解析函数
- 格式:ppt
- 大小:390.00 KB
- 文档页数:21
第二章解析函数•复变函数的导数•解析函数的概念•初等解析函数复函数的求导法则由于复变函数中导数的定义与一元实变函数中导数的定义在形式上完全一致, 并且复变函数中的极限运算法则也和实变函数中一样, 因而实变函数中的求导法则都可以不加更改地推广到复变函数中来, 且证明方法也是相同的.例2证明()2f z x yi =+在复面内处处连续,但处处不可导.证明对复平面内任意点z , 有()()f z z f z +Δ−2.x yi =Δ+Δ()2()2x x y y i x yi =+Δ++Δ−−故0lim[()()]0.z f z z f z Δ→+Δ−=这说明()2f z x yi =+在复面内处处连续.000()()() (), f z z f z f z z z z ρ′+Δ−=Δ+ΔΔ,)()(lim 000z f z z f z =Δ+→Δ所以lim ()0,z z ρΔ→Δ=再由即()f z 在0z 处连续.反之, 由例2知, 处处不可导,()2f z x yi =+但处处连续。
例5问题:对函数f (z ) = u (x ,y ) + iv (x ,y ),如何判别其解析(可导)性?换句话说:()(),f z u v 的解析可导与的偏导数之间有什么关系?解析函数的性质:(1)两个解析函数的和、差、积、商仍为解析函数;(2)两个解析函数的复合函数仍为解析函数;(3)一个解析函数不可能仅在一个点或一条曲线上解析;所有解析点的集合必为开集。
证明必要性. 若存在,设0()f z ′0()f z a ib ′=+(a , b 是实常数). 因此000()()()f z z f z f z z z α′+Δ−=Δ+Δ12()()()()a ib x i y i x i y αα=+Δ+Δ++Δ+Δ12()a xb y x y αα=Δ−Δ+Δ−Δ21(,i b x a y x y αα+Δ+Δ+Δ+Δ其中12Re , Im .αααα==且当时,0z Δ→120, 0.αα→→0000(,)(,),u u x x y y u x y Δ=+Δ+Δ−0000(,)(,),v v x x y y v x y Δ=+Δ+Δ−则于是有00()().f z z f z u i v +Δ−=Δ+Δ12()u i v a x b y x y ααΔ+Δ=Δ−Δ+Δ−Δ21().i b x a y x y αα+Δ+Δ+Δ+Δ由两个复数相等的条件可得设21.v b x a y x y ααΔ=Δ+Δ+Δ+Δ12,u a x b y x y ααΔ=Δ−Δ+Δ−Δ于是,1(,),(,)..a u x y v x y C R =−−当时,满足条件,().f z z 从而在平面上处处可微,处处解析1(,),(,)0..a u x y v x y y C R ≠−=−当时,仅在直线上满足条件,().f z z 故在平面上处处不解析()00.f z y y =≠从而仅在上可微,在上不可微作业3第89页,第二章习题(一):2;4(1)(3);5(2)(4);7;8(2)(4);9; 11(1)(3)。
解析函数的理解高中的函数知识点中有一块是讲解析函数,它是由不同的函数相加而得到的,具有这样特征的函数就是解析函数。
其实,解析函数应该是一类函数的统称,它的基本性质也很重要,让我们进一步认识它吧!定义:设;当x=a x^2+bx+c时,设;f(a)=x^2+bx+c,1、对于有理函数,解析式与自变量的取值无关;2、对于一般的解析函数,若自变量x的连续可导,则解析式的值域为全体实数,反之亦然。
此外,由于解析函数自变量x的取值范围是其定义域的子集,所以对于非解析函数来说,自变量x的取值范围通常都不会是整个定义域。
2、在一般意义下,解析函数满足:如果f(a)是x在[a, +∞)上的可导函数,则称f是(沿)解析函数。
3、我们把函数y=f(x), y=f(x^n), y=f(x^m),y=f(x^n)+f(x)-f(x^m), y=f(x^n)+f(x)并且图像关于y轴对称的函数叫做隐函数。
