1.2.1函数的概念练习题及答案解析
- 格式:doc
- 大小:123.50 KB
- 文档页数:3
函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。
(本栏目内容,在学生用书中以独立形式分册装订! )一、选择题 (每题 5 分,共 20 分 ) 1.以下各组函数中,表示同一函数的是( )x 2- 9A . y = x - 3 与 y = x + 3B . y = x 2- 1 与 y = x - 1C . y = x 0(x ≠ 0)与 y = 1(x ≠ 0)D . y = 2x +1, x ∈ Z 与 y = 2x -1, x ∈ Z分析: A 项中两函数的定义域不一样; B 项, D 项中两函数的对应关系不一样.应选 C.答案:C2.以下会合 A 到会合 B 的对应 f 是函数的是 () A . A = { - 1,0,1} , B = {0,1} , f : A 中的数平方 B . A = {0,1} , B = { - 1,0,1} , f : A 中的数开方 C . A = Z , B = Q , f : A 中的数取倒数D . A =R , B = { 正实数 } , f : A 中的数取绝对值分析:依据函数定义,选项B 中,会合 A 中的元素1 对应会合 B 中的元素 ±1,不符合函数定义中一个自变量的值对应独一的函数值的条件;选项 C 中,会合 A 中的元素 0 取倒数没存心义, 也不切合函数定义中会合A 中随意元素都对应着独一函数值的要求;选项 D中,会合 A 中的元素 0 在会合 B 中没有元素与其对应,也不切合函数定义.只有选项 A 符合函数定义.答案:Ax 2- 1= ( ),则 f13.设 f(x)= x 2+ 1f2A . 1B .- 133C.5D .- 522- 1 3分析:f=22+ 1 =5=3×-5=- 1.1 1 2-1 3 53f 22 -41 2+ 152 4答案:B4.若函数 y= f(x)的定义域M ={ x|- 2≤x≤ 2},值域为 N= { y|0 ≤y≤ 2},则函数 y= f(x)的图象可能是 ()分析: A 中定义域是 { x|- 2≤x≤0},不是 M= { x|- 2≤x≤2}, C 中图象不表示函数关系,D中值域不是 N= { y|0 ≤y≤2}.答案: B二、填空题 (每题 5 分,共 15 分 )5.已知 f( x)由下表表示x123f(x)211则函数 f(x)的定义域是 ________,值域是 ________.分析:察看表格可知函数f(x)的定义域是 {1,2,3} ,值域是 {1,2} .答案:{1,2,3}{1,2}6.若 [ a,3a- 1]为一确立区间,则 a 的取值范围是 ________.分析:由题意知1 3a- 1>a,则 a> .2答案:1,+∞21,则 f(f(a))= ________.7.设 f(x)=1-x 分析:f( f(a))=1=1=a- 11 a.1- a-11-1- a1- a 答案:a- 1a ( a≠0,且 a≠ 1)三、解答题 (每题 10 分,共 20 分 ) 8.求以下函数的定义域.(1)y=2x+ 1+3- 4x;1 (2)y =|x + 2|-1.12x +1≥0? x ≥- 2,分析:(1)由已知得33- 4x ≥0? x ≤ ,413∴函数的定义域为 - ,.(2)由已知得:∵ |x + 2|- 1≠0,∴ |x + 2| ≠1,得 x ≠- 3, x ≠- 1.∴函数的定义域为 (- ∞,- 3)∪ (- 3,- 1)∪ (- 1,+ ∞).69.已知函数 f(x)= - x + 4,(1)求函数 f(x)的定义域;(2)求 f(-1), f(12)的值.分析:(1)依据题意知 x - 1≠0且 x +4≥0,∴ x ≥- 4 且 x ≠1,即函数 f(x)的定义域为 [- 4,1)∪ (1,+ ∞).6- 1+ 4=- 3- 3.(2)f(- 1)=- 2-6- 12+4= 6 -4=-38f(12)= 12- 11111.。
1.2函数及其表示1.2.1函数的概念[学习目标] 1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域(重点).3.能够正确使用区间表示数集.(易混点)一、函数的有关概念f,使对于集合A中的任意的一个数x,在集合B中都有唯一确定的数f(x)和它对应结论称f:A―→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A 相关概念定义域x的取值范围A值域函数值的集合{}f(x)|x∈A二、两个函数相等的条件1.定义域相同;2.对应关系完全一致.三、区间的概念及表示1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示1.判断(正确的打“√”,错误的打“×”) (1)函数的定义域和值域一定是无限集合.( )(2)根据函数有定义,定义域中的一个x 可以对应着不同的y .( ) (3)f (a )表示当x =a 时函数f (x )的值,是一个常量.( ) 【答案】 (1)× (2)× (3)√ 2.已知f (x )=x +1,则f (3)=( )A .2B .4C .±6D .10 【解析】 ∵f (x )=x +1,∴f (3)=3+1=2.【答案】 A 3.函数f (x )=11-2x有定义域是________(用区间表示). 【解析】 由题意,需1-2x >0,解得x <12.故f (x )的定义域为⎝⎛⎭⎫-∞,12. 【答案】 ⎝⎛⎭⎫-∞,12 4.集合{}x |1<x ≤10用区间表示为________. 【解析】 集合{}x |1<x ≤10用区间表示为(1,10]. 【答案】 (1,10]预习完成后,请把你认为难以解决的问题记录在下面的表格中(1)(2014·长沙高一检测)设M =x -2≤x ≤2,N =}y 0≤y ≤2,函数y =f (x )的定义域为M ,值域为N ,对于下列四个图象,可作为函数y =f (x )的图象为( )(2)下列函数中,f (x )与g (x )相等的是( ) A .f (x )=x ,g (x )=(x )2 B .f (x )=x ,g (x )=x 2 C .f (x )=x +2,g (x )=x 2-4x -2D .f (x )=x ,g (x )=3x 3 (3)判断下列对应是否为函数. ①A =R ,B =R ,f :x →y =1x 2;②A =N ,B =R ,f :x →y =±x ; ③A =N ,B =N *,f :x →y =|x -2|;④A ={1,2,3},B =R ,f (1)=f (2)=3,f (3)=4.【解析】 (1)由函数定义可知任意作一条直线x =a 与函数图象至多有一个交点,故选项C 错误.由题设定义域中有元素-2,2知选项A 错误.由值域为{}y |0≤y ≤2知选项B 错误. (2)对于A ,f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{}x |x ≥0,两函数的定义域不相同,所以不是相等函数;对于B ,g (x )=x 2=|x |,与f (x )=x 的对应关系不相同,所以不是相等函数;对于C ,g (x )=x 2-4x -2=x +2(x ≠2),与f (x )=x +2的定义域不同,所以不是相等函数;对于D ,g(x)=3x3=x,与f(x)=x的对应关系和定义域都相同,所以是相等函数,故选D.【答案】(1)D(2)D(3)①因为A=R,B=R,对于A中的元素x=0,在对应关系f:x→y=1x2之下,在B 中没有元素与之对应,因而不能构成函数.②对于A中的元素,如x=9,y的值为y=±9=±3,即在对应关系f之下,B中有两个元素与之对应,不符合函数定义,故不能构成函数.③对于A中的元素x=2,在对应关系f的作用下,|2-2|=0∉B,从而不能构成函数.④依题意,f(1)=f(2)=3,f(3)=4,即A中的每一个元素在对应关系f之下,在B中都有唯一的元素与之对应,虽然B中有很多元素在A中无元素与之对应,但依函数的定义,仍能构成函数.1.判断一个对应关系是否为函数的步骤:(1)判断A,B是否是非空数集;(2)判断A中任一元素在B中是否有元素与之对应;(3)判断A是任一元素在B中是否有唯一确定的元素与之对应.2.判断函数是否相同的步骤:(1)看定义域是否相同;(2)看对应关系是否相同;(3)下结论.(1)f(x)=1x-2;(2)f(x)=3x+2;(3)f(x)=x+1+12-x.【思路探究】解答本题可根据函数解析式的结构特点,构造使解析式有意义的不等式(组),进而解不等式求解.【解】 (1)∵x ≠2时,分式1x -2有意义,∴这个函数的定义域是{}x |x ≠2. (2)∵3x +2≥0,即x ≥-23时,根式3x +2才有意义,∴这个函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-23. (3)∵要使函数有意义,必须⎩⎪⎨⎪⎧x +1≥02-x ≠0⇒⎩⎪⎨⎪⎧x ≥-1,x ≠2.∴这个函数的定义域是{}x |x ≥-1且x ≠2.1.求解析式给出的函数的定义域就是求使函数表达式有意义的自变量的取值集合.已知函数y =f (x ):(1)若f (x )为整式,则定义域为R ;(2)若f (x )为分式,则定义域是使分母不为零的实数的集合;(3)若f (x )是偶次根式,那么函数的定义域是根号内的式子不小于零的实数的集合; (4)若f (x )是由几个部分的数字式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合;5.