解:设M的坐标为(x, y) , 点A坐标是(x0,y0).
由于点B的坐标是(4 , 3) , 且M是线段AB
x0 4
y0 3
的中点, 所以
x
y
2
2
x0 2 x 4
因为点A在圆上运动 , 所以A的
于是有:
y0 2 y 3 坐标满足圆的方程 , 即:
( x0 1) y0 4 (2 x 4 1) (2 y 3) 4
(3)圆心(a , - 3a ), 半径 | a | .
练习:判断下列方程分别表示什么图形?
2
2
(1) x + y = 0
2
2
(2) x + y - 2 x + 4 y - 6 = 0
2
2
2
(3) x + y + 2ax - b = 0
(1)原点(0,0)
(2)表示圆 , 坐标为(1,-2) , 半径是 .
课 堂 练 习
1.写出下列各圆的圆心坐标和半径:
(1)
x y 6x 0
(2)
x y 2by 0
2
2
2
2
(3) x 2 y 2 2ax 2 3ay 3a 2 0
解: (1)圆心坐标(3, 0) ,半径为3.
(2)圆心坐标(0, b) , 半径为 |b| .
y
一点,也就是点M属于集合
| OM | 1 M
{M |
}
| AM | 2
A x
由两点间的距离公式,得
C O
x y
2
2
1
化简得 x2+y2+2x3=0