电器电压电流速断保护原理
- 格式:pdf
- 大小:61.60 KB
- 文档页数:1
无时限电流速断保护工作原理无时限电流速断保护是一种电力系统故障保护装置,用于保护电力设备和线路免受电流过载和短路的损害。
其工作原理如下:
1、电流感应:无时限电流速断保护装置通过电流互感器感应电流的大小和方向。
电流互感器将电流信号转化为与之成正比的电压信号。
2、信号处理:电压信号经过信号处理电路进行放大和滤波处理,得到符合电路保护所需的信号。
3、判据设定:根据设备的额定电流和保护设备的要求,设置过流保护的动作时间和动作电流。
一般会设置多个档位的动作时间和电流,以适应不同的故障类型。
4、动作判据:通过比较处理后的电流信号和设定的动作电流,判断当前电流是否超过了设定的限制范围,如果超过则认为发生过流故障。
5、动作操作:当判断有过流故障发生时,无时限电流速断保护会启动相应的动作装置,如断路器,来切断故障电路,防止过高的电流损坏设备。
无时限电流速断保护是针对电流过载和短路故障的保护装置,不同于时间限制短路保护装置需要考虑故障的持续时间。
它能够快速地检测和切断故障电流,保护电力设备和线路的安全运行。
- 1 -。
常规电流速断保护和电流电压联锁速断保护实验一、 实验目的(1) 掌握电流速断保护和电流电压联锁速断保护的构成和基本原理。
(2) 掌握电流速断保护和电流电压联锁速断保护的整定方法。
⑶ 测试并比较电流速断保护和电流电压联锁速断保护的保护范围。
二、 实验原理及实验说明1、保护基本原理(1)电流速断保护:仅反映于电流增大而瞬间动作的电流保护,称为电流速断保护。
为保证选择性,必须保证下一出口处短路时保护不起动,因此电流速断保护的动作电 流必须大于最大运行方式下下一线路出口处发生短路的短路电流。
式中:E 为系统的等效相电势;Xs 为最大运行方式下,系统的等值电抗;X 。
为 线路单位长度电抗;L 为线路全长;心引为可靠系数,考虑到整定误差、短路电流计 算误差和非周期分量的影响等,可取 1.2~1.3 o电流速断保护的主要优点是简单可靠,动作迅速,其缺点是不能保护线路全长,而且保护范围受系统运行方式变化影响很大,当被保护线路的长度较短时,速断保护 可能没有保护范围,因此不能采用。
I pu即电流速断保护的整定值为: K rel EX S X o L。
(2)电流电压联锁速断保护电流电压联锁速断保护是由过电流元件和低电压元件共同组成的保护, 只有当电 流、电压元件同时动作时保护才能动作跳闸。
由于电流电压联锁速断保护采用了电流 和电压的测量元件,因此,在外部短路时,只要一个测量元件不动作,保护就能保证 选择性。
保护整定主要考虑保证在正常运行方式下有较大的保护范围。
为保证选择性,在则电流继电器的动作电流为:线路单位长度电抗;L I=0.75 L o 1 pu 就是在正常运行情况下,保护范围末端发生三相短路时的短路电流。
由于在该 点发生短路时,低电压继电器也应该动作,因此电压继电器的动作电压应设置为:U pu \ 3 1 pu X 0 L1 由于电流电压联锁速断保护的电流继电器整定值小于电流速断保护的电流整定值,因而具有更高的灵敏度。
电流电压连锁速断保护原理
电流电压连锁速断保护是一种用于电力系统中的保护装置,通过监测电流和电压的变化来实现对电路和设备的保护。
其原理可以简述如下:
1. 连锁速断保护装置包括一个电流保护和一个电压保护。
电流保护检测电流是否超过预定的安全值,电压保护检测电压是否超过预定的安全范围。
2. 当电流或电压超过设定值时,电流电压连锁速断保护将发出触发信号。
3. 触发信号将进入控制单元,该单元将控制电路中的主开关进行断电操作,从而切断电路。
4. 切断电路后,中断电流和电压的供应,从而保护设备免受过电流和过电压的损害。
5. 在触发信号被触发后,速断保护还可以启动其他辅助保护装置,如告警系统或自动开关机装置,进一步增强电路的安全性。
总的来说,电流电压连锁速断保护通过监测电流和电压的变化,及时切断电路,保护设备免受过电流和过电压的损害。
这种保护装置在电力系统中起到重要的作用,可以保护设备的安全运行,防止事故和损坏的发生。