若f (x )是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.(2014·济宁高一检测)函数y =1-x2x 2-3x -2定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫-12,1 D.⎝⎛⎫-∞,-12∪⎝⎛⎦⎤-12,1 【解析】 要使函数y =1-x 2x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,即⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2,所以x ≤1且x ≠-12,故选D.【答案】 Df (2x +1)的定义域;(2)已知函数f (2x +1)的定义域为[1,3],求函数f (x )的定义域.【思路探究】 (1)函数f (2x +1)的自变量是x ,而非2x +1,解不等式1≤2x +1≤3即可.(2)函数f (2x +1)的自变量是x ,本题实质是知1≤x ≤3,求2x +1的取值范围. 【解】 (1)∵函数f (x )的定义域为[1,3],即x ∈[1,3],函数f (2x +1)中2x +1的范围与函数f (x )中x 的范围相同,∴2x +1∈[1,3],∴x ∈[0,1], 即函数f (2x +1)的定义域是[0,1]. (2)∵x ∈[1,3],∴2x +1∈[3,7], 即函数 f (x )的定义域是[3,7].若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.已知函数f (x )的定义域为(0,1),则f (2x )的定义域为__________.【解析】 因为f (x )的定义域为(0,1),所以要使f (2x )有意义,须使0<2x <1,即0<x <12,所以函数f (2x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12.【答案】 ⎝⎛⎭⎫0,12已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.【思路探究】 (1)令x =2代入f (x ),g (x )→得出f (2),g (2) (2)求g (3)→求f [g (3)] 【解】 (1)∵f (x )=11+x ,∴f (2)=11+2=13, 又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)g (3)=32+2=11,∴f [g (3)]=f (11)=11+11=112.1.f (x )表示自变量为x 的函数,如f (x )=2x ,而f (a )表示的是当x =a 时的函数值,如f (x )=2x 中f (3)=2×3=6.2.求f {f [f (x )]}时,一般要遵循由里到外的原则.在题设条件不变的情况下,求g [f (3)]的值. 【解】 ∵f (3)=11+3=14, ∴g [f (3)]=g ⎝⎛⎭⎫14=⎝⎛⎭⎫142+2=3316.1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等,只须两个函数的定义域和对应关系一致即可.2.f(x)是函数符号,f表示对应关系,“y=f(x)”为“y是x的函数”这句话的数学表示,它仅仅是函数符号,并不表示“y等于f 与x的乘积”.3.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合,这是求某函数定义域的依据.相等函数判断中的误区下列各组函数相等函数的是()A.y=x+1与y=x2-1 x-1B.y=|x|+1和y=(x-1)2+1 C.y=2x和y=2x(x≤0) D.y=x2+1和y=t2+1【易错分析】 易失分点一:忽视函数定义域,误认为y =x 2-1x -1=x +1,而误选A.易失分点二:忽视对应关系,误认为定义域和值域相同就是相等函数,而误选B. 【防范措施】 1.判断函数相等时,对较为复杂的函数解析式的化简要慎重,注意其等价性,本例对选项A 中第二个函数解析式的化简易把定义域扩大,由解析式相同而误认为是相等函数.2.定义域相同,并且对应关系完全一致的两个函数才相等.【解析】 A 错误,由于函数y =x 2-1x -1中要求x -1≠0,即x ≠1,故两个函数的定义域不同,故不表示相等函数.B 错误,虽然定义域和值域相同,但对应关系不相同,因而不是相等函数.C 错误,显然定义域不同,因此不是相等函数.D 正确,虽然表示自变量的字母不同,但它们定义域和对应关系相同,因此是相等函数. 【答案】 D——[类题尝试]————————————————— 下列各组中的两个函数为相等函数的是( ) A .f (x )=x +1·x -1,g (x )=(x +1)(x -1) B .f (x )=(2x -5)2,g (x )=2x -5 C .f (x )=1-x x 2+1与g (x )=1+x x 2+1D .f (x )=(x )4x 与g (t )=⎝⎛⎭⎫t t 2 【解析】 A 中,f (x )=x +1·x -1的定义域为{x |x ≥1},g (x )=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},它们的定义域不相同;B 中,f (x )=(2x -5)2的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥52,g (x )=2x -5的定义域为R ,定义域不同,不是相等函数.C 中,f (x )=1-xx 2+1与g (x )=1+xx 2+1的对应关系不同,不相等.D 中,f (x )=(x )4x =x (x>0)与g (x )=⎝⎛⎭⎫t t 2=t (t >0)的定义域与对应关系都相同,它们相等.【答案】 D。
第一章1.21.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2xC .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0 [答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考某某卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x[答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·某某高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值X 围是________.[答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a ⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的X 围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的X 围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).。
1.2.1任意角的三角函数重难点题型【举一反三系列】【知识点1 三角函数的定义】1.任意角的三角函数定义2.三角函数的定义域:【知识点2 三角函数值的符号】第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.【知识点3 诱导公式一】由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:【知识点4 单位圆的三角函数线定义】如图(1)PM表示α角的正弦值,叫做正弦线.OM表示α角的余弦值,叫做余弦线.如图(2)AT表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.【考点1 三角函数的定义】【分析】根据三角函数的定义,列方程求出m的值.【答案】解:角α的终边上一点(1,)P m,所以0m>,故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题.A .4B .4±C .3D .3±【分析】由题意利用任意角的三角函数的定义,求得m 的值.故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.)【分析】由题意利用任意角的三角函数的定义,求得tan α的值.【答案】解:角故选:C .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.【变式1-3】(2019春•牡丹江期末)角α的终边上一点(P a ,2)(0)a a ≠,则2sin cos (αα-= )【分析】由题意利用任意角的三角函数的定义,分类讨论求得结果. 【答案】解:α的终边上一点(P a ,2)(0)a a ≠, 555a a =,22555a a =,555a a=-,2555a a=-故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题. 【考点2 利用象限角判断三角函数的符号】【例2】(2019春•湖北期中)下列命题成立的是( ) A .