隐函数的表达式是由隐函数f=f(x)及f的定义而得到的, f=f(x)是函数,它是在一个集合X中选择一个元素y,使得f(y)=f(x)+c。
f(x)是x的函数,我们称它为f的原函数。
4、一般地,如果函数y=f(x), y=f(x^n), y=f(x^m), y=f(x^n)+f(x)并且图像关于y轴对称,那么就称函数y为y=f(x)+c的一般形式。
5、设f(x): f(x)与函数f:有两种表示法,即原函数及一般形式。
6、函数与其图像在某点有无数多对应点,并且对应点坐标满足f(x) = 0,则称此函数为可去奇点的函数,可去奇点的函数没有实际意义。
7、对于任何解析函数,当它的图像关于原点对称时,图像总过原点;反之,当它的图像关于原点的某一固定点对称时,图像总不过原点。
8、设: f:可以是不连续的,但一定是解析的。
9、设f(x)是f的图像,是f在x处的一条“虚线”。
如果图像的函数在x处可导,则称此函数为解析函数。
高中数学的解析函数的性质及应用解析解析函数是高中数学中的重要概念,其性质及应用在数学学科及其他学科中具有广泛的应用。
本文将围绕解析函数的定义、性质和应用展开讨论。
一、解析函数的定义解析函数又称为复变函数,它是指在复数域上有定义的函数。
具体而言,对于一个定义在复数域上的函数f(z),如果对于复数域上任意一个复数z,该函数都有唯一的函数值w与之对应,那么f(z)即为解析函数。
解析函数的定义可以用数学符号表示为:f(z) = u(x, y) + iv(x, y),其中z = x + iy,u(x, y)和v(x, y)分别表示复变函数的实部和虚部。
二、解析函数的性质1. 连续性:解析函数在其定义域上连续,即实部和虚部都是连续函数。
2. 可微性:解析函数在其定义域上可导,即满足柯西-黎曼方程的充分必要条件。
柯西-黎曼方程表示为:∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂x。
3. 奇点:解析函数在其定义域上无奇点,即没有使函数值发散或不唯一的点。
根据解析函数的性质,我们可以推导出一些重要的结论。
例如,解析函数的导函数也是一个解析函数,解析函数的连续叠加仍然是一个解析函数等。
三、解析函数的应用解析函数的应用非常广泛,不仅在数学学科中有重要意义,也被应用于其他学科中。
1. 数学学科中的应用:解析函数可以用于复数域的积分计算,例如对于沿闭合曲线C的积分∮Cf(z)dz,由于解析函数是可导的,我们可以通过柯西定理将曲线内部的积分等于曲线上的积分,简化计算。
2. 物理学中的应用:解析函数被广泛应用于物理学中的电磁场、流体力学等领域。
例如,对于电势、磁场等物理量的描述往往使用解析函数的方法,通过假设解析函数满足某些条件,可以方便地求解实际问题。
3. 工程学中的应用:解析函数在工程学中的应用也非常重要。
例如,在信号处理领域,解析函数可以用于信号的频谱分析、信号的模拟与合成等方面。
总之,解析函数作为高中数学中的重要概念,其性质和应用在数学学科及其他学科中都有广泛的应用。
解析函数和调和函数的定义
解析函数和调和函数是数学中的两个概念,它们的定义如下:
解析函数(Analytic Function):
一个函数f(x)在某一点x处是解析的,如果它在该点附近的某个区域内满足柯西-黎曼方程,即f'(x)=[f(x)]^n,其中n为正整数,f(x)在该点处连续。
如果一个函数在整个定义域内都是解析函数,则称它为全解析函数。
常见的解析函数包括多项式函数、三角函数、指数函数、对数函数等等。
调和函数(Harmonic Function):
一个函数f(x)在某一点x处是调和的,如果它满足拉普拉斯方程,即Δf(x)=0,其中Δ为二阶拉普拉斯方程。
调和函数具有许多优良的性质,如最大值原理、最小值原理、格林公式等等,因此在物理学和工程学中有着广泛的应用。
常见的调和函数包括正弦函数、余弦函数、指数函数、对数函数等等。
总的来说,解析函数和调和函数都是数学中非常重要的概念,它们具有不同的性质和应用领域。
解析函数主要用于研究函数的导数和微分
方程,而调和函数主要用于研究波动现象和物理学中的振动问题。