继电保护知识,三段式电流保护工作原理、整定计算什么是三段式电流保护三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段)相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。
一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
由于要求它必须保护本线路的全长,因此它的保护范围必然要延伸到下一条线路中去,这样当下一条线路出口处(如图1中,对于保护1来说,d2点处)发生短路时,它就要起动,在这种情况下,为了保证动作的选择性,就必须使保护的动作带有一定的时限,但又为了使这一时限尽量缩短,我们就考虑使它的保护范围不超过下一条线路速断保护(如图1中的保护2)的保护范围,而动作时限则比下一条线路速断保护高出一个时间阶段,即如图2(a)所示,由于它能以较小的时限快速切除全线路范围以内的故障,所以我们称它为限时电流速断保护。
限时电流速断保护的整定值解释说明以及概述1. 引言1.1 概述限时电流速断保护是一种重要的电力保护装置,广泛应用于电力系统和工业生产设备中。
它可以在发生电流异常或短路故障时及时切断电源,以避免设备过载、损坏甚至事故发生。
本文将对限时电流速断保护的整定值进行解释说明,并概述其原理、定义、作用、确定方法以及影响因素。
1.2 文章结构本文共分为五个主要部分:引言、限时电流速断保护的整定值解释说明、限时电流速断保护的概述、实际案例分析与应用场景展示以及结论与展望。
首先,在引言部分,我们将简要介绍本文的研究背景和内容安排。
1.3 目的本文旨在深入探讨限时电流速断保护的整定值,为读者提供对该装置原理和作用的详细解释,并介绍整定值确定方法和相关影响因素。
通过实际案例分析和应用场景展示,我们将进一步说明该技术在电力系统和工业生产设备中的应用,并对其未来发展趋势进行探讨。
最后,通过总结和展望,我们将对本文的研究成果进行回顾,并提出进一步研究的建议和未来发展方向。
2. 限时电流速断保护的整定值解释说明:2.1 限时电流速断保护原理:限时电流速断保护是一种用于电力系统中的保护措施,其原理是在设定的时间范围内,当电路中电流超过了所设定的整定值,保护装置将会迅速地切断电路。
这可以有效地防止因短路故障或其他异常情况导致的过载和设备损坏。
2.2 整定值的定义和作用:整定值是指在限时电流速断保护装置中设定的触发动作所要求达到的最大允许电流值。
它起着决定何时切断电路的重要作用。
通过合理设置整定值,可以确保在正常运行情况下不会触发保护装置,并且能够及时响应并切断故障电路,减小故障对系统其他部分的影响。
2.3 整定值的确定方法和影响因素:确定整定值需要考虑多个因素。
首先是根据所需保护的设备类型和额定工作条件来选择适当的整定值范围。
其次,需要根据具体系统情况、故障类型和可能出现的负载情况进行分析。
通过对电流的测量和分析,结合经验和相关标准,可以最终确定一个合理的整定值。
实验一 输电线路的电流电压微机保护实验一、实验目的1、通过实验进一步理解电流电压联锁保护的原理、并掌握其整定和计算的方法。
2、掌握电流电压联锁保护适用的条件。
二、实验原理1、电压速断保护在电力系统的等值电抗较大或线路较短的情况下,当线路上不同地点发生相间短路时,短路电流变化曲线比较平坦,见图10-1所示的无时限电流速断保护。
电流速断保护的保护范围较小,尤其是在两相短路和最小运行方式时的保护范围更小,甚至没有保护范围。
在这种情况下,可以采用电压速断保护,而不采用电流速断保护。
在线路上不同地点发生相间短路时,母线上故障相之间残余电压Ucy 的变化曲线如图10-2所示。
从图中看出,短路点离母线愈远,Ucy 愈高。
其中:①表示最大运行方式下Ucy 变化曲线;②表示最小运行方式下的 Ucy 变化曲线。
电压速断保护是反应母线残余电压Ucy 降低的保护。
在保护范围内发生短路时,Ucy 较低,保护装置起动;在保护范围以外发生短路时,Ucy 较高,保护装置不起动。
如同电流速断保护一样,电压速断保护可以构成无时限的,也可以构成有延时的。
