2018年中考数学专题复习综合训练:图形的变换
- 格式:docx
- 大小:167.86 KB
- 文档页数:8
第七章 图形的变换第23讲 尺规作图(时间50分钟 满分65分)一、选择题(每小题4分,共24分)1.(2017·宜昌)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是(C )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF2.(2017·衢州)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是(C )A .①B .②C .③D .④3.(2017·深圳)如图,已知线段AB ,分别以A 、B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至M ,求∠BCM 的度数为(B )A .40°B .50°C .60°D .70°,第3题图) ,第4题图)4.(2017·南宁)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是(D )A .∠DAE =∠B B .∠EAC =∠C C .AE ∥BCD .∠DAE =∠EAC5.请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,要说明∠D ′O ′C ′=∠DOC ,需要证明△D ′O ′C ′≌△DOC ,则这两个三角形全等的依据是(A )A .边边边B .边角边C .角边角D .角角边,第5题图) ,第6题图)6.(2017·河池)如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG ,若AD =5,DE =6,则AG 的长是(B )A .6B .8C .10D .12二、填空题(每小题3分,共12分)7.(2017·绍兴)以Rt △ABC 的锐角顶点A 为圆心,适当长为半径作弧,与边AB ,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A 作直线,与边BC 交于点D.若∠ADB =60°,点D 到AC 的距离为2,则AB 的长为.8.(2017·济宁)如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限内交于点P (a ,b ),则a 与b 的数量关系是__a +b =0__.,第8题图) ,第9题图)9.(2017·河北)如图,依据尺规作图的痕迹,计算∠α=__56__°.10.(2017·北京)下面是“作已知直角三角形的外接圆”的尺规作图过程:已知:如图①,Rt △ABC ,∠C =90°,求作Rt △ABC 的外接圆.作法:如图②.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于P ,Q 两点; (2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O .⊙O 即为所求作的圆.请回答:该尺规作图的依据是__到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径__.三、解答题(共4小题,满分39分)11.(7分)(2017·天津)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于;(2)在△ABC 的内部有一点P ,满足S △P AB ∶S △PBC ∶ S △PCA =1∶2∶3,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)________________________________________________________________________.,第11题图) ,第11题答图)解:(2)如解图,AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.理由:平行四边形ABME 的面积∶平行四边形CDNB 的面积∶平行四边形DEMG 的面积=1∶2∶3,△P AB 的面积=12平行四边形ABME 的面积,△PBC 的面积=12平行四边形CDNB 的面积,△P AC 的面积=△PNG 的面积=12△DGN 的面积=12平行四边形DEMG 的面积,∴S △P AB ∶S △PBC ∶S △PCA =1∶2∶3.12.(6分)如图,Rt △ABC 中,∠C =90°,用直尺和圆规在边BC 上找一点D ,使D 到AB 的距离等于C D.(保留作图痕迹,不写作法)(导学号 35694213)解:如解图,点D 即为所求:13.(8分)已知圆O ,(1)求作圆O 的内接正六边形ABCDEF ;(要求尺规作图,保留作图痕迹)(2)若圆O 的半径为2,计算弦AB 与弧AB ︵所形成的面积.解:(1)如解图,先作半径OA ,再以OA 为半径在⊙O 上依次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=FA ︵,然后顺次连接AB 、BC 、CD 、DE 、EF 、F A 即可;(2)∵六边形ABCDEF 是正六边形,∴∠AOB =360°6=60°, ∵OA =OB ,∴△OAB 为等边三角形,∴弦AB 与弧AB ︵所形成的面积=S 扇形AOB -S △AOB =60·π·22360-34·22=23π- 3. 14.(8分)如图,在△ABC 中,∠A =∠B =30°,过点C 作CD ⊥AC ,交AB 于点D.(1)作△ACD 外接圆⊙O (尺规作图,保留作图痕迹,不写作法);(2)判断直线BC 与⊙O 的位置关系,并证明你的结论.解:(1)如解图,⊙O 即为所求作圆;(2)BC 与⊙O 相切.证明如下:连接CO ,如解图,∵∠A =∠B =30°,∴∠COB =2∠A =60°,∴∠COB +∠B =30°+60°=90°,∴∠OCB =90°,∴OC ⊥BC ,又BC 经过半径OC 的外端点C ,∴BC 与⊙O 相切.第24讲视图与投影(时间50分钟满分75分)一、选择题(本大题共13小题,每小题4分,共52分)1.(2017·吉林)如图是一个正六棱柱的茶叶盒,其俯视图为(B)2.(2017·济宁)下列几何体中,主视图、俯视图、左视图都相同的是(B)3.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是(导学号35694214)(D)4.(2017·贵港)如图是一个空心圆柱体,它的左视图是(B)5.(2017·北京)如图是某个几何体的展开图,该几何体是(A)A.三棱柱B.圆锥C.四棱柱D.圆柱6.(2017·烟台)如图所示的工件,其俯视图是(B)7.(2017·嘉兴)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是(C)A.中B.考C.顺D.利第7题图第8题图8.(2017·丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同9.(2017·连云港)由6个大小相同的正方体搭成的几何体如图所示,比较它的主视图,左视图和俯视图的面积,则(C)A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小,第9题图),第10题图)10.(2017·长沙)某几何体的三视图如图所示,因此几何体是(导学号35694215)(B) A.长方形B.圆柱C.球D.正三棱柱11.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是(A)12.(2017·乌鲁木齐)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是(B)A.πB.2πC.4πD.5π,第12题图),第13题图)13.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子(B)A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长二、填空题(本大题共5小题,每小题3分,共15分)14.(2017·江西)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是__8__.第14题图第15题图15.(2017·青岛)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为.(导学号35694216)16.(2017·宁夏)如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是__22__.17.如图是一个包装盒的三视图,则这个包装盒的体积是__2000π__.第17题图第18题图18.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为0,则x-2y=__6__.三、解答题(本大题共1小题,共8分)19.(8分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的主视图和左视图;(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).解:(1)这个几何体的主视图和左视图如解图所示:(2)几何体的表面积为(3+4+5)×2=24.第25讲图形的对称、平移、旋转及位似(时间60分钟满分80分)一、选择题(本大题共11小题,每小题4分,共44分)1.(2017·江西)下列图形中,是轴对称图形的是(C)2.(2017·深圳)观察下列图形,其中既是轴对称又是中心对称图形的是(D)3.下列函数中,其图象关于原点对称的是(B)A.y=x2B.y=-x3C.y=|x| D.y=x+14.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有(B)A.4个B.3个C.2个D.1个第4题图第5题图5.(2017·成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为(导学号35694217)(A) A.4∶9B.2∶5C.2∶3 D.2∶ 36.(2017·大连)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,-1),则点B′的坐标为(B) A.(4,2) B.(5,2) C.(6,2) D.(5,3)7.如图,已知D,E分别为△ABC的边AC,BC的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于(B)A.42°B.48°C.52°D.58°8.(2017·天津)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接A D.