第五章 工艺计算-热量衡算
- 格式:ppt
- 大小:199.50 KB
- 文档页数:9
物料衡算和热量衡算物料衡算根据质量守恒定律,以生产过程或生产单元设备为研究对象,对其进出口处进行定量计算,称为物料衡算。
通过物料衡算可以计算原料与产品间的定量转变关系,以及计算各种原料的消耗量,各种中间产品、副产品的产量、损耗量及组成。
物料衡算的基础物料衡算的基础是物质的质量守恒定律,即进入一个系统的全部物料量必等于离开系统的全部物料量,再加上过程中的损失量和在系统中的积累量。
∑G1=∑G2+∑G3+∑G4∑G2:——输人物料量总和;∑G3:——输出物料量总和;∑G4:——物料损失量总和;∑G5:——物料积累量总和。
当系统内物料积累量为零时,上式可以写成:∑G1=∑G2+∑G3物料衡算是所有工艺计算的基础,通过物料衡算可确定设备容积、台数、主要尺寸,同时可进行热量衡算、管路尺寸计算等。
物料衡算的基准(1)对于间歇式操作的过程,常采用一批原料为基准进行计算。
(2)对于连续式操作的过程,可以采用单位时间产品数量或原料量为基准进行计算。
物料衡算的结果应列成原材料消耗定额及消耗量表。
消耗定额是指每吨产品或以一定量的产品(如每千克针剂、每万片药片等)所消耗的原材料量;而消耗量是指以每年或每日等时间所消耗的原材料量。
制剂车间的消耗定额及消耗量计算时应把原料、辅料及主要包装材料一起算入。
热量衡算制药生产过程中包含有化学过程和物理过程,往往伴随着能量变化,因此必须进行能量衡算。
又因生产中一般无轴功存在或轴功相对来讲影响较小,因此能量衡算实质上是热量衡算。
生产过程中产生的热量或冷量会使物料温度上升或下降,为了保证生产过程在一定温度下进行,则外界须对生产系统有热量的加入或排除。
通过热量衡算,对需加热或冷却设备进行热量计算,可以确定加热或冷却介质的用量,以及设备所需传递的热量。
热量衡算的基础热量衡算按能量守恒定律“在无轴功条件下,进入系统的热量与离开热量应该平衡”,在实际中对传热设备的衡算可由下式表示Q 1+Q 2+Q 3=Q 4+Q 5+Q 6 (1—1)式中: Q 1—所处理的物料带入设备总的热量,KJ;Q 2—加热剂或冷却剂与设备和物料传递的热量(符号规定加热剂加入热量为“+”,冷却剂吸收热量为“-”),KJ;Q 3—过程的热效率,(符号规定过程放热为“+”;过程吸热为“-”)Q 4—反应终了时物料的焓(输出反应器的物料的焓)Q 5—设备部件所消耗的热量,KJ;Q 6—设备向四周散失的热量,又称热损失,KJ;热量衡算的基准可与物料衡算相同,即对间歇生产可以以每日或每批处理物料基准。
硫酸铝制备技术一、硫酸铝制备方法:目前,国内制备硫酸铝两种方法:铝土矿法+硫酸、氢氧化铝+硫酸第一种:有铁硫酸铝制备方法:用硫酸直接处理铝土矿(或粘土)的方法而制得硫酸铝,其化学反应式为: H2Al(SiO4)2·H2O+3H2SO4=Al2(SO4)3+2H4SiO4+H2O特点:原材料铝土矿便宜,但铁含量高,且不易脱除,目前,山东等铝土矿资源丰富的地方大量生产。
第二种:无铁硫酸铝制备方法:氢氧化铝+硫酸制备2Al(OH)3+3H2SO4 = Al2(SO4)3 + 6H2O + Q氢氧化铝粉出厂已脱铁,铁含量低,故硫酸铝铁含量低。
生产的硫酸铝有固体硫酸铝和液体硫酸铝。
固体硫酸铝的Al2O3含量15.8~17%,而氢氧化铝粉中Al2O3含量64~65%,运1吨氢氧化铝粉相当运4吨固体硫酸铝。
而本地浓硫酸价格相对便宜,所以,用氢氧化铝粉和浓硫酸反应生产成本低。
二、硫酸铝的反应形式- 1 -硫酸铝反应形式有两种:一种常压反应(老基地),一种带压反应(新基地)常压反应所用设备一般用玻璃钢反应釜,通蒸汽一般有两种:一种通过故泡器通蒸汽(催化剂长岭分公司),故泡器起到搅拌的作用;另一种直接通蒸汽,用工业风搅拌(齐鲁)。