若θ是第二象限角,则cos tan 0θθ< B .若θ是第三象限角,则cos tan 0θθ> C .若θ是第四象限角,则sin tan 0θθ< D .若θ是第三象限角,则sin cos 0θθ>【分析】根据角所在的象限判断三角函数值的符号进行判断即可.【答案】解:若θ是第二象限角,则cos 0θ<,tan 0θ<,则cos tan 0θθ>,故A 错误, 若θ是第三象限角,则cos 0θ<,tan 0θ>,则cos tan 0θθ<,故B 错误, 若θ是第四象限角,则sin 0θ<,tan 0θ<,则sin tan 0θθ>,故C 错误, 若θ是第三象限角,则sin 0θ<,cos 0θ<,则sin cos 0θθ>,故D 正确, 故选:D .【点睛】本题主要考查三角函数值符号的判断,结合角的象限与三角函数值符号的关系是解决本题的关键. 【变式2-1】(2019春•珠海期末)已知点(sin ,tan )M θθ在第三象限,则角θ在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由题意可得sin 0θ<且tan 0θ<,分别求得θ的范围,取交集得答案. 【答案】解:由题意,00sin tan θθ<⎧⎨<⎩①②,由①知,θ为第三、第四或y 轴负半轴上的角; 由②知,θ为第二或第四象限角. 则角θ在第四象限. 故选:D .【点睛】本题考查三角函数的象限符号,是基础题.【变式2-2】(2019春•玉山县校级月考)若sin cos 0θθ<,则θ在( ) A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限【分析】判断三角函数的符号,然后判断角所在象限即可.【答案】解:sin cos 0θθ<,可知sin θ与cos θ异号,说明θ在第或第四象限. 故选:D .【点睛】本题考查三角函数的符号的判断,角所在象限,是基本知识的考查. 【变式2-3】(2018秋•安庆期末)式子sin1cos2tan4的符号为( )A.正B.负C.零D.不能确定【分析】由1,2,4分别表示第一、二、三象限的角,由此可得答案.【答案】解:1,2,4分别表示第一、二、三象限的角,<,tan40>.∴>,cos20sin10故选:B.【点睛】本题考查三角函数值的符号,是基础题.【考点3 利用诱导公式一判断三角函数的符号】【例3】(2019秋•武邑县校级期中)下列三角函数值的符号判断正确的是()【分析】根据角所在的象限、诱导公式、三角函数值的符号逐项判断即可.【答案】解:A、因为156︒在第二象限,所以sin1560︒>,故A错误;︒=︒+︒=︒,且196︒在第三象限,D、因为tan556tan(360196)tan196所以tan5560︒>,故D错误;故选:C.【点睛】本题考查了三角函数的诱导公式,及三角函数在各象限的符号的应用,属于基础题.【变式3-1】(2019秋•西陵区校级期末)下列三角函数值的符号判断错误的是() A.sin1650︒<︒>D.tan3100︒>B.cos2800︒>C.tan1700【分析】直接利用诱导公式化简,判断符号即可.【答案】解:sin1650︒=︒>,正确;︒>,正确;cos280cos800tan1700︒=-︒<,正确;︒>,错误;tan310tan500故选:C.【点睛】本题考查诱导公式的应用,三角函数值的符号的判断,是基础题.【变式3-2】(2019春•武功县期中)下列值①sin(1000)-︒;④sin2是负值-︒;②cos(2200)-︒;③tan(10)的为()A.①B.②C.③D.④【分析】根据终边相同的角的三角函数值相同,利用三角函数符号判断方法,即可得出结论.【答案】解:①sin(1000)sin1000sin 2800-︒=-︒=-︒>; ②cos(2200)cos2200cos400-︒=︒=︒>; ③tan(10)tan100-︒=-︒<;综上,是负值的序号为③. 故选:C .【点睛】本题考查了终边相同的角与三角函数符号判断问题,是基础题.【变式3-3】(2019秋•夷陵区校级月考)给出下列各函数值:①sin(1- 000)︒;②cos(2- 200)︒;③tan(10)-;A .①④B .②③C .③⑤D .④⑤【分析】利用诱导公式分别对五个选项进行化简整理,进而根据三角函数的性质判断正负. 【答案】解:①,sin(1000)sin(2360280)sin 280cos100-︒=-⨯︒-︒=-︒=︒>; ②,cos(2200)cos(636040)cos400-︒=-⨯︒-︒=︒>; ③,tan(10)tan(30.58)tan(0.58)0π-=-+=-<;,πsin2cos3tan40∴<.∴其中符号为负的是:③⑤.故选:C .【点睛】本题主要考查了运用诱导公式化简求值,解题时应正确把握好函数值正负号的判定,是基础题. 【考点4 三角函数定义域】【分析】列出使函数有意义的不等式组,即由被开方数不小于零,得三角不等式组,分别利用正弦函数和余弦函数图象解三角不等式组即可【答案】解:要使函数有意义,需解得: (k ∈Z )即2k π+≤x ≤2k π+π (k ∈Z )故答案为Z )【点睛】本题考查了函数定义域的求法,三角函数的图象和性质,解简单的三角不等式的方法 可.【答案】解:函数【点睛】本题考查了函数的概念,三角函数的定义域,解三角函数的不等式,属于中档题. 【分析】由绝对值的特点得到sin α-和0的关系,由正弦曲线和角的正弦值可以得到角的范围,写出角的范围后注意加上k 的取值. 【答案】解:|sin |sin αα=-,sin 0α∴-, sin 0α∴,由正弦曲线可以得到[2k αππ∈-,2]k π,k Z ∈, 故答案为:[2k ππ-,2]k π,k Z ∈【点睛】本题主要考查三角函数不等式,解题时最关键的是要掌握三角函数的图象,通过数形结合得到要求的角的范围,这个知识点应用非常广泛,可以和其他知识结合来考查.【变式4-3】求下列函数的定义域:(2)(2sin1)=-;y lg x【分析】利用函数的定义域以及三角函数线化简求解即可.【答案】解:(1)要使y=有意义,可得cos x≥0,解得{x|﹣,k∈Z};(2)要使y=lg(2sin x﹣1)有意义,可得2sin x﹣1>0,即:sin x,解得{x|,k∈Z};(3)要使y=有意义,可得sin x≠﹣1.所以函数的定义域为:{x|x=﹣+2kπ,k∈Z}.【点睛】本题考查三角函数的定义域的求法,三角函数线的应用,考查计算能力.【考点5 利用诱导公式一化简求值】【例5】(2019春•娄星区期中)求下列各式的值:(2)sin1170cos1440tan1845︒+︒-︒【分析】(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;【答案】(本题满分10分)(2)sin1170cos1440tan1845︒+︒-︒sin(336090)cos(43600)tan(536045)=⨯︒+︒+⨯︒+︒-⨯︒+︒ sin90cos0tan45=︒+︒-︒1=.【点睛】此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.【变式5-1】求下列各式的值(2)9cos2708cos03tan011sin180︒+︒+︒+︒.【分析】由特殊角的三角函数值即可计算得解.1(1)(1)=+-+-1=-.(2)9cos2708cos03tan011sin180︒+︒+︒+︒ 08100=+⨯++ 8=.【点睛】本题主要考查了特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 【变式5-2】(2019春•船营区校级月考)计算下列各式的值: (1)sin(1395)cos1140cos(1020)sin750-︒︒+-︒︒; tan 4ππ; 【分析】(1)原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果. (2)利用诱导公式即可计算得解.【答案】解:(1)原式sin(144045)cos(108060)cos(108060)sin(72030)=-︒+︒︒+︒+-︒+︒︒+︒ sin45cos60cos60sin30=︒︒+︒︒tan 4ππ )0【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题. 【变式5-3】(2019春•平罗县校级期中)求下列各式的值 )cos(570)cos(1140)tan(210)sin(690)︒-︒-︒-︒-︒【分析】(1)利用诱导公式以及特殊角的三角函数化简求值即可. (2)利用诱导公式以及特殊角的三角函数化简求值即可. )cos(570)cos(1140)tan(210)sin(690)-︒-︒=-︒-︒25)sin cos tan 463πππ=+-【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力. 【考点6 利用三角函数线解不等式】【例6】(2019春•泗县校级月考)利用单位圆,求适合下列条件的角的集合:【分析】在单位圆中画出三角函数线. (1)由[0,2π)内,,结合正弦线得的解集;(2)由[0,2π)内,,结合余弦线得的解集.【答案】解:在单位圆内作三角函数线如图:(1)∵在[0,2π)内,,OA,OB分别为的终边,由正弦线可知,满足的角的终边在劣弧AB内,∴的解集为{α|};(2))∵在[0,2π)内,,OC,OD分别为的终边,由余弦线可知,满足的终边在劣弧CD内,∴的解集为{α|}.