在图10-2所示的线路上,如果装有保护相间短路的无时限电压速断保护,它的动作电压Udx 应整定为k L d k cy K X I K U Udx )3(min .min.3==式中Ucy.min —— 最小运行方式下在线路末端三相短路时,线路始端母线上的残余电压;)3(min .d I —— 上述短路时的短路电流;X l —— 线路电抗;Kk —— 可靠系数,考虑到电压继电器的误差和计算误差等因素,它一般取1.1~1.2。
从图10-2可见,在最小运行方式下,电压速断保护的保护范围(Ib.min )最大;在最大运行方式下,保护范围(Ib.max )最小。
所以电压速断保护应按最小运行方式来整定动作电压,按最大运行方式来校准保护范围。
在线路上任何一点发生短路时,不论是三相短路还是两相短路,母线上故障相之间的残余电压是相等的。
电力系统继电保护仿真实验报告实验名称电力系统故障电流速断保护班级学号姓名2021年 7 月 13 日一、实验背景电力系统的所有一次设备在运行过程中由于外力、绝缘老化、过电压、误操作、设计缺陷等原因会发生如短路、断线等故障。
最常见同时也是最危险的故障是发生各种类型的短路。
在发生短路时可能产生以下后果:(1)通过短路点的很大短路电流和所燃起的电弧,使故障元件损坏。
(2)短路电流通过非故障元件,由于发热和电动力的作用,会使其的损坏或缩短其使用寿命。
(3)电力系统中部分地区的电压大大降低,使大量的电力用户的正常工作遭到破坏或产生废品。
(4)破坏电力系统中各发电厂之间并列运行的稳定性,引起系统振荡,甚至使系统瓦解。
各种类型的短路包括三相短路、两相短路、两相短路接地和单相接地短路。
不同类型短路发生的概率不一样,不同类型短路电流大小也不同,一般为额定电流的几倍到几十倍。
大量的现场统计数据表明,在高压电网中,单相接地故障发生概率最大。
为了保证电力系统运行的功能和质量,在设计、分析和研究时必须保证系统的静态和动态特性。
现代电力系统是一个超高压、大容量和跨区域的巨大的联合系统,电力系统事故具有突发性强、维持时间短、复杂程度高、破坏力大的特点,因而使得事后对故障原因分析、查找变得尤其困难。
由于在实际系统上进行试验和研究比较困难,因此借助各种电力系统动态仿真软件电力系统的设计和研究已成为有效途径之一。
当线路发生短路时,重要特征之一是线路中的电流急剧增大,当电流流过某一预定值时,反应于电流升高而动作的保护装置叫过电流保护。
电流保护分为:电流速断保护、限时电流速断保护和定时限过电流保护,称为电流三段式保护。
当供电网络中任意点发生三相和两相短路时,流过短路点与电源间线路中的短路电流包括短路工频周期分量、暂态高频分量和衰减直流分量。
其短路工频周期分量近似计算为:k k s E E I K Z Z Z ϕϕϕ∑==+。
MATLAB 是一种适用于工程应用各领域分析设计与复杂计算的科学计算软件,由美国Mathworks 公司于1984年正式推出,1988年推出3.X(DOS)版本,1992年推出4.X(Windows)版本;1997年推出5.1(Windows)版本,2000年下半年,Mathworks 公司推出了MATLAB6.0版本。
短路电流延时速断保护功能1. 引言1.1 背景介绍短路电流延时速断保护功能是一种重要的电气安全保护装置,广泛应用于各种电气设备和系统中。
随着电气设备的发展和电气系统的复杂化,短路电流所带来的危害也越来越大,因此短路电流延时速断保护功能的作用变得愈发重要。
在过去,电气设备和系统常常缺乏有效的短路保护装置,一旦发生短路故障,往往会导致设备损坏、生产中断甚至火灾等严重后果。
人们对于短路电流延时速断保护功能的需求日益迫切。
研究和应用短路电流延时速断保护功能可以保障电气设备和系统的安全运行,提高设备的可靠性和稳定性。
了解短路电流延时速断保护功能的原理和工作原理,掌握其应用场景以及优点与局限性,对于提高电气安全保护水平具有重要意义。
【内容结束】2. 正文2.1 短路电流延时速断保护功能的原理短路电流延时速断保护功能的原理主要是利用电路中的保护元件,在检测到电路中出现短路电流时,通过延时速断的方式快速切断电路,防止电路元件受到损坏并确保用户的安全。