下列结论一定正确的是(C)A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC第8题图第9题图9.(2017·广州)如图,E ,F 分别是▱ABCD 的边AD 、BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到EFC ′D ′,ED ′交BC 于点G ,则△GEF 的周长为(C )A .6B .12C .18D .2410.(2017·贵港)如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,M 是BC 的中点,P 是A ′B ′的中点,连接PM .若BC =2,∠BAC =30°,则线段PM 的最大值是(B )A .4B .3C .2D .1第10题图 第11题图11.(2017·内江)如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为(A )A .(32,323)B .(2,323)C .(323,32)D .(32,3-323) 二、填空题(本大题共6小题 ,每小题3分,共18分)12.(2017·宜宾)如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB =15°,则∠AOD 的度数是__60°__.第12题图 第13题图13.(2017·长沙)如图,△ABO 三个顶点的坐标分别为A (2,4),B (6,0),O (0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A ′B ′O ,已知点B ′的坐标是(3,0),则点A ′的坐标是__(1,2)__.14.(2017·百色)如图,在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A的坐标为(2,0),将正方形OABC 沿着OB 方向平移12OB 个单位,则点C 的对应点坐标为__(1,3)__.第14题图 第15题图15.(2017·海南)如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是__35__.(导学号 35694218)16.(2017·黄冈)已知:如图,在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D =__1.5__cm .第16题图 第17题图17.如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于__75__.(导学号 35694219) 三、解答题(本大题共2小题,共18分)18.(9分)(2017·金华)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (-2,-2),B (-4,-1),C (-4,-4).(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)作出点A 关于x 轴的对称点A ′,若把点A ′向右平移a 个单位长度后落在△A 1B 1C 1的内部(不包括顶点和边界),求a 的取值范围.解:(1)解图略;(2)∵点A ′坐标为(-2,2),∴若要使向右平移后的A ′落在△A 1B 1C 1的内部,最少平移4个单位,最多平移6个单位,即4<a <6.19.(9分)如图,△ABC 各顶点的坐标分别是A (-2,-4),B (0,-4),C (1,-1).(1)在图中画出△ABC 关于原点对称的△A 1B 1C 1;(2)在图中画出△ABC 绕原点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,AC 边扫过的面积是__92π__.解:(1)(2)解图略;(3)OC=2,OA=22+42=25,AC边扫过的面积为S扇形OAA2-S扇形OCC2=90π×(25)2360-90π×(2)2360=92π.第七章 图形的变换自我测试(时间60分钟 满分95分)一、选择题(本大题共11小题 ,每小题4分,共44分)1.(2017·成都)下列图标中,既是轴对称图形,又是中心对称图形的是(D )2.(2017·安顺)如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为(C )3.在函数y =x ,y =1x,y =x 2-1,y =(x -1)2中,其图象是轴对称图形且对称轴是坐标轴的共有(D )A .4个B .3个C .2个D .1个4.如图是某个几何体的三视图,该几何体是(B )A .正方体B .圆柱C .圆锥D .球第4题图 第5题图5.(2017·青岛)如图,若将△ABC 绕点O 逆时针旋转90°,则顶点B 的对应点B 1的坐标为(B )A .(-4,2)B .(-2,4)C .(4,-2)D .(2,-4)6.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是(B )7.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =4,则AE 的长为(B ) A.7 B .27 C .37 D .47第7题图 第8题图8.(2017·菏泽)如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C ,连接AA ′,若∠1=25°,则∠BAA ′的度数是(C )A .55°B .60°C .65°D .70°9.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为(A ) A .(3,3) B .(4,3) C .(3,1) D .(4,1)第9题图 第10题图10.(2017·淮安)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是(B )A .3 3B .6C .4D .511.(2017·聊城)如图,将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上点B ′处,此时,点A 的对应点A ′恰好落在BC 边的延长线上,下列结论错误的(C )A .∠BCB ′=∠ACA ′ B .∠ACB =2∠BC .∠B ′CA =∠B ′ACD .B ′C 平分∠BB ′A ′二、填空题(本大题共6小题 ,每小题3分,共18分)12.(2017·滨州)如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为__12+15π__.,第12题图) ,第13题图)13.已知,如图,AB 和DE 是直立在地面上的两根立柱,AB =4 m ,某一时刻AB 在阳光下的投影BC =3 m ,同一时刻测得DE 影长为4.5 m ,则DE =__6__m .14.如图,在△ABC 中,BC =6,将△ABC 沿BC 方向平移得到△A ′B ′C ′,连接AA ′,若A ′B ′恰好经过AC 的中点O ,则AA ′的长度为__3__.(导学号 35694220)15.(2017·眉山)△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是__120°__.(导学号 35694221)16.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),点B (-4,-1)的对应点D 的坐标为__(1,2)__.17.(2017·威海)如图,A 点的坐标为(-1,5),B 点的坐标为(3,3),C 点的坐标为(5,3),D 点的坐标为(3,-1),小明发现:线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是__(1,1)或(4,4)__.三、解答题(本大题共4小题,共33分)18.(8分)(2017·泰州)如图,△ABC 中,∠ACB >∠AB C.(1)用直尺和圆规在∠ACB 的内部作射线CM ,使∠ACM =∠ABC (不要求写作法,保留作图痕迹);(2)若(1)中的射线CM 交AB 于点D ,AB =9,AC =6,求AD 的长.(导学号 35694222)解:(1)如解图所示,射线CM 即为所求;(2)∵∠ACD =∠ABC ,∠CAD =∠BAC ,∴△ACD ∽△ABC ,∴AD AC =AC AB ,即AD 6=69, ∴AD =4.19.(8分)(2017·舟山)如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F (保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数.(1)如解图①,⊙O 即为所求;(2)如解图②,连接OD,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.20.(8分)(2017·南宁)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,-2),B(-2,-4),C(-4,-1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.解:(1)解图略,B1(-2,-1);(2)解图略,直线l的函数解析式为y=-x.21.(9分)(2017·黑龙江)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标;(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标;(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.解:(1)解图略,A1的坐标为(-2,2);(2)解图略,此时A2的坐标为(4,0);(3)解图略,A3的坐标为(-4,0).。
