物中存在的两种自交不亲和性及其特点, 了解克服不亲和的方法;了解胚和胚乳的发育,以及种子中贮藏物质的积累过程;熟悉果实的生长模式、单性结实 现象和果实成熟时的变化;掌握种子和芽的休眠并了解其调控方法; 熟悉植物衰老时的生理生化变化和引起衰老的 原因、影响衰老的因素;掌握器官脱落的细胞学及生物化学过程,并了解影响脱落的内外因素及调控方法。
二、本章知识要点果实的生长模式主要有单“ S ”形生长曲线和双“ S ”形生长曲线两类。
果实的细胞数目和细胞大小是决 定果实大小的主要因子,尤其是后者。
许多果实在成熟过程中发生以下变化:呼吸跃变、淀粉水解成蔗糖、葡萄糖、 果糖等可溶性糖;有机酸含量减少,糖酸比上升;多聚半乳糖醛酸酶 (PG) 等胞壁水解酶活性上升,果实软化;形 成微量挥发性物质,散发出特有的香味;单宁等物质转化,涩味下降;叶绿素含量下降,花色苷和类胡萝卜素等增 加。
使果实表现出特有的色、香、味。
休眠是生理或环境因素引起植物生长暂时停止的现象,种子休眠主要是由于胚未成熟、种 ( 果 ) 皮的限制以 及萌发抑制物的存在引起的。
解除种子休眠的方法有:机械破损、浸泡冲洗、层积、药剂、激素、光照和 X 射线 等处理。
种子活力是指种子萌发速度、生长能力和对逆境的适应性;种子老化是指种子活力的自然衰退;种子劣变则是 指种子生理机能的恶化。
正常性种子通常在干燥低温下可以长期贮藏,而顽拗性种子在贮藏中忌干燥和低温。
存在 这种区别的一个重要原因是前者含有较多的 LEA 蛋白,而后者较少。
许多植物或其器官以芽休眠的形式渡过不良条件。
短日照、 ABA 等对芽休眠有促进作用。
GA 能有效地解 除芽休眠,而青鲜素等能防止芽萌发。
衰老是植物发育的组成部分,是植物在自然死亡之前的一系列恶化过程。
它可以在细胞、组织、器官以及整体 水平上发生。
第八章植物的生长生理一、名词解释1、种子活力2、组织培养3、分化4、脱分化5. 顶端优势6. 生长大周期 7.细胞的全能性二、是非题1、营养器官长得越旺盛,生殖器官就发育得越好。
()2、生物钟是植物(生物)内源节律调控的近似24h的周期性反应。
()3、生长的最适温度是指生长最快的温度,对健壮生长来说,也是最适宜的。
()4、光对植物茎的伸长有促进作用。
()5、当土壤水分含量降低时,植物的根/冠比会降低。
()6、向光性的光受体是存在于质膜上的花色素。
()7、许多学者提出,向光性的产生是由于抑制物质分布不均匀的缘故。
()8、在植物生长的昼夜周期中,一般由于白天光照充足,同化产物多,所以生长速度最快。
9、在细胞分裂时,当细胞核体积增到最大体积时,DNA含量才急剧增加。
()三、选择题1、由外部环境中有一定方向的刺激所引起的运动叫()运动。
A、向性B、感性C、趋性D、生物钟2、花生、大豆等植物的小叶片夜间闭合、白天张开,含羞草叶片受到机械刺激时成对合拢。
外部的无定向刺激引起植物的运动称为()运动。
A、向性B、感性C、趋性D、生物钟3、根和茎的生长都与重力的方向相关,所以这类生长被称为()生长。
A、向光性B、向化性C、向重力性D、向地性4、向日葵的向性运动属于()。
A、趋光性B、感光性 C 、向光性D、向日性5、曼陀罗的花夜开昼闭,南瓜的花昼开夜闭,这种现象属于()。
A、光周期现象 B、感性运动 C、睡眠运动 D、向性运动6、某些侧根、侧枝或地下茎生长时,其生长方向的纵轴与地心引力的方向成直角。
这种现象称为()A、横向重力性B、偏上生长C、向化性 D、极性7、愈伤组织在适宜的培养条件下形成根、芽、胚状或完整植株的过程称为()。
A、分化 B、脱分化 C、再分化D、再生8、()是通过组织培养的方法得到证实的。
