1—3型压电复合材料
- 格式:pdf
- 大小:227.26 KB
- 文档页数:6
1-3型压电复合材料的制备与物性的研究压电复合材料是指由压电陶瓷材料和有机聚合物材料按照一定的连通方式组合在一起而构成的功能材料。
由于压电复合材料同时具备聚合物相和压电相的优点而被广泛的研究,其在医学超声探头和水声换能器中都有着重要的应用。
1-3型压电复合材料的连通方式为一维连通的压电陶瓷平行的镶嵌在三维连通的聚合物基体中,其声阻抗远小于压电陶瓷材料。
因而,用复合材料制作的换能器更容易与水和人体组织匹配。
制备1-3型压电复合材料的方法有切割-填充法、脱模法等,其中切割-填充法操作简单、成本低,并且可以根据需要控制复合材料中陶瓷柱的宽度与间隔,因此被广泛的用于复合材料的制备。
本论文利用切割-填充法制备了陶瓷相的体积比不同的1-3型PZT-Epoxy压电复合材料和陶瓷相的体积比为31%的1-3型BCZT-Epoxy压电复合材料,并对其超声物性展开了研究。
主要结果如下:(1)研究了陶瓷相的体积比对1-3型PZT43-Epoxy压电复合材料的压电常数、声阻抗等物性的影响,并探讨了材料的纵横比对复合材料的厚度机电耦合系数kt的影响。
实验制备了陶瓷相的体积比分别为25%、31%和40%的压电复合材料。
研究发现复合材料的声阻抗Z和压电常数d33都随陶瓷相的体积比的增加而增大,实验制备的复合材料的声阻抗的最小值和压电常数的最大值分别为10.2Mrayl、317pC/N。
与PZT43陶瓷材料相比,复合材料的厚度机电耦合系数kt 提高、介电常数εr降低,但是介电损耗tanδ增加、机械品质因子Qm比PZT43陶瓷降低了 2个数量级。
在-50℃-150℃的测试区间内,实验制备的压电复合材料的厚度机电耦合系数kt都具有较好的温度稳定性,并且kt随着复合材料样品的厚度的增加呈现先增加后减少的趋势,在纵横比约为3时kt取得最大值。
陶瓷相的体积比为31%的1-3型PZT43-Epoxy压电复合材料在厚度为1.4mm时的物性分别为:d3= 273pC/N,Z=11 Mrayl,kt=0.66,Q =4.1 εr= 410,ta =0.03。
1-3型压电复合材料及换能器研究的开题报告您好,以下是一份可能的开题报告模板,供参考:开题报告一、选题背景和意义1-3型压电复合材料是一种重要的压电材料,由于其高压电性能和良好的机械性能,在传感器、换能器、振动控制等领域有广泛的应用。
近年来,研究人员提出了多种制备方法和改进技术,以进一步提高材料的性能。
换能器是一种将电能和机械能相互转换的装置,其中压电换能器以其高效率和稳定性,被广泛应用于声波、超声波、声光、光电等领域。
研究压电复合材料作为换能器材料,可以为开发高性能、低成本的压电换能器提供理论和技术支持。
二、研究目标和内容本项目旨在研究1-3型压电复合材料及其在压电换能器中的应用,具体目标和内容包括:1. 探究不同种类的1-3型压电复合材料的制备工艺和性能,比较其优缺点;2. 分析1-3型压电复合材料的微观结构和性能之间的关系,以揭示材料的基本特性;3. 设计和制备基于1-3型压电复合材料的压电换能器,探究其灵敏度、响应速度、频率响应等性能;4. 对比不同种类的压电换能器的性能,探究压电复合材料在换能器中的优势和不足。
三、研究方法和技术路线1. 利用模拟软件建立1-3型压电复合材料的微观结构模型,分析材料的力学特性;2. 通过溶胶-凝胶法、烧结法等制备1-3型压电复合材料样品,对其压电性能、机械性能和微观结构进行测试和分析;3. 设计并搭建压电换能器实验平台,测量其电学、机械性能,比较不同种类压电换能器在响应速度、频率响应等方面的性能差异;4. 运用统计学方法分析压电复合材料和压电换能器的性能数据,得出结论和预测。
四、预期成果1. 详细研究和分析不同制备方法下1-3型压电复合材料的微观结构和性能,为高性能压电材料的研发提供理论指导和技术支持;2. 探究1-3型压电复合材料在压电换能器中的应用,为压电换能器的设计和制备提供重要的实验基础和理论依据;3. 比较不同种类压电换能器的性能差异,为压电换能器的研究和开发提供重要的参考和指导。
型球形压电陶瓷复合材料换能器设计[LI X L,TENG C,ZHOU Y.Design of 1-3 Spherical Piezoelectric Ceramic Composite Tranducer[DOI:10. 16311/j. audioe. 2020. 08. 020型球形压电陶瓷复合材料换能器设计李晓雷,滕 超,周 瑜中国电子科技集团公司第三研究所,北京型球形压电陶瓷复合材料换能器。
采用切割型球形压电陶瓷复合材料制作球形换能器,波束角可达44°,可实现高频宽波束发射。