第六部分图形的变化6.4 图形的变换综合题【一】知识点清单几何变换的类型;几何变换综合题;多种变换综合题1、平移生活中的平移现象;平移的概念及性质;作图-平移变换;坐标与图形变化-平移;利用平移设计图案2、轴对称生活中的轴对称现象;轴对称;轴对称的性质;轴对称的应用;轴对称图形;轴对称与轴对称图形的区别与联系;镜面对称(补充);3、画轴对称图形作图-轴对称变换;坐标与图形变化-轴对称;利用轴对称设计图案;翻折变换(折叠问题);图形的剪拼;4、课题学习最短路径问题轴对称-最短路线问题5、图形的旋转生活中的旋转现象;旋转的性质;旋转对称图形;作图-旋转变换6、中心对称中心对称及其相关概念;中心对称的性质;作图-中心对称;中心对称图形;坐标与图形变化-中心对称7、课题学习图案设计利用轴对称设计图案;利用平移设计图案;利用旋转设计图案;几何变换的类型;几何变换综合题【二】分类试题汇编及参考答案与解析一、选择题1.(2018年贵州省黔东南州/黔西南州/黔南州-第5题-3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形;轴对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【总结归纳】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2018年贵州省遵义市-第2题-3分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答过程】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.【总结归纳】本题考查中心对称图形、轴对称图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018年广西桂林市-第11题-3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.C D【知识考点】正方形的性质;轴对称的性质;旋转的性质.【思路分析】解法一:连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=3,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF的长;解法二:过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,判定△AEH∽△EMG,即可得到==,设MG=x,则EH=3x,DG=1+x=AH,利用勾股定理可得,Rt△AEH中,(1+x)2+(3x)2=32,进而得出EH==BN,CG=CM﹣MG==EN,FN=,再根据勾股定理可得,Rt△AEN中,EF==.【解答过程】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.【总结归纳】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4.(2018年山东省潍坊市-第10题-3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°)C.Q(3,600°)D.Q(3,﹣500°)【知识考点】中心对称;坐标与图形变化﹣旋转.【思路分析】根据中心对称的性质解答即可.【解答过程】解:∵P(3,60°)或P(3,﹣300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,﹣120°),(3,600°),故选:D.【总结归纳】此题考查中心对称的问题,关键是根据中心对称的性质解答.5.(2018年山东省济宁市-第6题-3分)如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【知识考点】坐标与图形变化﹣平移;坐标与图形变化﹣旋转.【思路分析】根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可.【解答过程】解:∵点C的坐标为(﹣1,0),AC=2,∴点A的坐标为(﹣3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.【总结归纳】本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键.6.(2018年四川省南充市-第2题-3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形【知识考点】中心对称图形;轴对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:A、扇形,是轴对称图形,不是中心对称图形,故此选项错误;B、正五边形是轴对称图形,不是中心对称图形,故此选项错误;C、菱形既是轴对称图形又是中心对称图形,故此选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【总结归纳】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.7.(2018年黑龙江省齐齐哈尔市-第1题-3分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念判断即可.【解答过程】解:第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C.【总结归纳】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题1.(2018年内蒙古鄂尔多斯市-第12题-3分)从平行四边形、菱形、正五边形、圆、角中随机抽取一个图形,抽到既是中心对称图形又是轴对称图形的概率是.【知识考点】轴对称图形;中心对称图形;概率公式.【思路分析】先找出既是轴对称图形又是中心对称图形的个数,再根据概率公式进行计算即可.【解答过程】解:∵平行四边形、菱形、正五边形、圆、角中随机抽取一个图形,既是中心对称图形又是轴对称图形的有菱形、圆共2个,∴抽到既是中心对称图形又是轴对称图形的概率是;故答案为:.【总结归纳】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2.(2018年湖北省咸宁市-第16题-3分)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD2;其中正确的是.(把你认为正确结论的序号都填上).【知识考点】等边三角形的性质;菱形的判定与性质;轴对称的性质;旋转的性质.【思路分析】①根据对称的性质:对称点的连线被对称轴垂直平分可得:OM'是AC的垂直平分线,再由垂直平分线的性质可作判断;②作⊙O,根据四点共圆的性质得:∠ACD=∠E=60°,说明∠ACD是定值,不会随着α的变化而变化;③当α=30°时,即∠AOD=∠COD=30°,证明△AOC是等边三角形和△ACD是等边三角形,得OC=OA=AD=CD,可作判断;④先证明△ACD是等边三角形,当AC最大时,△ACD的面积最大,当AC为直径时最大,根据面积公式计算后可作判断.【解答过程】解:①∵A、C关于直线OM'对称,∴OM'是AC的垂直平分线,∴CD=AD,故①正确;②连接OC,由①知:OM'是AC的垂直平分线,∴OC=OA,∴OA=OB=OC,以O为圆心,以OA为半径作⊙O,交AO的延长线于E,连接BE,则A、B、C都在⊙O上,∵∠MON=120°,∴∠BOE=60°,∵OB=OE,∴△OBE是等边三角形,∴∠E=60°,∵A、C、B、E四点共圆,∴∠ACD=∠E=60°,故②不正确;③当α=30°时,即∠AOD=∠COD=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴∠OAC=60°,OC=OA=AC,由①得:CD=AD,∴∠CAD=∠ACD=∠CDA=60°,∴△ACD是等边三角形,∴AC=AD=CD,∴OC=OA=AD=CD,∴四边形OADC为菱形;故③正确;④∵CD=AD,∠ACD=60°,∴△ACD是等边三角形,当AC最大时,△ACD的面积最大,∵AC是⊙O的弦,即当AC为直径时最大,此时AC=2OA=2a,α=90°,∴△ACD面积的最大值是:AC2==,故④正确,所以本题结论正确的有:①③④故答案为:①③④.【总结归纳】本题是圆和图形变换的综合题,考查了轴对称的性质、四点共圆的性质、等边三角形的判定、菱形的判定、三角形面积及圆的有关性质,有难度,熟练掌握轴对称的性质是关键,是一道比较好的填空题的压轴题.3.(2018年山东省潍坊市-第16题-3分)如图,正方形ABCD的边长为1,点A与原点重合,点B 在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.【知识考点】正方形的性质;坐标与图形变化﹣旋转.【思路分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答过程】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).【总结归纳】本题主要考查旋转的性质、正方形的性质,解题的关键是掌握旋转变换的不变性与正方形的性质、全等三角形的判定与性质及三角函数的应用.三、解答题1.(2018年内蒙古鄂尔多斯市-第19题-8分)如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,BD=6,DC=4,求AD的长.小明同学利用翻折,巧妙地解答了此题,按小明的思路探究并解答下列问题:(1)分别以AB,AC所在直线为对称轴,画出△ABD和△ACD的对称图形,点D的对称点分别为点E,F,延长EB和FC相交于点G,求证:四边形AEGF是正方形;(2)设AD=x,建立关于x的方程模型,求出AD的长.【知识考点】全等三角形的判定与性质;勾股定理;正方形的判定与性质;轴对称的性质;翻折变换(折叠问题).【思路分析】(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;(2)利用勾股定理,建立关于x的方程模型(x﹣6)2+(x﹣4)2=102,求出AD=x=12.【解答过程】(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°.又∵AD⊥BC∴∠E=∠ADB=90°,∠F=∠ADC=90°.∴四边形AEGF是矩形,又∵AE=AD,AF=AD∴AE=AF.∴矩形AEGF是正方形;(2)解:设AD=x,则AE=EG=GF=x.∵BD=6,DC=4,∴BE=6,CF=4,∴BG=x﹣6,CG=x﹣4,在Rt△BGC中,BG2+CG2=BC2,∴(x﹣6)2+(x﹣4)2=102.化简得,x2﹣10x﹣24=0解得x1=12,x2=﹣2(舍去)所以AD=x=12.【总结归纳】本题考查图形的翻折变换和利用勾股定理,建立关于x的方程模型的解题思想.要能灵活运用.2.(2018年内蒙古鄂尔多斯市-第24题-12分)(1)【操作发现】如图1,将△ABC绕点A顺时针旋转60°,得到△ADE,连接BD,则∠ABD=度.(2)【类比探究】如图2,在等边三角形ABC内任取一点P,连接PA,PB,PC,求证:以PA,PB,PC的长为三边必能组成三角形.(3)【解决问题】如图3ABC内有一点P,∠APC=90°,∠BPC=120°,求△APC 的面积.(4)【拓展应用】如图4是A,B,C三个村子位置的平面图,经测量AC=4,BC=5,∠ACB=30°,P为△ABC 内的一个动点,连接PA,PB,PC.求PA+PB+PC的最小值.【知识考点】几何变换综合题.【思路分析】(1)【操作发现】:如图1中,只要证明△DAB是等边三角形即可;(2)【类比探究】:如图2中,以PA为边长作等边△PAD,使P、D分别在AC的两侧,连接CD.