【点睛】本题考查了三角函数线,考查了三角不等式的解法,训练了数形结合的解题思想方法,是中低档题.【变式6-1】求下列不等式的解集:【分析】作出单元圆,利用三角函数线进行求解即可.【答案】解:(1)正弦线大于0的角为x轴的上方,对应的角为2kπ<x<2kπ+π,k∈Z,则不等式的解集为(2kπ,2kπ+π),k∈Z.(2)余弦线小于0的角为y轴的左侧,对应的角为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(3)sin x>对应的区域在阴影部分,对应角的范围为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(4)cos x≤﹣对应的区域在阴影部分,对应角的范围为2kπ+≤x≤2kπ+,k∈Z,则不等式的解集为[2kπ+,2kπ+],k∈Z.【点睛】本题主要考查三角不等式的求解,利用三角函数的三角函数线是解决本题的关键.【变式6-2】利用三角函数线,写出满足下列条件的角x的集合:(2)tan x≥﹣1.【分析】根据三角函数线分别进行求解即可.【答案】解:(1)作出y=﹣,交单位圆于B,C,则sin x>﹣对应的区域为阴影部分,作出x=,交单位圆于E,D,则cos x>对应的区域为阴影部分OD,OE之间,则sin x>﹣且cos x>对应的区域为OC到OE之间,其中OC对应的角为﹣,OE对应的角为,则阴影部分对应的范围是2kπ﹣<x<2kπ+,k∈Z,即sin x>﹣且cos x>对应的范围是{x|2kπ﹣<x<2kπ+,k∈Z}(2)作出正切函数线AT=﹣1,则tan x≥﹣1对应的区域为阴影部分,OT对应的角为﹣,则阴影部分对应的角的范围是kπ﹣≤x<kπ+,即不等式的解集为{x|kπ﹣≤x<kπ+,k∈Z}【点睛】本题主要考查三角函数对应不等式的求解,利用三角函数线是解决本题的关键.【变式6-3】利用三角函数线,写出满足下列条件的角x的集合.(3)tan x≥﹣1;【分析】作出单位圆,由三角函数值先求出角在[0,2π]内的取值范围,再由终边相同的角的概念加上周期,由此能求出满足条件的角x的集合.【答案】解:(1)由sin x,作出单位圆,如下图,∵sin x,∴,∴满足sin x≥的角x的集合为{x|2kπ+,k∈Z}.(2)由cos x≤,作出单位圆,如下图,∵cos x≤,∴,∴满足cos x≤的角x的集合为{x|2kπ+≤x≤2kπ+,k∈Z}.(3)由tan x≥﹣1,作出单位圆,如下图,∵tan x ≥﹣1,∴﹣≤x <, ∴满足tan x ≥﹣1的角x 的集合为{x |k π﹣,k ∈Z }. (4)由sin x >且cos x >,作出单位圆,如下图,∵sin x >且cos x >,∴,∴满足sin x >且cos x >x 的集合为{x |2k π+,k ∈Z }. 【点睛】本题考查角的取值范围的求法,是基础题,解题时要注意单位圆和三角函数线的合理运用.【考点7 利用三角函数线比较大小】【例7】比较下列各组数的大小:【分析】(1)根据余弦函数单调性的大小进行比较(2)利用三角函数的诱导公式以及作差法进行比较即可.704π<-cos(π∴-02πα<<则0sin(cos <cos(sin )α222ππ-<【点睛】本题主要考查三角函数值的大小比较,结合三角函数的诱导公式以及三角函数的单调性是解决本题的关键.【变式7-1】利用三角函数线比较下列各组三角函数值的大小:【分析】根据题意,依次作出各个角的三角函数值对应的三角函数线,进而比较大小即可得答案.【点睛】本题考查的知识点是三角函数线,三角函数值的大小比较,关键是掌握三角函数线的定义.【变式7-2】比较大小:可知:21AT AT >,可知:BD BC >,【点睛】本题考察了诱导公式的化简运用,正切线的画法,属于三角函数线的基础题目.【变式7-3】比较下列各组数的大小:【分析】根据三角函数线进行比较即可.)5 cos7π=在单位圆中作出对应的三角函数线如图,则余弦线为OM,正弦线为MP,(2)在单位圆中作出对应的三角函数线如图,则正切线为AT,正弦线为MP,则AT MP>,【点睛】本题主要考查三角函数值的大小比较,根据三角函数线是解决本题的关键.。
1.2.1 函数的概念及练习题答案【1】一、选择题1.集合A ={x|0≤x ≤4},B ={y|0≤y ≤2},下列不表示从A 到B 的函数是( ) A .f(x)→y =12x B .f(x)→y =13xC .f(x)→y =23xD .f(x)→y =x2.某物体一天中的温度是时间t 的函数:T(t)=t3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x2+x2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1} 4.已知f(x)的定义域为[-2,2],则f(x2-1)的定义域为( ) A .[-1,3] B .[0,3]C .[-3,3] D .[-4,4]5.若函数y =f(3x -1)的定义域是[1,3],则y =f(x)的定义域是( ) A .[1,3] B .[2,4]C .[2,8] D .[3,9]6.函数y =f(x)的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个C .至多一个 D .可能两个以上 7.函数f(x)=1ax2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a|a ∈R}B .{a|0≤a ≤34}C .{a|a >34}D .{a|0≤a <34}8.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x(x ∈N)为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .79.(安徽铜陵县一中高一期中)已知g(x)=1-2x ,f[g(x)]=1-x2x2(x ≠0),那么f ⎝ ⎛⎭⎪⎫12等于( )A .15B .1C .3D .3010.函数f(x)=2x -1,x ∈{1,2,3},则f(x)的值域是( ) A .[0,+∞) B .[1,+∞)C .{1,3,5} D .R 二、填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y =________,其定义域为________.12.函数y =x +1+12-x的定义域是(用区间表示)________.三、解答题13.求一次函数f(x),使f[f(x)]=9x +1.14.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为多少元?15.求下列函数的定义域.(1)y =x +1x2-4; (2)y =1|x|-2;(3)y =x2+x +1+(x -1)0.16.(1)已知f(x)=2x -3,x ∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x +4的值域为{y|-2≤y ≤4},求此函数的定义域. 17.(1)已知f(x)的定义域为 [ 1,2 ] ,求f (2x1)的定义域; (2)已知f (2x1)的定义域为 [ 1,2 ],求f(x)的定义域;(3)已知f(x)的定义域为[0,1],求函数y=f(x +a)+f(x -a)(其中0<a <)的定义域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩 形底边长为2x ,求此框架的面积y 与x 的函数关系式及其定义域.1.2.1 函数的概念答案 一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] A[解析] 12:00时,t =0,12:00以后的t 为正,则12:00以前的时间负,上午8时对应的t =-4,故T(-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x2+x2-1有意义应满足⎩⎪⎨⎪⎧1-x2≥0x2-1≥0,∴x2=1,∴x =±1.4.[答案] C[解析] ∵-2≤x2-1≤2,∴-1≤x2≤3,即x2≤3,∴-3≤x ≤ 3. 5.[答案] C2x[解析] 由于y =f(3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f(x)的定义域为[2,8]。