在电路中,通常会设置短路保护元件,如熔断器、保险丝等,这些元件在电路中起到监测电流的作用。
当电路中的电流超过了额定值,就会触发保护元件,将电路切断,起到保护电路和设备的作用。
而延时速断功能则是在检测到短路电流时,不是立即切断电路,而是延时一段时间后再切断,这样可以避免误触发和频繁断电,提高电路的可靠性和稳定性。
短路电流延时速断保护功能主要应用在电力系统、工业控制系统、电子设备等领域。
在这些领域,电路中可能存在各种突发情况,如短路、过载等,采用短路电流延时速断保护功能可以及时保护设备,避免故障扩大,保证设备的正常运行。
短路电流延时速断保护功能具有快速、精准的保护特性,能有效防止电路中出现短路电流造成的损坏,提高电路的可靠性和安全性。
但是也需要注意,延时切断可能会导致一定程度的延迟响应,需要根据具体情况和要求来选择合适的保护方案。
【字数:261】2.2 工作原理短路电流延时速断保护功能的工作原理主要是基于电路中的保护装置,在电路中检测到短路电流时,会启动保护装置进行相应的动作以保护电路和设备的安全。
电流保护原理第一节阶段式电流保护保护功能由各段电流保护相互配合完成,通常为三段式电流。
三段分别为:①第I段:瞬时电流速断保护;②第II段:限时电流速断保护;③第III段:定时限过电流保护。
在实施时,也可以根据需要配置为两段式电流保护,两段式电流保护即只配置第II段和第III段。
瞬时电流速断保护即第I段保护单相原理如图1、为实现快速性,同时又要保证选择性,所以抬高整定值,牺牲了保护范围。
2、第I段的整定值,是按大于被保护线路末端最大的短路电流的原则来整定。
3、保护范围受系统运行方式、故障类型影响大。
第I段保护范围通常比较小,为线路全长的15~50%。
4、由于灵敏度不够,所以第I段保护通常不能单独使用,要有带时限的电流速断保护配合。
限时电流速断保护即第II段,目的是为了弥补第I段保护的缺陷。
5、只有降低整定值,保护范围才能延长,保护范围不可避免地延伸到了相邻下一线路,需要与相邻下一线路的保护相配合,整定值大于相邻下一线路第I段的定值。
6、为保证选择性,通常要延时,为了缩短延时时间,要求保护范围不能延伸太长,不能超出下一线路第I段的保护范围。
7、时限级差一般为0.5秒。
限时电流速断保护即第II段保护单相原理图:定时限过电流保护即第III段。
1、保护范围较大,通常作为本线路的近后备保护以及作为相邻下一线路的远后备保护。
2、整定值是按大于最大的负荷电流来确,即在最大负荷电流作用下不能起动,且在装置动作以后故障切除后在最大负荷电流作用下能可靠返回。
3、动作延时按阶梯形时限配合原则来确定。
三段式电流保护保护范围及时限配合三段式电流保护展开式原理:定时限过电流保护即第III段。
1、保护范围较大,通常作为本线路的近后备保护以及作为相邻下一线路的远后备保护。
2、整定值是按大于最大的负荷电流来确,即在最大负荷电流作用下不能起动,且在装置动作以后故障切除后在最大负荷电流作用下能可靠返回。
3、动作延时按阶梯形时限配合原则来确定。
电力系统继电保护原理知识第一章 绪论1-1 电力系统继电保护的作用电力系统在运行过程中,有可能发生各种故障和不正常工作情况。
一. 各种故障5%10%65%20%d (3)d (2)d (1,1)d(1)我们产品应用的电压等级是35KV 、110KV 。
35KV电网为小电流接地系统110KV电网为大电流接地系统发生故障后,会造成以下严重后果:(1)电力系统电压大幅度下降,广大用户负荷正常工作遭到破坏。
(2)烧坏电气设备。
(3)由于发热和电动力的作用,影响设备使用寿命,甚至遭到破坏。
(4)破坏发电机并列运行的稳定性,甚至使整个电力系统失去稳定而瓦解。
二.不正常工作例如过负荷、过电压等。
继电保护的基本任务是:(1)电力系统发生故障时,自动地、迅速地、有选择地将故障设备从电力系统中切除;(2)当发生不正常工作时,自动地、及时地、有选择地发出信号,由运行人员进行处理。
1-2 继电保护基本原理继电保护构成方框图测量元件: 将输入量与整定量进行比较,以确定动作与否。
测量元件又分“过量动作”(如电流量)和“欠量动作”(如电压量)。