利用全等三角形的性质以及三角形的三边关系即可解决问题;(3)【解决问题】:如图3中,将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,只要证明∠PP′C=90°,利用勾股定理即可解决问题;(4)【拓展应用】:如图4中,先由旋转的性质得出△APC≌△EDC,则∠ACP=∠ECD,AC=EC=4,∠PCD=60°,再证明∠BCE=90°,然后在Rt△BCE中,由勾股定理求出BE的长度,即为PA+PB+PC的最小值;【解答过程】(1)【操作发现】解:如图1中,连接BD.∵△ABC绕点A顺时针旋转60°,得到△ADE,∴AD=AB,∠DAB=60°,∴△DAB是等边三角形,∴∠ABD=60°故答案为60.(2)【类比探究】证明:如图2中,以PA为边长作等边△PAD,使P、D分别在AC的两侧,连接CD.∵∠BAC=∠PAD=60°,∴∠BAP=∠CAD,∵AB=AC,AP=AD,∴△PAB≌△ACD(SAS),∴BP=CD,在△PCD中,∵PD+CD>PC,又∵PA=PD,∴AP+BP>PC.∴PA,PB,PC的长为三边必能组成三角形.(3)【解决问题】解:如图3中,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC,∵∠APC=90°,∴AP2+PC2=AC2,即(PC)2+PC2=()2,∴PC=2,∴AP=,∴S△APC=AP•PC=××2=.(4)【拓展应用】解:如图4中,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE.∵将△APC绕点C顺时针旋转60°,得到△EDC,∴△APC≌△EDC(旋转的性质),∴∠ACP=∠ECD,AC=EC=4,∠PCD=60°,∴∠ACP+∠PCB=∠ECD+∠PCB,∴∠ECD+∠PCB=∠ACB=30°,∴∠BCE=∠ECD+∠PCB+∠PCD=30°+60°=90°,在Rt△BCE中,∵∠BCE=90°,BC=5,CE=4,∴BE===,即PA+PB+PC的最小值为;【总结归纳】本题属于几何变换综合题,考查了旋转变换,等边三角形的性质,勾股定理等知识,解题的关键是添加常用辅助线,构造全等三角形解决问题,用转化的思想思考问题,属于中考压轴题.3.(2018年湖北省襄阳市-第24题-10分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE 之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=BC=.【知识考点】相似形综合题.【思路分析】(1)①由GE⊥BC、GF⊥CD结合∠BCD=90°可得四边形CEGF是矩形,再由∠ECG=45°即可得证;②由正方形性质知∠CEG=∠B=90°、∠ECG=45°,据此可得=、GE∥AB,利用平行线分线段成比例定理可得;(2)连接CG,只需证△ACG∽△BCE即可得;(3)证△AHG∽△CHA得==,设BC=CD=AD=a,知AC=a,由=得AH= a、DH=a、CH=a,由=可得a的值.【解答过程】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.【总结归纳】本题主要考查相似形的综合题,解题的关键是掌握正方形的判定与性质、相似三角形的判定与性质等知识点.4.(2018年湖南邵阳市-第25题-8分)如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OG=1,求ENGM的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)【知识考点】相似形综合题.【思路分析】(1)连接AC,由四个中点可知OE∥AC、OE=AC,GF∥AC、GF=AC,据此得出OE=GF、OE=GF,即可得证;(2)①由旋转性质知OG=OM、OE=ON,∠GOM=∠EON,据此可证△OGM∽△OEN得==;②连接AC、BD,根据①知△OGM∽△OEN,若要GM=EN只需使△OGM≌△OEN,添加使AC=BD 的条件均可以满足此条件.【解答过程】解:(1)如图1,连接AC,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OE∥AC、OE=AC,GF∥AC、GF=AC,∴OE=GF,OE=GF,∴四边形OEFG是平行四边形;(2)①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴=,∴△OGM∽△OEN,∴==.②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=BD,∵AC=BD,∴OG=OE,∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴OG=OE、OM=ON,在△OGM和△OEN中,∵,∴△OGM ≌△OEN (SAS ), ∴GM=EN .【总结归纳】本题主要考查相似形的综合题,解题的关键是熟练掌握中位线定义及其定理、平行四边形的判定、旋转的性质、相似三角形与全等三角形的判定与性质等知识点.5.(2018年江苏省无锡市-第27题-10分)如图,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上. (1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若11A E EC =,求nm的值.【知识考点】轨迹;旋转的性质.【思路分析】(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.解直角三角形,求出∠ABA 1,得到旋转角即可解决问题; (2)由△BCE ∽△BA 2D 2,推出==,可得CE=由=﹣1推出=,推出AC=•,推出BH=AC==•,可得m 2﹣n 2=6•,可得1﹣=6•,由此解方程即可解决问题;【解答过程】解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵BD==,∴D到点D1所经过路径的长度==π.(2)∵△BCE∽△BA2D2,∴==,∴CE=∵=﹣1∴=,∴AC=•,∴BH=AC==•,∴m2﹣n2=6•,∴m4﹣m2n2=6n4,1﹣=6•,∴=(负根已经舍弃).【总结归纳】本题考查轨迹,旋转变换、解直角三角形、弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.6.(2018年辽宁省葫芦岛市-第26题-14分)如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y轴交于点B,连接AB.(1)求该抛物线的解析式;(2)将△ABO绕点O旋转,点B的对应点为点F.①当点F落在直线AE上时,求点F的坐标和△ABF的面积;②当点F到直线AE时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.【知识考点】二次函数综合题.【思路分析】(1)根据待定系数法,可得函数解析式;(2)根据旋转的性质,可得关于n的方程,根据自变量与函数值的对应关系,可得F点的坐标,根据面积的和差,可得答案;(3)根据相似三角形的判定与性质,可得HG=CG=,根据勾股定理,可得HC,根据平移的规律,可得直线l,直线l1,根据解方程组,可得答案.【解答过程】解:(1)将A,E点坐标代入函数解析式,得,解得,抛物线的解析式是y=﹣x2+4x+5,(2)设AE的解析式为y=kx+b,将A,E点坐标代入,得,解得,AE的解析式为y=x+1,x=0时,y=1即C(0,1),设F点坐标为(n,n+1),由旋转的性质得,OF=OB=5,n2+(n+1)2=25,解得n1=﹣4,n2=3,F(﹣4,﹣3),F(3,4),当F(﹣4,﹣3)时如图1,S△ABF=S△BCF﹣S△ABC=BC•|x F|﹣BC•|x A|=BC•(x A﹣x F)S△ABF=×4(﹣1+4)=6;当F(3,4)时,如图2,S△ABF=S△BCF+S△ABC=BC•|x F|+BC•|x A|=BC•(x F﹣x A)S△ABF=×4(3+1)=8;(3)如图3,∵∠HCG=∠ACO,∠HGC=∠COA,∴△HGC∽△COA,∵OA=OC=1,∴CG=HG=,由勾股定理,得HC==2,直线AE向上平移2个单位或向下平移2个单位,l的解析是为y=x+3,l1的解析是为y=x﹣1,联立解得x1=,x2=,,解得x3=,x4=,F点的坐标为(,),(,),(,),(,).【总结归纳】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用旋转的性质得出关于n的方程;解(3)的关键是利用相似三角形的判定与性质得出HG=CG=,又利用了直线的平移,解方程组求函数图象的交点.7.(2018年四川省南充市-第24题-10分)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A 旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.【知识考点】旋转的性质;矩形的性质.【思路分析】(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折叠的性质得到一对角相等,利用等角对等边即可得证;(2)由(1)得到△ABB′为等边三角形,利用矩形的性质及等边三角形的内角为60°,即可求出所求角度数;(3)由AB=2,得到B′B=B′F=2,∠B′BF=15°,过B作BH⊥BF,在直角三角形BB′H中,利用锐角三角函数定义求出BH的长,由BF=2BH即可求出BF的长.【解答过程】(1)证明:∵在Rt△ABC中,AC=2AB,∴∠ACB=∠AC′B′=30°,∠BAC=60°,由旋转可得:AB′=AB,∠B′AC=∠BAC=60°,∴∠EAC′=∠AC′B′=30°,∴AE=C′E;(2)解:由(1)得到△ABB′为等边三角形,∴∠AB′B=60°,∴∠FBB′=15°;(3)解:由AB=2,得到B′B=B′F=2,∠B′BF=15°,过B作BH⊥BF,在Rt△BB′H中,cos15°=,即BH=2×=,则BF=2BH=+.【总结归纳】此题考查了旋转的性质,矩形的性质,锐角三角函数定义,等边三角形、直角三角形的性质,熟练掌握旋转的性质是解本题的关键.8.(2018年浙江省嘉兴市舟山市-第24题-12分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求ACBC的值.(3)应用拓展:如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.【知识考点】相似形综合题.