1.2.1函数的概念双基达标 (限时20分钟)1.下列式子中不能表示函数y =f (x )的是( ). A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析 对A ,由x =y 2+1,得y =±x -1,即当给定一个自变量值(如x =4),有两个y 值与之对应,不符合函数定义. 答案 A2.函数y =1-x +x 的定义域是( ). A .{x |x ≥0}B .{x |x ≥1}C .{x |x ≥1}∪{0}D .{x |0≤x ≤1}解析 由⎩⎨⎧1-x ≥0x ≥0,得0≤x ≤1,故选D.答案 D3.与y =|x |为相等函数的是( ). A .y =(x )2B .y =x 2C .y =⎩⎨⎧x (x >0)-x (x <0)D .y =3x 3解析 对A ,定义域不同;对C ,定义域不同;对D ,值域不同. 答案 B4.给出下列函数:①y =x 2-x +2,x >0;②y =x 2-x ,x ∈R ;③y =t 2-t +2,t ∈R ;④y =t 2-t +2,t >0.其中与函数y =x 2-x +2,x ∈R 是相等函数的是________.解析 对①④定义域不同;对②,对应关系不同,对③,虽然表示自变量的字母不同,但函数三要素相同,故③与该函数是相等函数. 答案 ③5.如果函数f :A →B ,其中A ={-3,-2,-1,1,2,3,4},对于任意a ∈A ,在B 中都有唯一确定的|a |和它对应,则函数的值域为________.解析 由题意知,对a ∈A ,|a |∈B , 故函数值域为{1,2,3,4}. 答案 {1,2,3,4}6.已知函数f (x )=x 2-4x +5,f (a )=10,求a 的值. 解 由f (a )=10,得a 2-4a +5=10, 即a 2-4a -5=0, ∴(a -5)(a +1)=0, ∴a =5或a =-1.综合提高 (限时25分钟)7.下列各组函数表示相等函数的是( ). A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z解析 A 中两函数定义域不同,B 、D 中两函数对应关系不同,C 中定义域与对应关系都相同. 答案 C8.设f (x )=x 2-1x 2+1,则f (2)f ⎝ ⎛⎭⎪⎫12=( ).A .1B .-1 C.35 D .-35解析 ∵f (2)=22-122+1=35,f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=-35,∴f (2)f ⎝ ⎛⎭⎪⎫12=35×⎝ ⎛⎭⎪⎫-53=-1.答案 B 9.y =x +4x +2的定义域为________.解析 依题意知⎩⎨⎧x +4≥0,x ≠-2,∴x ≥-4且x ≠-2.答案 {x |x ≥-4且x ≠-2}10.集合{x |-1≤x <0或1<x ≤2}用区间表示为________. 解析 结合区间的定义知,用区间表示为[-1,0)∪(1,2]. 答案 [-1,0)∪(1,2] 11.求函数y =x +26-2x -1的定义域,并用区间表示.解 要使函数式有意义,需满足⎩⎨⎧x +2≥06-2x ≥06-2x ≠1⇔⎩⎪⎨⎪⎧x ≥-2x ≤3x ≠52⇔-2≤x ≤3,且x ≠52.∴函数的定义域是⎩⎨⎧⎭⎬⎫x |-2≤x ≤3,且x ≠52.用区间表示为⎣⎢⎡⎭⎪⎫-2,52∪⎝ ⎛⎦⎥⎤52,3.12.(创新拓展)若函数f (x )的定义域为[-2,1],求g (x )=f (x )+f (-x )的定义域. 解 要使g (x )有意义,必须有 ⎩⎨⎧ -2≤x ≤1,-2≤-x ≤1,即⎩⎨⎧-2≤x ≤1,-1≤x ≤2, ∴-1≤x ≤1,∴g (x )的定义域为[-1,1].1.2.2函数的表示法双基达标 (限时20分钟)1.若g (x +2)=2x +3,g (3)的值是( ). A .9 B .7 C .5 D .3解析 令x +2=3,则x =1,∴g (3)=2×1+3=5. 答案 C2.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的解析式为( ).A.y=12x B.y=24xC.y=28x D.y=216x解析正方形的对角线长为24x,从而外接圆半径为y=12×24x=28x.答案 C3.下列图形中,不可能作为函数y=f(x)图象的是().解析对C,当x=0时,有两个不同的值与之对应,不符合函数概念,故C不可能作为函数图象.答案 C4.已知f(2x+1)=3x-2且f(a)=4,则a的值为________.解析∵f(2x+1)=3x-2=32(2x+1)-72,∴f(x)=32x-72,∴f(a)=4,即32a-72=4,∴a=5.答案 55.已知f(x)与g(x)分别由下表给出那么f(g(3))=________.解析∵g(3)=4,∴f(g(3))=f(4)=1. 答案 16.已知函数f (x )是二次函数,且它的图象过点(0,2),f (3)=14,f (-2)=8+52,求f (x )的解析式.解 设f (x )=ax 2+bx +c (a ≠0),则由题意,得⎩⎨⎧c =2,9a +3b +c =14,2a -2b +c =8+52,解得⎩⎨⎧c =2,a =3,b =-5.所以f (x )=3x 2-5x +2.综合提高 (限时25分钟)7.下列表格中的x 与y 能构成函数的是( ). A.B.C.D.解析 A 中,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N (Z ,Q ),故y 的值不唯一,故A 、B 、D 均不正确. 答案 C8.已知函数f (x +1)=3x +2,则f (x )的解析式是( ). A .f (x )=3x +2 B .f (x )=3x +1 C .f (x )=3x -1 D .f (x )=3x +4 解析 令x +1=t ,则x =t -1, ∴f (t )=3(t -1)+2=3t -1,∴f (x )=3x -1. 答案 C9.下列图形中,可以是函数y =f (x )图象的是________.答案:①②③10.若f (2x )=4x 2+1,则f (x )的解析式为________. 解析 f (2x )=4x 2+1=(2x )2+1,∴f (x )=x 2+1. 答案 f (x )=x 2+111.作出下列函数的图象:(1)f (x )=x +x 0;(2)f (x )=1-x (x ∈Z ,且-2≤x ≤2). 解 (1)如图1 (2)如图212.(创新拓展)已知函数f (x )对任意实数a 、b ,都有f (ab )=f (a )+f (b )成立. (1)求f (0)与f (1)的值; (2)求证:f ⎝ ⎛⎭⎪⎫1x =-f (x );(3)若f (2)=p ,f (3)=q (p ,q 均为常数),求f (36)的值. (1)解 令a =b =0,得f (0)=f (0)+f (0),解得f (0)=0; 令a =1,b =0,得f (0)=f (1)+f (0),解得f (1)=0. (2)证明 令a =1x ,b =x ,得f (1)=f ⎝ ⎛⎭⎪⎫1x +f (x )=0,∴f ⎝ ⎛⎭⎪⎫1x =-f (x ). (3)解 令a =b =2,得f (4)=f (2)+f (2)=2p , 令a =b =3,得f (9)=f (3)+f (3)=2q . 令a =4,b =9,得f (36)=f (4)+f (9)=2p +2q .1.2.2分段函数与映射双基达标 (限时20分钟)1.下列对应不是映射的是( ).解析 应满足一对一或多对一,且M 中元素无剩余. 答案 D2.以下几个论断:①从映射角度看,函数是其定义域到值域的映射; ②函数y =x -1,x ∈Z 且x ∈(-3,3]的图象是一条线段; ③分段函数的定义域是各段定义域的并集,值域是各段值域的并集; ④若D 1、D 2分别是分段函数的两个不同对应关系的值域,则D 1∩D 2=∅.其中正确的论断有( ).A .0个B .1个C .2个D .3个解析 函数是特殊的映射,由此知①正确;②中的定义域为{-2,-1,0,1,2,3},它的图象是直线y =x -1上的六个孤立的点,因此②不正确;由分段函数的概念可知③正确,④不正确. 答案 C3.若定义运算a ⊙b =⎩⎨⎧b (a ≥b ),a (a <b ),则函数f (x )=x ⊙(2-x )的值域是( ).A .(-∞,1]B .(-∞,1)C .(-∞,+∞)D .(1,+∞)解析 由题意知f (x )=⎩⎨⎧2-x (x ≥1),x (x <1),当x ≥1时,2-x ≤1;当x <1时,x <1,∴f (x )∈(-∞,1]. 答案 A4.下列图形是函数y =⎩⎨⎧x 2, x <0x -1,x ≥0的图象的是________.解析 由于f (0)=0-1=-1,所以函数图象过点(0,-1);当x <0时,y =x 2,则函数是开口向上的抛物线在y 轴左侧的部分.因此只有图形③符合. 答案 ③5.已知f (x )=⎩⎨⎧2x ,x <0,x 2,x ≥0,若f (x )=16,则x 的值为________.解析 当x <0时,2x =16,无解;当x ≥0时,x 2=16,解得x =4. 答案 46.作出函数y =⎩⎪⎨⎪⎧1x(0<x <1),x (x ≥1)的图象,并求其值域.解 当0<x <1时,y =1x 的图象是反比例函数图象的一部分. 当x ≥1时,图象为直线y =x 的一部分. 如图所示,由此可知,值域y ∈[1,+∞).综合提高 (限时25分钟)7.函数f (x )=|x -1|的图象是( ).解析 f (x )=|x -1|=⎩⎨⎧x -1 (x ≥1),1-x (x <1),其图象为B.答案 B8.设集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},则下列的对应不表示从P 到Q 的映射的是( ).A .f :x →y =12xB .f :x →y =13x C .f :x →y =23x D .f :x →y =x解析 判断是否是映射,只需判断集合P 中任何一个元素能否在集合Q 中找到唯一确定的元素与它对应.由于是选择题,可直接找出不是映射的对应.通过对比发现,在对应关系f :x →y =23x 的作用下,4×23=83>2.故选C. 答案 C9.设函数f (x )=⎩⎨⎧x 2+2 (x ≤2),2x (x >2),若f (x 0)=8,则x 0=________.