1-3 对继电保护装置的基本要求一、 选择性后备保护概念:对于D 点短路,是后备保护。
(也称远后备)。
1t 1= t 2 +△t仅将故障部分切除,而非故障部分能继续运行,尽量缩小中断供电的范围。
测量逻辑执行跳闸信号输入量(u 、I )二、快速性 快速动作的好处:(1) 系统电压恢复得快,减少对广大用户的影响。
(2) 电气设备损坏程度减轻。
(3) 防止故障扩大,对高压电网来说,快速切除故障尤为重要,否则会引起电力系统振荡,甚至失去稳定。
如保护3切除故障慢,则UN ↑而UM ↓。
(4) 有利于电弧闪络处的绝缘强度恢复,当故障切除后,又自动重合时(采用自动重合闸装置),再送电容易获得成功。
对于35~110KV 快速跳闸时间一般为40ms三、灵敏性灵敏性是指继电保护装置反应故障的能力,一般以灵敏系数的大小来衡量。
电力系统继电保护原理课目录绪论0.1 继电保护的作用0.2 对电力系统继电保护的基本要求0.3 继电保护的基本原理及保护装置的组成第1章电网的电流电压保护1.2 电网相间短路的方向性电流保护1.3 大接地电流系统的零序电流保护2.1 距离保护的基本原理2.2 阻抗继电器2.3 影响距离保护 确工作的因素及防 方法第3章输电线路的纵联保护3.1 概述3.2 输电线的纵联差 保护3.3输电线路的高频保护3.4 高频闭锁方向保护3.5 高频闭锁负序方向保护3.6 高频闭锁距离保护和零序保护3.7 高频相差 保护3.8 光纤差 保护第4章输电线路的自 重合闸4.1 自 重合闸概述4.2 相自 重合闸4.3 综合自 重合闸第5章电力 压器的保护5.1 电力 压器的故障异常 行状态及 保护方式5.2 压器内部故障的差 保护5.3 压器零序保护5.5 高压厂用 压器保护第6章发电机保护6.2 相间短路的纵联差 保护6.3 发电机定子绕组匝间短路保护6.5 发电机 励失磁保护6.6 励磁回路一点接地保护6.8 转子表层过热(负序电流)保护6.9 发电机的逆功率保护6.10 发电机失步异常 行保护6.11 定子绕组对称过负荷保护6.12 发电机 压器组公用继电保护7.2 带制 特性的母线差 保护7.3 JMH—1型母线差 保护装置的基本原理7.4 电流相 比较式母线保护第8章异步电 机和电容器的保护8.1 异步电 机的保护8.2 电力电容器的保护第9章继电保护装置的整定计算9.1 概述9.3 110~220 kV中性点直接接地电网线路保护的配置 整定计算9.4 330~550 kV中性点直接接地电网线路保护的配置 整定计算9.5 发电机保护的配置 整定计算9.6 压器保护的配置 整定计算9.7 母线保护及断路器失灵保护的配置 整定第10章继电保护装置的基本元 电路10.2 换器10.3 对称分量滤过器10.4 综合器第11章模拟型继电保护装置11.1 模拟型继电保护装置总论第12章微机保护装置原理12.2 微机保护的硬 构成原理12.3 数字滤波器12.4 微机保护的算法12.5 微机保护的抗干扰措施第13章 电站综合自 化技术13.3 电站综合自 化系统的结构参考文献0.1 继电保护的作用电力系统的 行要求安全可靠 电能质量高 经济性好 自然条 设备及人 因素的影响,可能出现各种故障和 常 行状态 故障中最常见 危害最大的是各种形式的短路•0.2 对电力系统继电保护的基本要求0.2.1 选择性图0-1 电网保护选择性 作(1) 保护(2)后备保护1)远后备图0-2 后备保护的构成方式(a)远后备保护(b) 后备保护2) 后备(3)辅 保护0.2.2 速 性0.2.3 灵敏性0.3 继电保护的基本原理及保护装置的组成图0-3 应一端电气量的保护及 行工况(a) 常 行状态(b)故障状态0.3.2 应两端电气量的保护0.3.3 应非电气量的保护图0-4 应两端电气量的保护的 行工况图0-5 继电保护装置组成方框图第1章电网的电流电压保护1.1 单侧电源网 的相间短路的电流电压保护1.1.1 电流继电器返回系数:即继电器的返回电流 作电流的比值1.1.2 无时限电流速断保护(电流 段)图1-1 电流速断保护 作特性的分析相短路电流可表示图1-2 