【思路分析】(1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,依据∠ACB=30°,AC=6,可得AD=AC=3,进而得到AD=BC=3,即△ABC是“等高底”三角形;(2)依据△ABC是“等高底”三角形,BC是“等底”,可得AD=BC,依据△ABC关于BC所在直线的对称图形是△A'BC,点B是△AA′C的重心,即可得到BC=2BD,设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,即可得到==;(3)①当AB=BC时,画出图形分两种情况分别求得CD=x=或CD=AC=2;当AC=BC时,画出图形分两种情况讨论,求得CD=AB=BC=2.【解答过程】解:(1)△ABC是“等高底”三角形;理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即△ABC是“等高底”三角形;(2)如图2,∵△ABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵△ABC关于BC所在直线的对称图形是△A'BC,∴∠ADC=90°,∵点B是△AA′C的重心,∴BC=2BD,设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,∴==;(3)①当AB=BC时,Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”为BC,l1∥l2,l1与l2之间的距离为2,AB=BC,∴BC=AE=2,AB=2,∴BE=2,即EC=4,∴AC=2,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴∠DCF=45°,设DF=CF=x,∵l1∥l2,∴∠ACE=∠DAF,∴==,即AF=2x,∴AC=3x=2,∴x=,CD=x=.Ⅱ.如图4,此时△ABC等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴△ACD是等腰直角三角形,∴CD=AC=2.②当AC=BC时,Ⅰ.如图5,此时△ABC是等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴A'C⊥l1,∴CD=AB=BC=2;Ⅱ.如图6,作AE⊥BC于E,则AE=BC,∴AC=BC=AE,∴∠ACE=45°,∴△ABC绕点C按顺时针方向旋转45°,得到△A'B'C时,点A'在直线l1上,∴A'C∥l2,即直线A'C与l2无交点,综上所述,CD的值为,2,2.【总结归纳】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据分类讨论的思想进行解答.。
【考点突破】图形变换安徽中考2017年中考1.(2017•安徽10)如图,在矩形ABCD中,AB=5,1AD=3,动点P满足S=S,则点P到A、BPAB3ABCD两点距离之和PA+PB的最小值为()A.29B.34C.52D.41(第1题图)(第2题图)2.(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E 处,折痕记为BD(如图1),剪△去CDE后得到双△层BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.3.(2017•安徽18)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格△点△ABC△和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)△将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(1)画△出△DEF关于直线l对称的三角形.(2)填空:∠C+∠E=.【解】2016年中考1.(2016•安徽10)如图,△R t ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()(第1题图)(第2题图)2.(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,△将BCE沿BE折叠,点C 恰落在边AD上的点F处;点G在AF上,△将ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:3①∠EBG=45°;△②DEF∽△ABG;③S=S;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)3.(2016•安徽17)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D.′【解】2015年中考1.(2015•安徽17)如图,在边长为1个单位长度的小正方形网格中,给出△了△ABC(顶点是网格线的交点).(1)请画△出△ABC关于直线l对称△的△A B C;111(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A C,并以它为一边作一个格22点△A B C,使A B=C B.2222222【解】3 A.2B.2C.5D.6矩形△2△△ABG FGH2014年中考1.(2014•安徽8)如图,△R t ABC中,AB=9,BC=6,∠B=90°,△将ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()55A.B.32C.4D.52.(2014•安徽17)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格△点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得△到△A B C,请画出111A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)(第3题图)(第5题图)4.(2017•黔东南州)在平面直角坐标系中有一点A(-2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.5.(2017•百色)如图,在正方形OABC中,O为坐标△A B C;111原点,点C在y轴正半轴上,点A的坐标为(2,0),(2)请画一个格△点△A B C,△使△A B C∽△ABC,且222222相似比不为1.【解】1将正方形OABC沿着OB方向平移错误!未指定书签。
江苏南通2018-2019年中考数学试题分类解析专项4:图形的变换专题4:图形的变换一、选择题1.〔江苏省南通市2002年3分〕如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,那么CD等于【】A、2cmB、3cmC、4cmD、5cm【答案】B。
【考点】折叠的性质,勾股定理。
【分析】依照勾股定理求得AB的长,再依照折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长:∵AC=6cm,BC=8cm,∴AB=10cm。
∵AE=6cm,∴BE=4cm。
设CD=x,那么在Rt△DEB中,42+x2=〔8-x〕2,解得x=3〔cm〕。
应选B。
2.〔江苏省南通市2004年3分〕某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,那么该学校不应该购买的地砖形状是【】A、正方形B、正六边形C、正八边形D、正十二边形【答案】C。
【考点】平面镶嵌〔密铺〕,多边形内角和定理。
【分析】依照密铺的条件得,两多边形内角和必须凑出360°,进而判断即可:A、正方形的每个内角是90°,90°×2+60°×3=360°,∴能密铺;B、正六边形每个内角是120°,120°+60°×4=360°,∴能密铺;C、正八边形每个内角是180°-360°÷8=135°,135°与60°不管怎么样也不能组成360°的角,∴不能密铺;D、正十二边形每个内角是150°,150°×2+60°=360°,∴能密铺。
应选C。
3.〔江苏省南通市课标卷2005年2分〕“圆柱与球的组合体”如下图所示,那么它的三视图是【】【答案】A。
(1)选择题1. (深圳2005年3分)我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的左面看这个几何体的左视图是【】2. (深圳2006年3分)如图所示,圆柱的俯视图是【】3. (深圳2007年3分)仔细观察图所示的两个物体,则它的俯视图是【】4.(深圳2008年3分)如图,圆柱的左视图是【】5.(深圳2008年3分)如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于【】6.(深圳2009年3分)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是【】7.(深圳2019年招生3分)下面四个几何体中,左视图是四边形的几何体共有【】8.(深圳2019年3分)如图所示的物体是一个几何体,其主视图是【】9. (2018广东深圳3分)如图,已知:∠MON=30o,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM 上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7的边长为【】10.(2019年广东深圳3分)如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是【】二、填空题1. (深圳2005年3分)如图,口ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8 cm,△FCB的周长为22 cm,则FC的长为▲ cm。
2.(深圳2009年3分)如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是▲ .3.(深圳2018学业年3分)如图,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少..是▲ 个.4.(深圳2019年招生3分)如图,在边长为2cm 的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为▲ cm(结果不取近似值).5.(深圳2019年3分))如图,这是边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,第n个图形的周长为▲ .6.(2019年广东深圳3分)如下图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…………按这样的规律下去,第6幅图中有▲ 个正方形。