第二章 解析函数[Cauchy-Riemann 条件的说明]二元函数),(y x u 的可微:()22''y x o y B x A u dy u dx u du y x ∆+∆+∆+∆=∆⇔+=y u x u u y x ∆+∆≈∆''[命题] ),(y x u 的一阶偏导数),('),,('y x u y x u y x 连续),(y x u ⇒的可微。
设ib a z f +=)(',由于zz f z ∆∆=→∆ω0lim )(',)(z f =ω在(x ,y )可导意味着 ()()x b y a i y b x a y i x ib a z z f v i u ∆+∆+∆-∆=∆+∆+=∆≈∆+∆=∆))(()('ω x v y u b y v x u a x b y a v y b x a u ∂∂=∂∂-=∂∂=∂∂=⇒⎩⎨⎧∆+∆≈∆∆-∆≈∆, )(')('z f xv i x u ib a z f x =∂∂+∂∂=+= 另一版本的说明见课件。
------------------------------------------------------------------------------------[命题] 若R b a b a ∈≠,,,则iby ax +处处连续但处处不可导。
[证明] by y x v ax y x u ==),(,),(处处可微,因此函数处处连续,b v v u a u y x y x ===='0'0'',当且仅当b a =时CR 条件才满足,所以函数处处不可导。
□ 例如yi x z y i x iy x z z f ⋅+=+-==0Re ,2,)(等。
当b a =时a i a z f az iay ax z f =+==+=0)(',)(,与实变函数ax),(),,(y x v y x u P38 例 32222)(,2)(,)(y x z z h yi x z g z z f +==+==的可导、解析性。
解析函数的理解我的理解是解析函数就是一个函数对自变量,也就是取得值在x 轴或者Y轴上面的函数。
这里所说的x轴和Y轴分别指的是对应于所取的自变量,只与自变量自身的一种特定关系的参照物。
1、解析函数都有一个基本性质,即当我们用解析函数解析式表示一个给定的函数时,一般情况下在左边自变量的对应值,会是符合我们要求的解析式中x轴和Y轴的一个函数值。
所以可以使用解析式解答问题。
不需要特别提示的就是y=f(x), f(x)就是y=f(x),如果f(x),f(-x), f(0), f(2)……其实f(x)=y。
2、我们再来看解析式x=f(x)在自变量上也可以写成很多种形式,例如: y=f(x)+c。
从自变量角度来说就是把自变量写成含有已知值f的形式。
当然了,只有这些解析式才能用于解析函数,那么,我们把上面的解析式记住之后呢,就会发现,原来解析式不但可以把自变量直接表示出来,还可以通过f(x),也就是解析式得到自变量的单调区间。
从而也就有了不同的解析函数之间的关系。
2、任意两个解析函数相乘,都是先对应的两个函数值进行相乘。
如果他们有共同点,即都符合x, y满足的关系。
我们称为这两个解析式相乘等于零。
如果没有共同点,或者说有差异,就要看乘积是否在零点上,有无意义。
如果在零点上,则是我们所熟知的二次函数,因为二次函数的图像可以简化为一条直线,与y=f(x)相乘为零,所以二次函数相乘等于零。
如果不在零点上,又是什么情况呢?这就要看, f(x)、 g(x)分别是两个函数在x轴的分界点,有意义的,这两个函数相乘等于零;没有意义,这两个函数相乘等于零。
3、利用对应法则。
对应法则的基本思想是:在求自变量值时,通常把一个实际问题(或函数)的自变量按照某种条件换算成与它有对应关系的另一个实际问题(或函数)的自变量,并对两个实际问题(或函数)求导,利用对应法则求得实际问题(或函数)的解析式。
在指数上有几个实用的解析函数,包括e^x, e^y, f^x, f^y,f^{-x}, g^x, g^y,它们分别对应x=0, x=y=1, y=x=-1, x=-y=-1,y=x=-1, y=0。