A、植物能吸收和运输环境中的营养物质 B、植物细胞的全能性C、植物细胞能够进行有丝分裂 D、植物激素调控植物的生长和发育9、风干种子的萌发吸水主要靠:()。
第一章植物的水分代谢三、选择题1.植物在烈日照射下,通过蒸腾作用散失水分降低体温,是因为:(B)A.水具有高比热B.水具有高汽化热C.水具有表面张力2.一般而言,冬季越冬作物组织内自由水/束缚水的比值:(B)A.升高B.降低C.变化不大3.有一为水充分饱和的细胞,将其放入比细胞液浓度低 10 倍的溶液中,则细胞体积:(A)。
A.变大B.变小C.不变4.风和日丽的情况下,植物叶片在早上、中午和傍晚的水势变化趋势是(A)。
A.低→高→低B.高→低→高C.低→低→高5.已形成液泡的细胞,其衬质势通常省略不计,其原因是:(B)A.衬质势很低B.衬质势不存在C.衬质势很高,绝对值很小6.植物分生组织的细胞吸水靠(B)A.渗透作用B.代谢作用C.吸涨作用7.风干种子的萌发吸水靠(B)A.代谢作用B.吸涨作用C.渗透作用8.在同温同压条件下,溶液中水的自由能与纯水相比(B)A.要高一些B.要低一些C.二者相等9.在气孔张开时,水蒸汽分子通过气孔的扩散速度(B)A.与气孔的面积成正比 B.与气孔周长成正比 C.与气孔周长成反比10.蒸腾作用快慢,主要决定于(A)A.叶内外蒸汽压差大小 B.叶片的气孔大小 C.叶面积大小11.植物的保卫细胞中的水势变化与下列无机离子有关:(A)A.Ca2+B.K+C.Cl-12.植物的保卫细胞中的水势变化与下列有机物质有关:(C)A.糖B.脂肪酸C.苹果酸13.根部吸水主要在根尖进行,吸水能力最大的是(C)A.分生区B.伸长区C.根毛区14.土壤通气不良使根系吸水量减少的原因是(A)A.缺乏氧气B.水分不足C.C02 浓度过高15.植物的水分临界期是指:(C)A.对水分缺乏最敏感时期B.需水最多的时期C.需水最少的时期16.目前可以作为灌溉的生理指标中最受到重视的是:(C)A.叶片渗透势 B.叶片气孔开度 C.叶片水势四、是非判断与改正1.影响植物正常生理活动的不仅是含水量的多少,而且还与水分存在的状态有密切关系。
基本内容第十一章植物的生殖生理(Reproductive of plant)当植物生长到一定年龄后,在适宜的外界条件下,营养枝的顶端分生组织就分化出生殖器官(花),最后结出果实。
植物的个体生长过程中,存在一个内在的计时机制,即生长到一定时间才具有接受外界环境诱导开花的能力,人们把这种能力称为“感受”(competent)能力。
植物要在适宜季节才能诱导开花,而季节变化的主要特征是温度高低和日照长短,植物开花就与温度高低和日照长短有密切关系。
当顶端分生组织进入新的花发育过程(分化)后,如将植株转放到不适宜的外界条件下(例如把已通过长日处理的长日植物放到短日条件),植株仍然继续花芽分化,因为这时的花发育就已进入“决定”(determined)阶段了。
然而,花原基要接受刺激表达的发育信号后,才能“表达”(expressed)开花。
例如,长日植物毒麦长日处理28 h后,切下枝条顶端分生组织进行组织培养,培养基中有GA才能正常开花;而短日条件下生长的切段,即使培养基中有GA,也不会开花。
因此,毒麦开花的“决定”是长日条件,而决定状态的“表达”需要GA(图11-1)。
第一节幼年期(juvenility)幼年期(juvenility)是植物早期生长的阶段。
在此期间,任何处理都不能诱导开花。
一、幼年期的特征幼年期和成年期的区别,除了能开花与否外,它们的形态和生理特征也不同,其特征比较见表11-1。
至于生理特征,则是幼年期生长快,呼吸强,核酸代谢和蛋白质合成都快。
当转入成年期后,组织成熟,代谢和生理活动较慢,光合速率和呼吸速率都下降。
幼年期茎的切段易发根,而成年期的切段不易发根,这可能与幼年期切条内含较多生长素有关。