中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。
(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。
(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。
2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。
这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。
这条直线叫做它的对称轴。
(3)轴对称的性质:关于某条直线对称的图形是全等形。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。
(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。
点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。
(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。
专题九《图形与变换》●中考点击命题预测:本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
对比近两年中考试题,预测2009年在这方面的考查将会弱化较为复杂的综合题和计算题,而相对强化图形与变换中的对称、平移、旋转以及相似和位似等方面的识别题、创新题、开放题,主要考查学生的动手能力,观察与实验能力,探索与实践能力,中考命题趋势是稳中求变,变中创新。
●难题透视例1如图9-1,把一个正方形三次对折后沿虚线剪下,则所得图形是( )【考点要求】本题考查学生轴对称知识的灵活应用。
【思路点拔】通过实物的演示或者操作以及空间想象,不难得到正确答案。
【方法点拨】在解答图形的折叠问题时,有时可借助实物进行操作、演示,帮助理解,从而弥补空间思维上出现的盲区。
例2如图9-2,一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像( )图9-1【考点要求】本题考查平面镜的轴对称变换。
【思路点拔】观察所给的“小狗照镜子”图,可以发现小狗的尾巴向左,并且正面向镜子,由于平面镜成像是轴对称变换,由性质可知,像的尾巴应向左且正面向前。
【答案】选A。
【错解剖析】部分学生未能抓住平面镜成像的轴对称变换特性而选择错误答案。
解题关键:先分析清问题是何种对称变换,然后利用性质解题。
例3如图9-3,下列图案②③④⑤⑥⑦中,是由①平移得出的,是由①平移且旋转得出的。
【考点要求】本题考查平移、旋转的定义。
【思路点拔】图①中的鸽子是头向左,尾巴向右展翅飞翔,平移后的图形应与其方向保持一致,而如果经过旋转后则会发生方向上的改变。
【答案】③⑤是由①平移得出的,②④⑥⑦是由①平移且旋转得出的。
【考点突破】图形变换安徽中考2017年中考1.(2017•安徽10)如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B两点距离之和PA+PB 的最小值为( ) A .29 B .34 C .5 2 D .41(第1题图) (第2题图)2.(2017•安徽)在三角形纸片ABC 中,∠A=90°,∠C=30°,AC=30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm .3.(2017•安徽18)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF (顶点为网格线的交点),以及过格点的直线l .(1)将△ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF 关于直线l 对称的三角形. (3)填空:∠C+∠E= . 【解】2016年中考1.(2016•安徽10)如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为( ) A .32B .2C .5D .6(第1题图) (第2题图)2.(2016•安徽)如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF=FG .其中正确的是 .(把所有正确结论的序号都选上)3.(2016•安徽17)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边; (2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′. 【解】2015年中考1.(2015•安徽17)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点). (1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2. 【解】2014年中考1.(2014•安徽8)如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( ) A .53 B .52C .4D .52.(2014•安徽17)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点). (1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)请画一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1. 【解】考点演练 考点一、平移1.(2017•铜仁市)如图,△ABC 沿着BC 方向平移得到△A′B′C′,点P 是直线AA′上任意一点,若△ABC ,△PB′C′的面积分别为S 1,S 2,则下列关系正确的是( ) A .S 1>S 2 B .S 1<S 2 C .S 1=S 2 D .S 1=2S 2 2.(2017•东营)如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半,若BC=3,则△ABC 移动的距离是( )(第1题图) (第2题图)3.(2017•邵阳)如图所示,三架飞机P ,Q ,R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P 飞到P′(4,3)位置,则飞机Q ,R 的位置Q′,R′分别为( )A .Q′(2,3),R′(4,1)B .Q′(2,3),R′(2,1)C .Q′(2,2),R′(4,1)D .Q′(3,3),R′(3,1)(第3题图) (第5题图) 4.(2017•黔东南州)在平面直角坐标系中有一点A (-2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A 的坐标为 .5.(2017•百色)如图,在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0),将正方形OABC 沿着OB 方向平移12错误!未指定书签。
考点二十:图形的变换聚焦考点☆温习理解一、平移1、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动(2)连接各组对应点的线段平行(或在同一直线上)且相等。
二、轴对称1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
三、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
四、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
中考数学解法探究专题图形变换综合探究专题考题研究:本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
解题攻略:图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面:1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法。
2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。
3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。
解题思路:1.变换中求角度注意平移性质:平移前后图形全等,对应点连线平行且相等.2.变换中求线段长时把握折叠的性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上.3.变换中求坐标时注意旋转性质:对应线段、对应角的大小不变,对应线段的夹角等于旋转角.4.变换中求面积,注意前后图形的变换性质及其位置等情况。
例题解析1.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.2.实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【考点】PB:翻折变换(折叠问题);LB:矩形的性质;P9:剪纸问题.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O 处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.3.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.【考点】P7:作图﹣轴对称变换;KQ:勾股定理;PA:轴对称﹣最短路线问题.【分析】(1)根据A点坐标建立平面直角坐标系即可;(2)分别作出各点关于x轴的对称点,再顺次连接即可;(3)作出点B关于y轴的对称点B2,连接A、B2交y轴于点P,则P点即为所求.【解答】解:(1)如图所示;(2)如图,即为所求;(3)作点B关于y轴的对称点B2,连接A、B2交y轴于点P,则点P即为所求.设直线AB2的解析式为y=kx+b(k≠0),∵A(﹣4,6),B2(2,2),∴,解得,∴直线AB2的解析式为:y=﹣x+,∴当x=0时,y=,∴P(0,).4.阅读填空:(1)请你阅读芳芳的说理过程并填出理由:如图1,已知AB∥CD.求证:∠BAE+∠DCE=∠AEC.理由:作EF∥AB,则有EF∥CD(平行于同一条直线的两条直线平行)∴∠1=∠BAE,∠2=∠DCE(两直线平行,内错角相等)∴∠AEC=∠1+∠2=∠BAE+∠DCE(等量代换)思维拓展:(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAE=m°,∠ABC=n°,求∠BED的度数.(用含m、n的式子表示)(3)将图2中的线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,得到图3,直接写出∠BED的度数是180°﹣n°+m°(用含m、n的式子表示).