解析 当x >2时,有2x 0=8,得x 0=4;当x ≤2时,有x 20+2=8,得x 0=-6或6(舍去). 综上x 0=4或x 0=- 6. 答案 4或- 610.设集合A =B ={(x ,y )|x ∈R ,y ∈R },点(x ,y )在映射f :A →B 的作用下对应的点是(x -y ,x +y ),则B 中点(3,2)对应的A 中点的坐标为________. 解析 由⎩⎨⎧x -y =3,x +y =2,得⎩⎪⎨⎪⎧x =52,y =-12,即对应点坐标是⎝ ⎛⎭⎪⎫52,-12.答案 ⎝ ⎛⎭⎪⎫52,-12 11.已知f (x )=⎩⎨⎧x (x +4) (x ≥0),x (x -4) (x <0),若f (1)+f (a +1)=5,求a 的值.解 f (1)=1×(1+4)=5, ∵f (1)+f (a +1)=5,∴f (a +1)=0.当a +1≥0,即a ≥-1时,有(a +1)(a +5)=0,∴a =-1或a =-5(舍去),当a +1<0,即a <-1时,有(a +1)(a -3)=0,无解. 综上可知a =-1.12.(创新拓展)在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数). 解 根据题意可得d =k v 2S .∵v =50时,d =S ,代入d =k v 2S 中,解得k =12 500.∴d =12 500v 2S .当d =S2时,可解得v =25 2. ∴d =⎩⎪⎨⎪⎧S 2 (0≤v <252)12 500v 2S (v ≥252)1.3.1函数的单调性双基达标 (限时20分钟)1.函数y =-x 2的单调减区间是( ). A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(-∞,+∞)解析 画出y =-x 2在R 上的图象,可知函数在[0,+∞)上递减.答案 A2.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( ). A .函数f (x )先增后减 B .函数f (x )先减后增 C .函数f (x )是R 上的增函数 D .函数f (x )是R 上的减函数 解析 由f (a )-f (b )a -b>0知,当a >b 时,f (a )>f (b );当a <b 时,f (a )<f (b ),所以函数f (x )是R 上的增函数. 答案 C3.下列说法中正确的有( ).①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上是增函数; ③函数y =-1x 在定义域上是增函数; ④y =1x 的单调区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析 函数的单调性的定义是指定义在区间I 上任意两个值x 1,x 2,强调的是任意,从而①不对;②y =x 2在x ≥0时是增函数,x <0时是减函数,从而y =x 2在整个定义域上不具有单调性;③y =-1x 在整个定义域内不是单调递增函数.如-3<5而f (-3)>f (5);④y =1x 的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法. 答案 A4.函数f (x )=-2x 2+mx +1在区间[1,4]上是单调函数,则实数m 的取值范围是________.解析 二次函数f (x )的对称轴是直线x =m4,又二次函数在对称轴的两侧的单调性相反,则m 4≤1或m4≥4,即m ≤4或m ≥16.答案 (-∞,4]∪[16,+∞)5.函数y =-(x -3)|x |的递增区间为________. 解析 y =-(x -3)|x |=⎩⎨⎧-x 2+3x (x >0),x 2-3x (x ≤0),作出其图象如图,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案 ⎣⎢⎡⎦⎥⎤0,326.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.解由题意可得⎩⎨⎧-1≤x -1≤1,-1≤1-3x ≤1,x -1<1-3x ,即⎩⎪⎨⎪⎧0≤x ≤2,0≤x ≤23,x <12,∴0≤x <12.综合提高 (限时25分钟)7.若函数y =f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数y =f (x )在区间(a ,b )∪(b ,c )上( ). A .必是增函数 B .必是减函数 C .是增函数或减函数 D .无法确定单调性解析 函数在区间(a ,b )∪(b ,c )上无法确定单调性.如y =-1x 在(0,+∞)上是增函数,在(-∞,0)上也是增函数,但在(-∞,0)∪(0,+∞)上并不具有单调性. 答案 D8.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ).A .(-∞,-3)B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)解析 因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3. 答案 C9.已知函数f (x )为区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________.解析 由题设得⎩⎪⎨⎪⎧-1≤x ≤1,x <12,即-1≤x <12.答案 -1≤x <1210.已知函数y =8x 2+ax +5在[1,+∞)上递增,那么a 的取值范围是________. 解析 函数y =8x 2+ax +5的对称轴为-a 16.结合函数图象知-a16≤1,即a ≥-16.答案 a ≥-1611.已知函数f (x )=x 2-2ax -3在区间[1,2]上单调,求实数a 的取值范围. 解 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和(a ,+∞)上分别单调,因此要使函数f (x )在区间[1,2]上单调,只需a ≤1或a ≥2(其中当a ≤1时,函数f (x )在区间[1,2]上单调递增;当a ≥2时,函数f (x )在区间[1,2]上单调递减),从而a ∈(-∞,1]∪[2,+∞). 12.(创新拓展)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数y =f (x )在区间(2,+∞)上是增函数. (1)解 ∵f (1)=0,f (3)=0,∴⎩⎨⎧1+b +c =0,9+3b +c =0,解得b =-4,c =3. (2)证明 ∵f (x )=x 2-4x +3, ∴设x 1,x 2∈(2,+∞)且x 1<x 2,由f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22+4x 2+3) =(x 21-x 22)-4(x 1-x 2)=(x 1-x 2)(x 1+x 2-4),∵x 1-x 2<0,x 1>2,x 2>2, ∴x 1+x 2-4>0.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴函数y =f (x )在区间(2,+∞)上为增函数.1.3.1函数的最值双基达标 (限时20分钟)1.函数y =f (x )在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( ).A .f (-2),0B .0,2C .f (-2),2D .f (2),2解析 由函数最值的几何意义知,当x =-2时,有最小值f (-2);当x =1时,有最大值2. 答案 C2.函数y =1x 2在区间⎣⎢⎡⎦⎥⎤12,2上的最大值是( ).A.14 B .-1 C .4 D .-4解析 显然y =x 2在⎣⎢⎡⎦⎥⎤12,2上递增,故y =1x 2在⎣⎢⎡⎦⎥⎤12,2上递减,∴y max =4.答案 C3.函数f (x )=x 2+3x +2在区间(-5,5)上的最大、最小值分别为( ). A .42,12 B .42,-14C .12,-14D .无最大值,最小值为-14 解析 ∵f (x )=⎝ ⎛⎭⎪⎫x +322-14,x ∈(-5,5),∴当x =-32时,f (x )有最小值-14,f (x )无最大值. 答案 D4.函数y =2x 2+1,x ∈N *的最小值为________. 解析 ∵x ∈N *,∴y =2x 2+1≥3. 答案 35.若函数y =kx (k >0)在[2,4]上的最小值为5,则k 的值为________.解析 因为k >0,所以函数y =k x 在[2,4]上是减函数,所以当x =4时,y =k4最小,由题意知,k4=5,k =20. 答案 206.画出函数f (x )=⎩⎪⎨⎪⎧-2x ,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数最小值.解 f (x )的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.综合提高 (限时25分钟)7.函数y =2x 在区间[2,4]上的最大值、最小值分别是( ).A .1,12 B.12,1 C.12,14 D.14,12解析 y =2x 在[2,4]上是减函数,∴y max =1,y min =12. 答案 A 8.