带压反应所有设备一般有三种:搪瓷反应釜、搪铅通过胶泥贴耐酸瓷砖、锆反应釜(国内第一家,存在风险)。
带压反应的理论基础热量衡算:(1)、2Al(OH)3+3H2SO4 = Al2(SO4)3 + 6H2O + Q2 3 1 6 Q-1284kj/mol -194.5Kcal/mol -3435Kj/mol -285.83Kj/molQ=△RH=-285.83*6-3435+1284*2+3*194.5*4.18=-142.95kj/mol故此反应为放热反应整年反应的热量为Q反:Q反=-142.95*25000*50*3.353*1000/342=-1751869000Kj/年(2)对产物Al2(SO4)3 (1年的产量)从0℃升至140℃所需要的热量Q Al2(SO4)3Q Al2(SO4)3=CM△T 其中C=0.35Kcal/Kg.℃Q Al2(SO4)3=CM△T =0.35*4.2*25000*50*3.353*(140-0)=862559250kj/年对水的吸热(从0℃升至140℃)所需要的热量Qk100℃蒸汽r1=539Kcal/kg,H1=639.1Kcal/kg- 2 -140℃蒸汽r2=512.3Kcal/kg,H1=653Kcal/kgMH20=1324+10117=11441T故Q水=CM△T+R1*M+(H2-H1)*M=M*(4.2*100+539*4.2+13.9*4.2)=11441*4.2*(100+539+13.9)*1000=3.137*1010KJ(4)、浓硫酸稀释所放出的热量Q稀Q稀=(3677×103/98)*21021*4.2=3.313*1010KJ(5)对整个反应(时间为一年)需向反应釜提供的热量Q提Q提=Q放-Q吸=(3.313+0.175-0.086-3.137)×1010=0.265×1010KJ/年故反应无需向反应气补充蒸汽三、化工原材料性质及产品质量指标本项目原料主要有氢氧化铝粉浓硫酸,其规格及来源见下表。
化工计算中的能量衡算是根据热力学第一定律,即能量守恒与转化定律,对化工过程进行能量计算。
化工生产中消耗的能量形式有机械能,电能和热能等等,其中以热能为主要形式,因此化工过程中的能量衡算重点是热量衡算。
本章具体对苯酐氧化反应器进行能量衡算如下:热量衡算方程式: Q1+Q2+Q3=Q4+Q5其中式中: Q1——初始物料带入设备中的热量,kJQ2——加热剂或冷却剂与设备和物料传递的热量,kJQ3——物理变化及化学变化的热效应,kJQ4——离开设备物料带走的热量,kJQ5——反应器系统热量损失,kJ反应过程的能量方框图图4-1 反应工段能量衡算图反应器能量横算过程根据图4-1及能量守恒可知:Q2=Q4+Q5-Q1-Q3Q1和Q4的计算Q=∑Mi×Ci(t1-t2)(Q1和Q4的计算都适用)式中:Mi——反应物体系中组分的质量,kg;C i ——组分i 在0-T℃时的平均比热容,KJ/; t 1,t 2——反应物系在反应前后的温度,℃。
物料进入设备时的温度为145℃,热量衡算的基准为145℃,△T=0,则: Q 1=0查得各物项平均比热容数据: (kJ/kg.℃)表4-1 各物相平均比热容所以: ()21i i 4t C M Q t -=∑=××(370-145)+××225+××225+××225+××225+××225+××225+××225+××225+××225+××225=.4kJ 过程Q 3的计算过程热效率可以分为两类:一类是化学过程的热效率即化学反应速率;另一类是物理过程热效率。