【考点】Q2:平移的性质;JB:平行线的判定与性质.【分析】(1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.【解答】解:阅读填空:(1)平行于同一条直线的两条直线平行;两直线平行,内错角相等;等量代换,故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,等量代换;思维拓展:(2)如图2,过点E作EH∥AB,∵AB∥CD,∠FAD=m°,∴∠FAD=∠ADC=m°,∵DE平分∠ADC,∠ADC=m°,.∴∠EDC=∠ADC=m°,∵BE平分∠ABC,∠ABC=n°,∴∠ABE=∠ABC=n°,∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=n°,∠CDE=∠DEH=m°,∴∠BED=∠BEH+∠DEH=n°+m°=(n°+m°);(3)∠BED的度数改变.过点E作EG∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠FAD=m°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=m°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=m°,∴∠BED=∠BEF+∠DEF=180°﹣n°+m°.故答案为:180°﹣n°+m°.5.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【考点】R2:旋转的性质.【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).6.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【考点】R2:旋转的性质;E3:函数关系式;LD:矩形的判定与性质;T7:解直角三角形.【分析】(1)根据等角的余角相等即可证明;(2)分两种情形①如图1中,当C′E′与AB相交于Q时,即<x≤时,过P 作MN∥DC′,设∠B=α.②当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,分别求解即可;【解答】(1)证明:如图1中,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.(2)解:如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,∴PN=DM,∵DM=(3﹣x),PN=PQ•sinα=y,∴(3﹣x)=y,∴y=﹣x+.综上所述,y=7.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)①如图2中,结论:OH=AD,OH⊥AD.延长OH到E,使得HE=OH,连接BE,由△BEO≌△ODA即可解决问题;②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD 于G.由△BEO≌△ODA即可解决问题;【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD 于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.8.如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.【考点】R8:作图﹣旋转变换;O4:轨迹;P7:作图﹣轴对称变换.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据弧长公式列式计算即可得解.【解答】解:(1)如图,B1(3,1);(2)如图,A1走过的路径长:×2×π×2=π学科网9.在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点视为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)【考点】R9:利用旋转设计图案;P8:利用轴对称设计图案;Q5:利用平移设计图案.【分析】利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.【解答】解:如图..10.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【考点】RB:几何变换综合题.【分析】(1)根据矩形的性质得到∠D=∠DAE=90°,由折叠的性质得得到AE=AD,∠AEF=∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD是矩形,由于AE=AD,于是得到结论;(2)连接HN,由折叠的性质得到∠AD′H=∠D=90°,HF=HD=HD′,根据正方形的想知道的∠HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8﹣x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△CFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:CF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.11.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【考点】RB:几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,=PM2=×MN2=×(7)2=.∴S△PMN最大12.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【考点】S8:相似三角形的判定;KD:全等三角形的判定与性质;KW:等腰直角三角形;LE:正方形的性质.【分析】①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;②由第一问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.13.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【考点】S9:相似三角形的判定与性质.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=14.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;MC:切线的性质;MO:扇形面积的计算.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA•PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,2=﹣.∴S阴=S扇形OAT﹣S△AOT=﹣•115.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB 的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.16.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.【考点】S9:相似三角形的判定与性质;M4:圆心角、弧、弦的关系;MB:直线与圆的位置关系.【分析】(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.【解答】解:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=(2)2=8.。
2018中考数学试卷及答案分类汇编:图形的变换一、选择题1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是A、等边三角形B、平行四边形C、梯形D、矩形【答案】D。
【考点】中心对称和轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。
故选D。
2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是【答案】A。
【考点】中心对称图形。
【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。
3.(天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。
【考点】几何体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。
故选A。
4.(河北省2分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A、面CDHEB、面BCEFC、面ABFGD、面ADHG【答案】A。
【考点】展开图折叠成几何体。
【分析】由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE。
故选A。
5.(山西省2分)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是【答案】A。
【考点】剪纸问题。
【分析】严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论。