函数f (x )=11-x (1-x )的最大值是( ).A.45B.54C.34D.43 解析 f (x )=1⎝ ⎛⎭⎪⎫x -122+34≤43.答案 D9.已知函数y *f (x )是(0,+∞)上的减函数,则f (a 2-a +1)与f ⎝ ⎛⎭⎪⎫34的大小关系是________.解析 ∵a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34,又f (x )在(0,+∞)上是减函数 ∴f (a 2-a +1)≤f ⎝ ⎛⎭⎪⎫34答案 f (a 2-a +1)≤f ⎝ ⎛⎭⎪⎫3410.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.解析 由题意知,f (x )在[1,a ]内是单调递减的,又∵f (x )的单调减区间为(-∞,3],∴1<a ≤3. 答案 (1,3]11.某租车公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加60元时,未租出的车将会增加一辆.租出的车每月需要维护费160元,未租出的车每月需要维护费60元. (1)当每辆车的月租金定为3 900元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租车公司的月收益最大?最大月收益是多少?解 (1)租金增加了900元.所以未出租的车有15辆,一共出租了85辆.(2)设租金提高后有x 辆未租出,则已租出(100-x )辆,租车公司的月收益为y 元. y =(3 000+60x )(100-x )-160(100-x )-60x , 其中x ∈[0,100],x ∈N ,整理得:y =-60x 2+3 100x +284 000 =-60⎝ ⎛⎭⎪⎫x -15562+972 1253,当x =26时,y max =324 040,此时,月租金为:3 000+60×26=4 560元.即当每辆车的月租金为4 560元时,租车公司的月收益最大,为324 040元. 12.(创新拓展)已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1, ∵x ∈[-5,5],故当x =1时,f (x )的最小值为1. 当x =-5时,f (x )的最大值为37.(2)函数f (x )=(x +a )2+2-a 2图象的对称轴方程为x =-a . ∵f (x )在[-5,5]上是单调的,故-a ≤-5,或-a ≥5. 即实数a 的取值范围是a ≤-5,或a ≥5.1.3.2函数奇偶性的概念双基达标 (限时20分钟)1.已知y =f (x )是偶函数,且f (4)=5,那么f (4)+f (-4)的值为( ). A .5 B .10 C .8 D .不确定解析 ∵f (x )是偶函数,∴f (-4)=f (4)=5, ∴f (4)+f (-4)=10. 答案 B2.对于定义域是R 的任意奇函数y =f (x ),都有( ).A.f(x)-f(-x)>0 B.f(x)-f(-x)≤0C.f(x)·f(-x)≤0 D.f(x)·f(-x)>0解析对任意奇函数f(x),有f(-x)=-f(x).∴f(x)·f(-x)=-[f(x)]2≤0,故选C.答案 C3.已知函数f(x)=1x2(x≠0),则这个函数().A.是奇函数B.既是奇函数又是偶函数C.是偶函数D.既不是奇函数又不是偶函数解析∵x≠0,∴f(-x)=1(-x)2=1x2=f(x),∴f(x)是偶函数.答案 C4.已知函数y=f(x)为奇函数,若f(3)-f(2)=1,则f(-2)-f(-3)=________.解析函数y=f(x)为奇函数,故f(-x)=-f(x),则f(-2)-f(-3)=-f(2)+f(3)=1.答案 15.如果定义在区间[2-a,4]上的函数y=f(x)为偶函数,那么a=________.解析因为奇偶函数的前提是定义域必须关于原点对称,所以2-a=-4,∴a =6.答案 66.如图是偶函数y=f(x)在x≥0时的图象,请作出y=f(x)在x<0时的图象.解偶函数的图象关于y轴对称,由对称性可以作出函数y=f(x)在x<0时的图象,如图中y轴左边的部分.综合提高 (限时25分钟)7.若函数f (x )=(x +1)(x -a )为偶函数,则a 等于( ). A .-2 B .-1 C .1 D .2 解析 ∵f (x )=(x +1)(x -a )为偶函数, ∴f (-x )=f (x ).即(-x +1)(-x -a )=(x +1)(x -a ), ∴x ·(a -1)=x ·(1-a ), 故1-a =0,∴a =1,故选C. 答案 C8.奇函数y =f (x )(x ∈R )的图象必定经过点( ). A .(a ,f (-a ))B .(-a ,f (a ))C .(-a ,-f (a )) D.⎝ ⎛⎭⎪⎫a ,f ⎝ ⎛⎭⎪⎫1a解析 ∵y =f (x )是奇函数, ∴f (-a )=-f (a ).∴选C. 答案 C9.已知函数f (x )=ax 2+bx +3a +b 为偶函数,其定义域为[a -1,2a ],则a 的值为________.解析 ∵偶函数的定义域关于原点对称, ∴a -1=-2a ,a =13. 答案 1310.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是________.解析 因为f (x )是偶函数,所以f (-x )=f (x )恒成立, 即(m -1)x 2-6mx +2=(m -1)x 2+6mx +2恒成立. 所以m =0,即f (x )=-x 2+2.因为f (x )的图象开口向下,对称轴为y 轴, 所以f (2)<f (1)<f (0),即f (-2)<f (1)<f (0). 答案 f (-2)<f (1)<f (0) 11.判断下列函数的奇偶性: (1)f (x )=2x -1+1-2x ; (2)f (x )=x 4+x ;(3)f (x )=⎩⎨⎧ x 2+2-x 2-2(x >0),(x =0),(x <0);(4)f (x )=x 3-x 2x -1.解(1)定义域为⎩⎨⎧⎭⎬⎫12,不关于原点对称.该函数既不是奇函数也不是偶函数.(2)定义域为R ,关于原点对称,f (1)=2,f (-1)=0,∴f (-1)≠-f (1),f (-1)≠f (1),故其既不是奇函数也不是偶函数. (3)定义域为R ,关于原点对称. 当x >0时,-x <0,f (-x )=-(-x )2-2=-(x 2+2)=-f (x ); 当x <0时,-x >0,f (-x )=(-x )2+2=-(-x 2-2)=-f (x ); 当x =0时,f (0)=0.故该函数为奇函数.(4)函数的定义域为{x |x ∈R 且x ≠1},不关于原点对称. 所以函数f (x )=x 3-x 2x -1既不是奇函数也不是偶函数.12.(创新拓展)已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),求f (6)的值. 解 ∵f (x +2)=-f (x ).∴f (6)=f (4+2)=-f (4)=-f (2+2) =f (2)=f (0+2)=-f (0). ∵f (x )是定义在R 上的奇函数,∴f(0)=0,∴f(6)=0.1.3.2函数奇偶性的应用双基达标(限时20分钟)1.若点(-1,3)在奇函数y=f(x)的图象上,则f(1)等于().A.0 B.-1 C.3 D.-3解析由题知,f(-1)=3,因为f(x)为奇函数,所以-f(1)=3,f(1)=-3.答案 D2.已知函数y=f(x)是偶函数,其图象与x轴有四个交点,则方程f(x)=0的所有实根之和是().A.0 B.1 C.2 D.4解析∵偶函数的图象关于y轴对称,∴f(x)与x轴的四个交点也关于y轴对称.若y轴右侧的两根为x1,x2,则y轴左侧的两根为-x1,-x2,∴四根和为0.答案 A3.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点,③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数是f(x)=0.其中正确命题的个数为().A.1 B.2 C.3 D.4解析偶函数的图象关于y轴对称,但不一定与y轴相交,如y=1x2,故①错,③对;奇函数的图象不一定通过原点,如y=1x,故②错;既奇又偶的函数除了满足f(x)=0,还要满足定义域关于原点对称,④错.故选A.答案 A4.已知函数y=f(x)是奇函数,当x>0时,f(x)=x+1,则当x<0时,f(x)=________. 解析设x<0,则-x>0,f(-x)=-x+1,又函数f(x)为奇函数,所以f(-x)=-f (x ),所以f (x )=-f (-x )=--x -1.因此,当x <0时,f (x )的解析式为f (x )=--x -1. 答案 --x -15.若函数f (x )=-x +abx +1为区间[-1,1]上的奇函数,则它在这一区间上的最大值为________.解析 f (x )为[-1,1]上的奇函数,且在x =0处有定义,所以f (0)=0,故a =0,则f (x )=-x bx +1.又f (-1)=-f (1),所以--1-b +1=1b +1,故b =0,于是f (x )=-x .函数f (x )=-x 在区间[-1,1]上为减函数,当x 取区间左端点的值时,函数取得最大值1. 答案 16.已知函数f (x )=ax +b1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25,求函数f (x )的解析式.