表11-1 常春藤的幼年期和成年期的特征比较由于植株从幼年期转变为成年期是由茎基向顶端转变,所以植株不同部位的成熟度不一样。
树木的基部通常是幼年期,顶端是成年期,中部则是中间型(图11-2)。
从常春藤茎基取材插植,繁殖出的植株呈幼年期特征;如从顶端取材插植,则长出的植株呈成年期特征;如从中部取材,长出的植株呈成年期和幼年期混合特征。
第一章植物的水分生理二、是非题1.当细胞内的ψw等于0时,该细胞的吸水能力很强。
2.细胞的ψg很小,但仍不可忽略。
3.将ψp=0的细胞放入等渗溶液中,细胞的体积会发生变化。
4.压力势(ψp)与膨压的概念是一样的。
5.细胞间水分的流动取决于它的ψπ差。
6.土壤中的水分在根内是不可通过质外体进入导管的。
7.蒸腾拉力引起被动吸水,这种吸水与水势梯度无关。
8.植物根内是因为存在着水势梯度才产生根压。
9.保卫细胞进行光合作用时,渗透势增高,水分进入,气孔张开。
10.气孔频度大且气孔大时,内部阻力大,蒸腾较弱;反之阻力小,蒸腾较强。
11.溶液的浓度越高,ψπ就越高,ψw也越高。
12.保卫细胞的k+含量较高时,对气孔张开有促进作用。
13.ABA诱导气孔开放,CTK诱导气孔关闭。
14.蒸腾作用快慢取决于叶内外的蒸汽压差大小,所以凡是影响叶内外蒸气压差的外界条件,都会影响蒸腾作用。
15.植物细胞壁是一个半透膜。
16.溶液中由于有溶质颗粒存在,提高了水的自由能,使其水势高于纯水的水势。
17.植物在白天和晚上都有蒸腾作用。
18.有叶片的植株比无叶片的植株吸水能力要弱。
19.当保卫细胞的可溶性糖、苹果酸、k+和Cl-浓度增高时,保卫细胞水势增高,水分往外排出,气孔关闭。
20.当细胞产生质壁分离时,原生质体和细胞壁之间的空隙充满着水分。
21.在正常条件下,植物地上部的水势高于地下部分的水势。
22.高浓度的CO2引起气孔张开;而低浓度的CO2则引起气孔关闭。
23.1mol/L蔗糖与1mol/L KCl溶液的水势相等。
24.水柱张力远大于水分子的内聚力,从而使水柱不断。
25.导管和管胞中水分运输的动力是蒸腾拉力和根压,其中蒸腾拉力占主要地位。
三、选择1.对于一个不具液泡的植物细胞,其水势( )Aψw=ψp+ψπ+ψg Bψw=ψp+ψg C、ψw=ψp+ψπ2.已形成液泡的细胞,其吸水主要靠A.渗透作用B.代谢作用C.吸胀作用3.在同温同压的条件下,溶液中水的自由能比纯水( )A、高B、低C、相等4.把一个细胞液浓度低的细胞放入比其浓度高的溶液中,其体积( )A、变大B、变小C、不变5.在正常情况下,测得洋葱鳞茎表皮细胞的ψw大约为( )A、0.9MPaB、9MPa C 、90MPa6.在植物水分运输中,占主要地位的运输动力是( )A、根压B、蒸腾拉力C、渗透作用7.水分以气态从植物体散失到外界的现象,是( )A、吐水现象B、蒸腾作用C、伤流8.影响气孔蒸腾速率的主要因素是( )A、气孔密度B、气孔周长C、叶片形状9.植物的蒸腾作用取决于( )A、叶片气孔大小B、叶内外蒸气压差大小C、叶片大小10.植物根部吸水主要发生于( )A、伸长区B、分生区C、根毛区11.下列哪个不是影响蒸腾作用的外部条件( )A、光照B、空气的相对湿度C、气孔频度12.影响蒸腾作用的最主要外界条件( ) A、光照B、温度C、空气的相对湿度13.水分经胞间连丝从一个细胞进入另一个细胞的流动途径是( )A、质外体途径B、共质体途径C、跨膜途径14.等渗溶液是指( )A、压力势相等但溶质成分可不同的溶液B、溶质势相等但溶质成分可不同的溶液C、溶质势相等且溶质成分一定要相同的溶液15.