物料化学变化过程,除化学反应外,往往伴随着物料状态变化热效率,但本工艺流程中物理过程热效率较低,可以忽略不计,该过程皆为放热反应,则过程热效率可以由下式计算:主反应:C 8H 10+3O 2→C 8H 4O 3+3H 2O + Q 3-1=×103×=×103kJ/h副反应:CH 3C 6H 4CH 3+→C 4H 2O 3(顺酐)+4CO 2+4H 2O + Q 3-2=×103×=×103kJ/hCH 3C 6H 4CH 3+3O 2→C 6H 5COOH (苯甲酸)+CO 2+2H 2O +Q3-3=×103×=×103kJ/hCH3C6H4CH3+2O2→C8H6O2(苯酞)+2H2O +Q3-4=×103×=×103kJ/hCH3C6H4CH3+→C5H5O3(柠槺酐)+3CO+3H2O +Q3-5=×103×=×103kJ/hCH3C6H4CH3+→8CO+5H2O +Q3-6=×103×=×103kJ/hCH3C6H4CH3+→8CO2+5H2O +Q3-7=×103×=×103kJ/h 继而得到:Q 3 = Q3-1+Q3-2+Q3-3+Q3-4+Q3-5+Q3-6+Q3-7 =×103kJ/hQ5的计算该反应中的热损失按5%计算,即:Q 5=5%×(Q1+Q3)=5%×(0+×103)=×103kJ/hQ2的计算Q2为熔岩移出反应器的热量,由反应器热量守恒可知:Q 2=Q4+Q5-Q1-Q3=.8kJ/h反应器能量衡算表根据以上计算列出氧化反应工段能量衡算表格如下:表4-2 反应工段能量衡算表(吸收热量为“+”,释放热量为“-”)。
第五章能量衡算第一节概述第二节热量衡算第三节过程的热效应第四节热量衡算举例第五节加热剂、冷却剂及其其他能量消耗的计算5.1 概述5.1.1 能量衡算的目的和意义计算过程能耗指标进行方案比较,选定先进生产工艺。
能量衡算数据是设备选型和计算的依据;是组织、管理、生产、经济核算和最优化的基础5.1.2 能量衡算的的依据及必要条件依据为能量守恒定律条件:物料衡算的数据,相关热力学物性数据。
5.1.3 能量守恒的基本方程输出能量+消耗能量+积累能量=输入能量+生成能量5.1.4 能量衡算的分类单元设备的能量衡算和系统的能量衡算5.2 热量衡算5.2.1 热量平衡方程式Q —物料带入设备的热量,kJ ;Q2—加热剂或冷却剂传给设备及所处理物料的热量,kJ ;Q3 —过程的热效应,kJ;(注意符号规定)Q4—物料带出设备的热量,kJ ;Q5—加热或冷却设备所消耗的热量或冷量,kJ ;Q6 —设备向环境散失的热量,kJ。
注意各Q勺符号规定Q为设备的热负荷。
若Q为正值,需要向设备及所处理的物料提供热量; 反之,表明需要从设备及所处理的物料移走热量。
对间歇操作,按不同的时间段分别计算Q的值,并取其最大值作为设备热负荷的设计依据。
522 各项热量的计算1、计算基准一般情况下,可以0C和1.013 105Pa为计算基准有反应的过程,也常以25C和1.013 105Pa为计算基准。
2、Q或Q的计算无相变时物料的恒压热容与温度的函数关系常用多项式来表示:若知物料在所涉及温度范围内的平均恒压热容,贝心3、Q的计算过程的热效应由物理变化热Q和化学变化热Q两部分组成物理变化热是指物料的浓度或状态发生改变时所产生的热效应。
若过程为纯物理过程,无化学反应发生,如固体的溶解、硝化混酸的配制、液体混合物的精馏等,则Q C= 0 。
化学变化热是指组分之间发生化学反应时所产生的热效应,可根据物质的反应量和化学反应热计算。
4、Q的计算稳态操作过程Q 5= 0非稳态操作过程由下式求QQ=' GC (T2-T1)G-设备各部件的质量,kg;G—设备各部件材料的平均恒压热容,kJ kg-1「C-1;T1—设备各部件的初始温度,C;T2—设备各部件的最终温度,C。
能量衡算----读书笔记能量衡算能量消耗费用是复合材料制品的主要成本之一,合理利用能量可以降低成本。
因此,在复合材料的工艺设计中,能量衡算是十分重要的基本设计项目。
能量衡算的目的在于定量地表示出工艺过程各部分的能量变化,确定需要加入或可供利用的能量,确定过程及设备的工艺条件和热负荷。
能量衡算主要包括热能、动能、电能和化学能等。
在复合材料的生产中,一般无轴功存在或轴功相对来讲影响较小,可忽略不计。