无时限电流速断保护的单相原理接线图图1-3 系统 行方式的 化对电流续断保护的影响图1-4 被保护线路长短 同对电流速断保护的影响图1-5 线路- 压器组的电流速断保护图1-6 电流电压联锁速断保护的单相原理接线图图1-7 电流电压联锁速断保护的 作特性分析电流继电器的 作电流• 电压继电器的 作电压应• 1.1.3 限时电流速断保护(电流 段)•(1)工作原理和整定计算的基本原则图1-8 单侧电源线路限时电流速断保护的配合整定图(3)保护装置灵敏性的校验•(4)限时电流速断保护的单相原理接线图图1-9 限时电流速断保护的单相原理接线图1.1.4 定时限过电流保护(电流 段) (1)工作原理和整定计算的基本原则图1-10 定时限过电流保护起 电流和 作时限的配合图1-11 最大负荷说明图(2)按选择性的要求整定定时限过电流保护的 作时限图1-12 单侧电源串联线路中各过电流保护 作时限的确定•(3)过电流保护灵敏系数的校验• 1.1.5 段式电流保护的应用图1-13 阶段式电流保护的配合和实际 作时间的示意图图1-14 有电流速断 限时电流速断和过电流保护的单相原理接线图•1.2 电网相间短路的方向性电流保护1.2.1 方向性电流保护的基本原理图1-15 侧电源供电网 (a) f 1点短路时的电流分布(b) f 2点短路时的电流分布(c)各保护 作方向的规定(d)方向过电流保护的阶梯形时限特性1-15.tif图1-16 方向过电流保护的单相原理接线图1.2.2 功率方向继电器的工作原理图1-17 方向继电器工作原理的分析(a)系统网 接线图(b) f 1点短路(c) f 2点短路图1-18 功率方向继电器的工作原理图1-19 相短路的相量图• 1.2.3 对方向性电流保护的评图1-20 侧电源线路 电流速断保护的整定(1) 增电流的影响图1-21 有 增电流时,限时电流速断保护的整定•(2)外汲电流的影响图1-22 有外汲电流时,限时电流速断保护的整定。
第一章概述第一节变压器可能发生的故障和不正常运行方式第二节变压器保护装置装设的原则第三节变压器引出端发生短路时绕组中电流的分布第二章变压器的瓦斯保护装置第一节瓦斯保护的作用第二节瓦斯继电器的构造和动作原理第三节瓦斯继电器的安装第四节瓦斯保护的接线方式第五节瓦斯保护的运行第六节瓦斯保护的整定第七节冲击油压继电器第三章变压器的电流速断保护第一节电流速断保护装设原则第二节电流速断保护原理接线图第三节电流速断保护整定原则第四章变压器的纵联差动保护第一节变压器差动保护的基本原理第二节变压器差动保护的特点第三节变压器差动保护构成方式第四节三相三柱式全星接线的变压器纵联差保护电流互感器的接线方式第五节500KV主变压器的纵差保护第六节变压器过电压对差动保护的影响第五章变压器相间故障和接地故障的后备保护第一节变压器的过电流保护装置第二节变压器带低电压起动的过电流保护装置第三节变压器复合电压起动的过电流保护装置第四节变压器的负序过电流保护装置第五节复合电压起动的过电流保护和负序过电流保护灵敏度的评价第六节阻抗保护第七节电流速断保护第八节变压器防止相间故障的后备保护配置原则第九节变压器的接地保护第十节500kV变压器中性点快速接地开关第六章自耦变压器的保护第一节自耦变压器在电力系统中的应用和特点第二节自耦变压器的阻抗计算和接地短路电流的分布第三节自耦变压器的运行方式和各侧传输容量第四节自耦变压器保护的配置方式第七章发电机-变压器组的保护第一节发电机-变压器组保护装置的特点及装设原则第二节发电机-变压器组纵联差动保护的配置原则第三节发电机-变压器组后备保护的特点第四节发电机-变压器组的发电机侧接地保护的特点第八章变压器的异常运行和其它保护第一节变压器的过负荷保护第二节变压器的过励磁保护第三节探测漏磁通变化的变压器匝间短路保护第四节变压器开关的非全相运行保护第九章并联电抗器的保护第一节并联电抗器保护装置的配置第二节零序电流补偿的方向零序电流保护附录一校验灵敏度时的二次侧电流与变压器接线和电流互感器接线以及短路形式的关系附录二制动系数与动作电流和制动电流之间相角差的关系附录三三绕组变压器制动线圈的接法附录四变压器保护装置接线全图附录五发电机变压器组保护配置方案。