蒸腾系数指( )A、一定时间内,在单位叶面积上所蒸腾的水量B、植物每消耗1kg水时所形成的干物质的克数C、植物制造1g干物质所消耗水分的千克数16.植物体内的水分向上运输,是因为( )A、大气压力B、内聚力-张力C、蒸腾拉力和根压17.水在绿色植物中是各组分中占比例最大的,对于生长旺盛的植物组织和细胞其水分含量大约占鲜重的( )A、50%~70%B、90%以上C、70%~90%18.木质部中水分运输速度比薄壁细胞中水分运输速度( )A、快B、慢C、一样19.在下列三种情况中,哪一种情况下细胞吸水( )A、外界溶液水势为-0.6MPa,细胞水势-0.7MPaB、外界溶液水势为-0.7MPa,细胞水势-0.6MPaC、两者水势均为-0.9MPa20.植物的水分临界期是指( )A、对水分缺乏最敏感的时期B、对水需求最多的时期C、对水利用率最高的时期21.下列哪一个是目前作为灌溉的生理指标最受重视( )A、叶片的含水量B、叶片气孔开度C、叶片水势22.当细胞吸水处于饱和状态时,细胞内的ψw为( )MPaA、0B、很低C、>0四、填空题1.植物体内水分以和两种状态存在。
2010秋季《植物生理学》水保091,092,093,094各章重点:第1章植物细胞的结构与功能:液晶态、伸展蛋白、胞间连丝、生物膜流动镶嵌模型第2章植物的水分代谢:水势、渗透势、压力势、水分平衡、自由水与束缚水、共质体与质外体、蒸腾效率与蒸腾系数、水分临界期、永久萎蔫系数、根压、小孔律、SPAC;植物细胞对水分的吸收;植物对水分的吸收、运输和散失过程及其动力;植物水分平衡;植物细胞的水分关系;水分沿导管或管胞上升的动力;水分吸收与散失及气孔运动机理;合理灌溉的形态与生理指标。
第3章植物的矿质与氮素营养:矿质元素、载体、离子的选择吸收、生理酸碱中性盐、.单盐毒害、离子拮抗、平衡溶液;N、P、K、Ca及Fe、B、Zn的重要生理功能及典型缺素症;根系吸收矿质的特点;缺素症诊断;细胞吸收矿质的机理,植物生命活动中的必需元素及其研究方法。
第4章植物的光合作用:希尔反应、红降现象与爱默生效应、PSI与PSII、Rubisco、荧光现象、水分利用效率(WUE)、光呼吸、光合速率、叶面积系数(leaf area indx LAI)、净同化率(net assimilation rate NAR)或光合生产率、净光合速率、光补偿点、与光饱和点、CO2补偿点(CO2与CO2饱和点。
影响叶绿素合成与分解的原因;光合碳同化的途径及其特点;影响光合的内部因素;光照、二氧化碳、温度、水分、矿质营养等因素对光合的影响(补偿点、饱和点、三基点)及相互作用;植物光合作用与作物产量;植物对光能的利用率及提高办法。
第5章植物的呼吸作用:呼吸链、氧化磷酸化、呼吸商(RQ)、P/O比、末端氧化酶、无氧呼吸消失点;EMP、TCAC、PPP途径在细胞中的定位及其生理意义、呼吸代谢的多样性及其生理意义、抗氰呼吸及其意义、影响呼吸作用的因素及其与作物采后贮藏的关系。
第6章植物体内有机物质运输分配:代谢源、库、转移细胞、生长中心。
实验证明有机物质运输途径和方向;有机物质运输的压力流动学说内容及其评价;有机物分配的基本规律和内在影响因素;源库理论及其对农业生产的指导意义。
一、春化作用(一)春化作用的概念及类型春化作用:低温促进植物开花的作用。
⏹Vernalization -required plants⏹winter annuals:冬小麦,油菜等农作物。
⏹most of biennials:如白菜、萝卜、胡萝卜、芹菜、甜菜、和天仙子等。
⏹some perennials:石竹、桂竹香、牧草、黑麦草。
⏹木本植物大多无春化要求,但少数可能也需要,如柑橘。
(二)春化作用的条件1、低温和时间有效温度界与0~10℃,最有效的春化温度是1~7 ℃。