热量是一种最主要的能量形式,能量衡算实际上是热量衡算,因此,在本节中主要讨论热量衡算。
热量衡算和系统热量衡算。
生产过程中所产生的化学反应热效应及物理状态变化热效应会使物料温度上升或下降,为了保证生产过程在一定温度条件下进行,则需环境对生产系统有热量的加入或放出,这便是热量衡算的目的。
对新车间设计,热量衡算是在物料衡算的基础上进行的。
通过热量衡算,可确定传热设备的热负荷,即在规定的时间中加入或移出的热量,从而确定传热剂的消耗量,选择合适的传热方式,计算传热面积。
热量衡算和物料衡算相结合,通过工艺计算,可确定设备工艺尺寸,如设备的台数、容积、传热面积等。
对已投产的生产车间或设备装置进行热量衡算,对合理利用热量、提高传热设备的热效率、回收余热、最大限度地降低产品的能耗有其重要意义。
能量衡算的主要任务如下:①确定各单元过程所需热量或冷量及传热速率,为其他工程,如供汽、给水等提供设计依据;②化学反应常伴有热效应,导致体系的温度变化,需确定为保持一定的反应温度所需的放热速率和传热速率;③通过能量衡算,分析工程设计和操作中热量利用是否经济合理,以提高热量利用水平;④确定泵、压缩机等输送机械和搅拌、过滤等操作机械所需功率。
在复合材料的工艺计算中,根据能量守恒原理:能量积累率=能量进入率一能量流出率+反应热生成率一反应热消耗率当过程没有化学反应时:能量积累率=能量进入率一能量流出率当过程没有化学反应,并处于稳态时:能量进入率=能量流出率复合材料生产一般在规定的压力、温度和时间等工艺条件下进行。
第五节热量衡算与热交换计算日期:2008-4-5 3:20:36 来源:来自网络查看:[大中小] 作者:不详热度: 2522一、热量衡算传热计算根据总传热方程进行:Q=KA△t m对于一个热交换器,传热计算的内容有两种,一为设计计算,即根据给定的传热量,确定热交换器的几何尺寸和结构参数;二为校核计算,即对某些热交换器,根据它的尺寸和结构进行校核,看其能否满足传热量的要求。
这两种计算的关键都在于传热面积是否合适,计算的基本依据是总传热方程以及与之相关的热量衡算式,在第四节中,已对总传热方程进行了较为详细的讨论,下面介绍热交换中的热量衡算式。
当热损失为零时,对热交换器作热量衡算可得到单位时间的传热量,此传热量又叫热负荷,即式3-20中的传热速率Q。
热负荷分为两种,即工艺热负荷和设备热负荷,工艺热负荷是指工艺上要求的在单位时间内需要对物料加入或取出的热量,用Q L表示,单位为W。
设备热负荷是热交换器所具备的换热能力,所以设备热负荷也就是热交换器的传热速率Q。
当热损失不可忽略时,为满足工艺要求,Q应大于Q L。
由热量衡算得到的是工艺热负荷Q L。
如果流体不发生相变化,比热取平均温度下的比热,则有:Q L=w h c ph(T1-T2)=w c c pc(t2-t1) ( 3-29 )式中 w----流体的质量流量,kg/s;c p----流体的平均定压比热,kJ/(kg·K);T----热流体温度,K;t----冷流体温度,K;(下标h和c分别表示热流体和冷流体,下标1和2表示热交换器的进口和出口)式3-29是热交换器的热量衡算式,也称为热平衡方程。
若流体在换热过程中有相变,例如饱和蒸汽冷凝成同温度冷凝液时,则有:Q L=w h r=w c c pc(t2-t1) (3-30)式中 w h----饱和蒸汽的冷凝速率,kg/s;r----饱和蒸汽的冷凝潜热,kJ/kg;当饱和蒸汽在热交换器中冷凝后,冷凝液液温度继续下降到T2,两部分热量(即潜热和显热)要加起来计算,这时:Q L=w h[r+c ph(T s-T2)]=w c c pc(t2-t1)式中 c ph-----冷凝液的比热,kJ/kg·K;T s------冷凝液饱和温度,K。
物料衡算和热量衡算在化工生产过程中,原料、水、电、蒸汽消耗量、主副产品产量等,都是十分重要的工艺指标。