Design of 1-3 Spherical Piezoelectric Ceramic Composite TranducerLI Xiaolei, TENG Chao, ZHOU Yu(The 3th Research Institute of China Electronics Technology Group Corporation, Beijing 100015, China)A 1-3 spherical piezoelectric ceramic composite transducer was designed by using finite element software. 1-3 spherical piezoelectric ceramic composites were prepared by cutting-pouring-forming method and their properties were tested. The spherical transducer is made of 1-3 spherical piezoelectric ceramic composite material and measured by the test system. The results show that the biggest transmitting voltage response of the transducer can reach 156 dB, and the -3 dB beam angle can reach 44wide beam transmission in the working frequency range.1-3 spherical piezoelectric ceramic composite; transducer; wide beam压电复合材料是将压电陶瓷相和聚合物相按一定的体积或重量比例和一定的空间几何分布复合而成的。
压电复合材料摘 要: 从压电材料的压电效应入手, 介绍了压电材料的分类及结构组成。
针对不同压电材料在生产实践中的应用情况, 列出现阶段压电材料的制备技术。
综述了近年来压电材料的研究现状, 并系统介绍了压电材料在各个领域的应用和发展。
关键词:压电材料;压电效应;制备工艺;应用Abstract: This paper begins with the piezoelectric effect and introduces the classification and structure of piezoelectric materials. Considering the application of different piezoelectric materials in the production practice, preparative techniques of piezoelectric material in the current stage are listed. Research actuality of piezoelectric materials is summaried. Application and development of the piezoelectric materials in various Fields are also introduced systematically.Keywords: piezoelectric material; piezoelectric effect; preparative technique; application1.引言自20世纪出现压电材料以来, 因其独特性能,逐渐成为材料领域中的重要组成部分。
随着电子、导航和生物等高技术领域的发展, 人们对压电材料性能的要求越来越高。
目前, 研究和开发压电材料主要是从老材料中发掘新效应, 开拓新应用; 从控制材料组织和结构入手,运用新工艺制备各种新型压电材料。
功能复合材料的研究和应用压电复合材料概念:压电复合材料是有两种或多种材料复合而成的压电材料。
常见的压电复合材料为压电陶瓷和聚合物(例如聚偏氟乙烯活环氧树脂)的两相复合材料。
这种复合材料兼具压电陶瓷和聚合物的长处,具有很好的柔韧性和加工性能,并具有较低的密度、容易和空气、水、生物组织实现声阻抗匹配研究:压电材料由于具有响应速度快、测量精度高、性能稳定等优点而成为智能材料结构中广泛应用的传感材料和驱动材料。
但是,由于存在明显的缺点,在实际应用中收到了极大的限制。
例如,压电陶瓷的脆性很大,经不起冲击和非对称受力,而且其极限应变小、密度大,与结构粘合后对结构的力学性能会产生较大的影响。
压电聚合物虽然柔顺性好,但是它的使用温度范围小,而且其压电应变常数较低,因此作为驱动器使用时驱动效果差。
为了克服上述压电材料的缺点,人们开发了压电复合材料。
由于压电复合材料不但可以克服压电材料的缺点,而且还兼有有机高分子与无机材料两者的优点,甚至可以根据使用要求设计出单项压电材料所没有的性能,因此越来越引起人们的重视。
应用:压电复合材料最初是运用于水声领域中并且是由r e newnham首次研制成功了1-3型压电复合材料。
美国加州斯坦福大学b a auld 的等人建立了pzt柱周期排列的1-3型压电复合材料的理论模型, 在随后的数年中许多国家的科研机构也相继开展了压电复合材料的研究工作如澳大利亚的helen lw chan等日本的hiroshi等意大利的h zewdie等然而传统的压电陶瓷机械品质因数qm高压电常数g33小声阻抗大及厚度共振弱不适合换能器带宽窄脉冲灵敏度高的要求压电复合材料具有良好的柔顺性加工性能优异并且克服了压电陶瓷材料易碎的特点因加入第二相无源材料使得压电复合材料的声阻抗率c小易与水及生物组织实现声阻抗匹配同时压电复合材料具有较高的压电常数d33和机电耦合系数kp因此含有压电相和聚合物相的压电复合材料成为制作换能器的理想材料。