2、水分、氧气和营养(三)时期、部位和刺激传导1、时期2、部位感受低温的部位:茎尖端的生长点如何用实验证明?(四)春化作用的机理前体物低温低温(完成春化)中间产物分解(解除春化)二、光周期※(一)光周期的发现光周期:一天之中白天和黑夜的相对长度。
光周期现象:植物(成花)对白天和黑夜相对长度的反应。
(二)光周期的反应类型※1、短日植物(SDP)在24小时昼夜周期中,日照长度短于某一个临界日长才能成花的植物。
水稻、玉米、大豆、高粱、苍耳、紫苏、大麻、黄麻、草莓、烟草、菊花、秋海棠、腊梅、日本牵牛等。
2、长日植物(LDP)在24小时昼夜周期中,日照长度长于某一个临界日长,才能成花的植物。
黑麦、油菜、菠菜、萝卜、白菜、甘蓝、芹菜、甜菜、胡萝卜、金光菊、山茶、杜鹃、桂花、天仙子等。
3、日中性植物(DNP)在任何长度的日照下均能开花。
月季、黄瓜、茄子、番茄、辣椒、菜豆、君子兰、向日葵、蒲公英等。
4、中日性植物:只能在特定日照长度下才开花。
(四)光周期的诱导光周期诱导:适宜的光周期处理促使植物开花的现象。
光期与暗期哪个重要?(五)临界暗期与暗期间断 试验证明,植物开花决定于暗期的长度。
临界暗期:指昼夜周期中LDP 能够开花的最长暗期长度或SDP 开花所需的最短暗期长度。
SDP 实际上是长夜植物,LDP 是短夜植物。
SDP 的习性LDP 的习性光的状况营养生长光暗开花营养生长营养生长开花营养生长营养生长 (七)光周期刺激的感受和传导1、感受光周期的部位—叶片(九)光周期诱导开花的机理 ※。
第11章植物的生长与分化植物的生长与分化是植物各种生理与代谢活动的综合表现,它包括器官发育、形态建成、营养生长向生殖生长的过渡,以及个体最终走向衰老、成熟与死亡。
研究这些历程的内部变化及其与环境的关系,对调节植物的生长发育,提高作物生产力具有重要意义。
第一节植物的休眠与种子萌发一、植物休眠的概念与生物学意义地球上绝大部分植物所处的环境有季节的变化,尤其是温带,四季变化鲜明。
大多数植物都要经历季节性的不良气候时期,如果不存在某种保护性或防御性机理,便会受到伤害或致死。
植物的整体或某一部分在某一时期内生长和代谢暂时停滞的现象,叫做休g民。
许多落叶树在秋季枝条生长缓慢,叶片脱落,形成了休眠芽以度过冬季的严寒;在一些地区植物在夏季休眠以度过干旱少雨的天气。
这种由于不利的生长环境引起的休眠叫强迫休眠。
但是刚收获的大麦、水稻等籽粒,即使给予充足的水分,适当的温度,它们不能萌发,只有贮藏数月后才能萌发。
显然,这种不能生长不是由于外界条件的不适造成的,而是内部原因造成的。
这种休眠称为自发休眠或深休眠。
植物休眠有多种形式,例如许多一、二年生植物以种子为休眠器官,多年生落叶树木以休眠芽的方式休眠;而多年生草本植物,其地上部分死亡,植物则以休眠的地下器官如鳞茎、球茎、根茎或块茎越冬或度过干旱时期。
无论是种子、冬芽或其它贮藏器官的休眠,植物的生存和适应都具有重要意义。
种子是抗寒性的器官,一、二年生植物在成熟后形成种子,可以在严寒的冬季不被冻死而保存生活力。
休眠芽外围具有多层不透水不透气的鳞片,是一种保护芽越冬的结构。
休眠给物种的延续带来好处,如杂草种子可以在土层下保持多年不萌发,因而萌发期非常不整齐,有利于其物种的延续。
二、植物休眠的原因引起植物休眠的原因是多方面的,现分别叙述如下:(一)种子休眠的原因种子休眠通常由三方面原因引起。
1.种皮的影响许多种子的外层有厚而坚硬的组织或种皮上附有厚或致密的蜡质或角质,这种种子不具有透水性,致使胚得不到水分和氧气的供应;同时种子内的二氧化碳也不能排出,积累在胚的附近,进一步抑制了胚的萌发;而种皮坚硬或过厚(俗称为“铁籽”)给正常生长的胚穿过种皮形成了很大的机械阻力,致使种子处于休眠状态。