为了得到这些数值,衡量生产过程的先进性,需要进行生产过程中局部的或全过程的物料衡算和热量衡算。
第一节物料衡算一、物料衡算及其分类物料衡算是根据质量守恒定律,对化工过程中的各股物料进行分析和定量计算,以确定它们的数量、组成和相互比例关系,并确定它们在物理变化或化学变化过程中相互转移或转化的定量关系的过程。
通过物料衡算计算转化率、选择性,筛选催化剂、确定最佳工艺条件,对装置的生产情况做出分析,判断装置是否处于最佳运转状态,为强化生产过程提供依据和途径。
因此,物料衡算是化工科研、设计、生产及其它工艺计算、设备计算的基础。
物料衡算按其衡算范围,有单元操作(或单个设备)的物料衡算与全流程(即包括各个单元操作的全套装置)的物料衡算;按其操作方式,有连续操作的物料衡算与间歇操作的物料衡算;按有无反应过程,有无化学反应过程的物料衡算与有化学反应过程的物料衡算;此外,还有带循环的化工过程的物料衡算。
物料衡算的计算一般分为两种情况。
一种是在已有的装置上,对一个车间、一个工段、一个设备或几个设备,利用实际测定的数据(或理论计算数据),算出另外一些不能直接测定的物料量,由此,对这个装置的生产情况作出分析,找出问题,为改进生产提出措施。
另一种是对新车间、新工段、新设备作出设计,即利用本厂或别的工厂已有的生产实际数据(或理论计算数据),在已知生产任务下算出需要原料量,副产品生成量和三废的生成量,或在已知原料量的情况下算出产品,副产品和三废的量。
二、物料衡算的依据和衡算范围物料衡算的理论依据是质量守恒定律,即在一个孤立的系统中,不论物质发生任何变化,其质量始终不变。
质量守恒定律是对总质量而言的,它既不是一种组分的质量,也不是指体系的总摩尔数或某一组分的摩尔数。
在化学反应过程中,体系中组分的质量和摩尔数发生变化,而且在很多情况下总摩尔数也发生变化,只有总质量是不变的。
化工设计物料衡算和热量衡算化工设计物料衡算和热量衡算是化工工程设计中非常重要的内容。
物料衡算是指在化工工程中对物料的流动进行计算和衡量的过程,而热量衡算则是指对化工工程中的热量流动进行计算和衡量的过程。
下面将详细介绍这两个内容。
首先,物料衡算是化工工程设计中的一个必不可少的环节。
物料衡算要基于反应的化学反应原理或工艺流程,计算出物料的各项数据,如流量、摩尔质量、摩尔仓数等。
具体的衡算步骤包括:确定物料的基本特性,如摩尔质量、密度等;确定物料的流动量和流速;根据反应方程式和反应器的驱动力,计算出反应速率;进一步计算出反应器的物料应用时间(HRT),以衡量物料在反应器中的停留时间。
物料衡算的目的是为了选择合适的设备和工艺流程,以确保化工工程的安全运行。
通过物料衡算,可以计算出物料在不同设备中的流速和停留时间,从而判断是否需要增加搅拌装置或延长反应器的体积等改进措施。
此外,物料衡算还能帮助设计人员确定各种物料转移设备的大小和形式,以满足工艺流程的需求。
其次,热量衡算是物料衡算的重要组成部分,也是化工工程中的关键环节。
热量衡算要根据物料的热力学特性及其运动过程,计算出热量的流动和传递。
具体的衡算步骤包括:测定物料的初始和终止温度;计算物料的比热容和比焓;计算物料在设备中的热量传递和损失;计算过程中发生的温度变化和热量变化;计算设备的热损失和热水平;最终评估设备的热效率。
热量衡算的目的是为了保证化工工程的热平衡和能量效率。
通过热量衡算,可以计算出各个设备和工艺过程的热量损失和热交换,从而判断是否需要增加散热装置或回收热量等改进措施。
此外,热量衡算还能帮助设计人员确定各种热交换设备的大小和形式,以满足工艺流程的需求。
总结来说,物料衡算和热量衡算是化工工程设计中非常重要的内容。
物料衡算可以帮助设计人员选择合适的设备和工艺流程,确保化工工程的安全运行;热量衡算则可以保证化工工程的热平衡和能量效率。
通过物料衡算和热量衡算,设计人员可以更好地优化工艺流程,提高化工工程的效率和经济性。