解 ∵f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,即b1+02=0, ∴b =0, 又f ⎝ ⎛⎭⎪⎫12=12a1+14=25,∴a =1, ∴f (x )=x 1+x 2. 综合提高 (限时25分钟)7.函数y =1-x 2+91+|x |是( ). A .奇函数 B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析 先求定义域,由⎩⎨⎧1-x 2≥01+|x |≠0⇒-1≤x ≤1.∴定义域为[-1,1].定义域关于原点对称. 又f (-x )=1-(-x )2+91+|-x |=f (x ),∴f (x )为偶函数. 答案 B8.设偶函数y =f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ). A .f (π)>f (-3)>f (-2) B .f (π)>f (-2)>f (-3) C .f (π)<f (-3)<f (-2) D .f (π)<f (-2)<f (-3)解析 因为当x ∈[0,+∞)时,f (x )是增函数,所以有f (2)<f (3)<f (π).又f (x )是R 上的偶函数,故f (-2)=f (2),f (-3)=f (3),从而有f (-2)<f (-3)<f (π). 答案 A9.函数y =f (x )是定义在R 上的奇函数,且它是减函数,若实数a ,b 满足f (a )+f (b )>0,则a +b ________0(填“>”“<”或“=”). 解析 由f (a )+f (b )>0,得f (a )>-f (b ) ∵f (x )为奇函数,则f (-x )=-f (x ). ∴f (a )>f (-b ),又f (x )为减函数, ∴a <-b ,即a +b <0. 答案 <10.若y =f (x )在(-∞,0)∪(0,+∞)上为奇函数,且在(0,+∞)上为增函数,f (-2)=0,则不等式x ·f (x )<0的解集为________. 解析 根据题意画出f (x )大致图象:由图象可知-2<x <0或0<x <2时,x ·f (x )<0. 答案 (-2,0)∪(0,2)11.已知奇函数y =f (x )在[-1,1]上为增函数,解不等式f ⎝ ⎛⎭⎪⎫x 2+f (x -1)>0.解 ∵f (x )为奇函数,∴f ⎝ ⎛⎭⎪⎫x 2>f (1-x ).又∵f (x )为定义在[-1,1]上的增函数,∴⎩⎪⎨⎪⎧-1≤x2≤1,-1≤1-x ≤1,x 2>1-x ,解得⎩⎪⎨⎪⎧-2≤x ≤2,0≤x ≤2,x >23.即23<x ≤2.∴不等式的解集为⎩⎨⎧⎭⎬⎫x |23<x ≤2.12.(创新拓展)已知y =f (x )是R 上的奇函数,且当x >0时,f (x )=-x 2+2x +2. (1)求f (x )的解析式;(2)画出f (x )的图象,并指出f (x )的单调区间. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2-2x +2=-x 2-2x +2, 又∵f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=x 2+2x -2,又f (0)=0,∴f (x )=⎩⎨⎧x 2+2x -2-x 2+2x +2(x <0),(x =0),(x >0).(2)先画出y =f (x )(x >0)的图象,利用奇函数的对称性可得到相应y =f (x )(x <0)的图象,其图象如图所示.由图可知,其增区间为(-1,0)及(0,1],减区间为(-∞,-1]及(1,+∞).。
1.下列说法中正确的为( )
A .y =f (x )与y =f (t )表示同一个函数
B .y =f (x )与y =f (x +1)不可能是同一函数
C .f (x )=1与f (x )=x 0表示同一函数
D .定义域和值域都相同的两个函数是同一个函数
解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.
2.下列函数完全相同的是( )
A .f (x )=|x |,g (x )=(x )2
B .f (x )=|x |,g (x )=x 2
C .f (x )=|x |,g (x )=x 2
x
D .f (x )=x 2-9x -3
,g (x )=x +3 解析:选B.A 、C 、D 的定义域均不同.
3.函数y =1-x +x 的定义域是( )
A .{x |x ≤1}
B .{x |x ≥0}
C .{x |x ≥1或x ≤0}
D .{x |0≤x ≤1}
解析:选D.由⎩
⎪⎨⎪⎧
1-x ≥0x ≥0,得0≤x ≤1. 4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.
解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对
于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).
答案:(2)(3)
1.函数y =1x
的定义域是( ) A .R B .{0}
C .{x |x ∈R ,且x ≠0}
D .{x |x ≠1}
解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.
2.下列式子中不能表示函数y =f (x )的是( )
A .x =y 2+1
B .y =2x 2+1
C .x -2y =6
D .x =y
解析:选A.一个x 对应的y 值不唯一.
3.下列说法正确的是( )
A .函数值域中每一个数在定义域中一定只有一个数与之对应
B .函数的定义域和值域可以是空集
C .函数的定义域和值域一定是数集
D .函数的定义域和值域确定后,函数的对应关系也就确定了
解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .
4.下列集合A 到集合B 的对应f 是函数的是( )
A .A ={-1,0,1},
B ={0,1},f :A 中的数平方
B .A ={0,1},B ={-1,0,1},f :A 中的数开方
C .A =Z ,B =Q ,f :A 中的数取倒数
D .A =R ,B ={正实数},f :A 中的数取绝对值
解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.
5.下列各组函数表示相等函数的是( )
A .y =x 2-3x -3
与y =x +3(x ≠3) B .y =x 2-1与y =x -1
C .y =x 0(x ≠0)与y =1(x ≠0)
D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z X k b 1 . c o m
解析:选C.A 、B 与D 对应法则都不同.
6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( )
A .∅
B .∅或{1}
C .{1}
D .∅或{2}
解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∅或{1}.
7.若[a,3a -1]为一确定区间,则a 的取值范围是________.
解析:由题意3a -1>a ,则a >12
. 答案:(12
,+∞) 8.函数y =(x +1)0
3-2x 的定义域是________. 解析:要使函数有意义,
需满足⎩⎪⎨⎪⎧
x +1≠03-2x >0,即x <32且x ≠-1. 答案:(-∞,-1)∪(-1,32
) 9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________.
解析:当x 取-1,0,1,2时,
y =-1,-2,-1,2,
故函数值域为{-1,-2,2}.
答案:{-1,-2,2}
10.求下列函数的定义域:
(1)y =-x 2x 2-3x -2;(2)y =34x +83x -2
. 解:(1)要使y =-x 2x 2-3x -2
有意义,则必须 ⎩⎪⎨⎪⎧
-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12
}. (2)要使y =
3
4x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23
}. 11.已知f (x )=
11+x
(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值;
(2)求f (g (2))的值.
解:(1)∵f (x )=11+x
, ∴f (2)=11+2=13
, 又∵g (x )=x 2+2,
∴g (2)=22+2=6.
(2)由(1)知g (2)=6,
∴f (g (2))=f (6)=11+6=17. 12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.
解:函数y =ax +1(a <0且a 为常数).
∵ax +1≥0,a <0,∴x ≤-1a
, 即函数的定义域为(-∞,-1a
]. ∵函数在区间(-∞,1]上有意义,
∴(-∞,1]⊆(-∞,-1a
], ∴-1a
≥1,而a <0,∴-1≤a <0. 即a 的取值范围是[-1,0).。