2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(12)——图形的变换一.选择题(共6小题) 1.(2020•包河区二模)如图,在矩形ABCD 中,点H 为边BC 的中点,点G 为线段DH 上一点,且∠BGC =90°,延长BG 交CD 于点E ,延长CG 交AD 于点F ,当CD =4,DE =1时,则DF 的长为( )A .2B .32C .√5D .952.(2020•肥东县二模)如图,正方形ABCD 的边长为2,延长AB 至E ,使得AB =BE ,连接CE ,P 为CE 上一动点,分别连接P A 、PB ,则P A +PB 的最小值为( )A .4B .5C .2√2D .2√53.(2020•肥东县二模)如图,在△ABC 中,AB =AC =6,D 是AC 中点,E 是BC 上一点,BE =52,∠AED=∠B ,则CE 的长为( )A .152B .223C .365D .6494.(2020•包河区校级一模)如图,在△ABC 中,BC =6,AA AA=AA AA,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =14CE 时,EP +BP 的值为( )A .9B .12C .18D .24 5.(2020•肥东县一模)用一些完全一样的小正方体搭成一个几何体,它的主视图、俯视图与左视图都是如图所示的图形,则小正方体的个数可能是( )A .9B .8C .5D .4 6.(2020•蜀山区校级模拟)如图,等边△ABC 的边长为4,点D 是边AC 上的一动点,连接BD ,以BD 为斜边向上作等腰Rt △BDE ,连接AE ,则AE 的最小值为( )A .1B .√2C .2D .2√2−1 二.填空题(共14小题) 7.(2020•包河区二模)已知,Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,点P 是AB 上一点,连接CP ,将∠B 沿CP 折叠,使点B 落在B ′处.以下结论正确的有 . ①当AB ′⊥AC 时,AB ′的长为√2;②当点P 位于AB 中点时,四边形ACPB ′为菱形; ③当∠B 'P A =30°时,AA AA=12;④当CP ⊥AB 时,AP :AB ′:BP =1:2:3.8.(2020•长丰县一模)将一副三角尺如图所示叠放在一起,则AA AA的值是 .9.(2019•蜀山区校级三模)如图,在矩形ABCD 中,AB :BC =3:5,点E 是对角线AC 上一动点(不与点A ,C 重合),将矩形沿过点E 的直线MN 折叠,使得点A ,B 的对应点A 1,B 1分别落在直线AD 与BC 上,当△A 1CE 为直角三角形时,AN :DN 的值为 .10.(2019•庐阳区校级一模)如图,在矩形ABCD 中,AD =8,AB =14,E 为DC 上的一个点,将△ADE 沿AE 折叠,使得点D 落在D '处,若以C 、B 、D '为顶点的三角形是等腰三角形,则DE 的长为 .11.(2019•庐阳区校级模拟)如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,点D 是AB 的中点,点P 是直线AC 上一点,将△ADP 沿DP 所在的直线翻折后,点A 落在A 1处,若A 1D ⊥AC ,则点P 与点A 之间的距离为 .12.(2019•合肥模拟)在△ABC中,∠ACB=90°,AC=4,AB=5,点E、F分别在AC、AB上,连接EF,将△ABC沿EF折叠,使点A落在BC边上的点D处.若△DEF有一边垂直BC,则EF=13.(2019•瑶海区二模)在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P为边AC上一点,且AP =5cm.点Q为边AB上的任意一点(不与点A,B重合),若点A关于直线PQ的对称点A'恰好落在△ABC的边上,则AQ的长为cm.14.(2019•合肥二模)如图,在等边△ABC中,AB=4cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合).若点B关于直线MN的对称点B'恰好落在等边△ABC的边上,则BN的长为cm.15.(2019•长丰县模拟)如图,在矩形ABCD中,AB:BC=3:5,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为.16.(2018•包河区一模)如图,在△ABC中,已知:AB=AC=6,BC=8,P是BC边上一点(P不与点B,C重合),∠DPE=∠B,且DP边始终经过点A,另一边PE交AC于点F,当△APF为等腰三角形时,则PB的长为.17.(2018•包河区二模)如图,在矩形ABCD中,AB=1,BC=6,将矩形折叠,使A落在BC(含端点)上点M处,这时折痕EF与AD或边CD(含端点)交于F,然后展开铺平,以A、M、F为顶点作△AMF,当△AMF的面积最大时,CM的长度为.18.(2018•长丰县一模)一个小球沿着坡度为1:3的坡面向下滚动了10米,此时小球下降的垂直高度为 米. 19.(2018•长丰县一模)如图,在△ABC 中,D 、E 分别为边AB 、AC 上的点.AA AA=AA AA,点F 为BC 边上一点,添加一个条件: ,可以使得△FDB 与△ADE 相似.(只需写出一个)20.(2018•蜀山区一模)如图示意图,A 点的坐标为(2,2),点C 在线段OA 上运动(点C 不与O 、A 重合),过点C 作CD ⊥x 轴于D ,再以CD 为一边在CD 右侧画正方形CDEF .连接AF 并延长交x 轴于B ,连接OF .若△BEF 与△OEF 相似,则点B 的坐标是 .三.解答题(共14小题) 21.(2020•肥东县二模)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和格点O .(1)平移△ABC ,使得点A 与点O 重合,画出平移后的△A ′B ′C ′; (2)画出△ABC 关于点O 对称的△DEF ;(3)判断△A ′B ′C ′与△DEF 是否成中心对称?22.(2020•包河区一模)如图,无人机在600米高空的P 点,测得地面A 点和建筑物BC 的顶端B 的俯角分别为60°和70°,已知A 点和建筑物BC 的底端C 的距离为286√3米,求建筑物BC 的高.(结果保留整数,参考数据:√3≈1.73,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)23.(2020•蜀山区一模)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,已知点O 、A 、B 均为格点.(1)在给定的网格中,以点O 为位似中心将线段AB 放大为原来的2倍,得到线段A ′B ′.(点A 、B的对应点分别为点A ′、B ′),画出线段A ′B ′.(2)以线段A ′B ′为一边,作一个格点四边形A ′B ′CD ,使得格点四边形A ′B ′CD 是轴对称图形(作出一个格点四边形即可).24.(2020•庐阳区校级一模)(1)【操作发现】如图1,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =40°,连接AC ,BD 交于点M . ①AA AA的值为 ;②∠AMB 的度数为 . (2)【类比探究】如图2,在△OAB 和△OCD 中,∠AOB =∠COD =90°,∠OAB =∠OCD =30°,连接AC 交BD 的延长线于点M .计算AA AA的值及∠AMB 的度数;(3)【实际应用】在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =√7,请直接写出当点C 与点M 重合时AC 的长.25.(2020•瑶海区一模)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)将△ABC 向下平移5个单位再向右平移1单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1; (2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2;(3)P (a ,b )是△ABC 的AC 边上一点,请直接写出经过两次变换后在△A 2B 2C 2中对应的点P 2的坐标.26.(2020•包河区校级一模)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C的应点C₁的坐标为(4,﹣1),画出△A1B1C1并写出顶点A,B对应点A1,B1的坐标;(2)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2.27.(2020•长丰县一模)通过学习锐角三角比,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=底边腰=AAAA,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;(2)如图(2),已知在△ABC中,AB=AC,canB=85,S△ABC=24,求△ABC的周长.28.(2019•包河区校级二模)如图,以AB为斜边作Rt△ABE和Rt△ACB,∠AEB=∠ACB=90°,EF⊥AB,垂足为点F,点D是线段BF上一点,连接AC分别交EF、ED、BE于P、H、Q,过点E作EG⊥DE,交BC延长线于点G,BF=6,BG=5.(1)求证:△AEH∽△BEG;(2)若EF=3,求AH的长;(3)若cos∠FBG=35,FD=43,求线段EF的长.29.(2019•包河区校级二模)在正方形网格中建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题:(1)将△ABC向左平移5个单位长度,画出平移后的△A1B1C1,并写出点A的对应点A1的坐标;(2)点O为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△A1B1C1相似,且△A2B2C2与△A1B1C1的位似比为1:1;(3)sin∠B2A2C2=(直接写出答案).30.(2019•包河区校级二模)广宇同学想测量一栋楼上竖立的旗杆的长(图中线段EF的长),已知直线EF 垂直于地面,垂足为点C,在地面A处测得点E的仰角为31°,在B处测得点E的仰角为61°、点F的仰角为45°,AB=48米,且A、B、C三点在一条直线上,请你根据以上数据帮助广宇同学求旗杆EF的长(参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.60,sin61°=0.87,cos61°=0.48,tan61°=1.80)31.(2019•庐江县模拟)某校九(1)班开展数学活动,李明和张华两位同学合作用测角仪测量学校旗杆的高度,李明站在B点测得旗杆顶端E点的仰角为45°,张华站在D(D点在直线FB上)测得旗杆顶端E 点仰角为15°,已知李明和张华相距(BD)30米,李明的身高(AB)1.6米,张华的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)32.(2019•合肥二模)在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点)(1)画出△ABC绕点O逆时针方向旋转90°得到的△A1B1C1;(2)求点A在(1)的图形变换过程中所经过的路径长.33.(2018•蜀山区一模)我们把菱形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有5个特征点.将此基本图不断复制并按如下方式摆放,使得相邻两个基本图的一个顶点重合,这样得到图2、图3,…,…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图1 1 5图2 2 9图3 3 13图4 4………猜想:在图n中,特征点的个数为(用n的式子表示);(2)如图n,将当菱形的一个锐角为60°时,将图n放在直角坐标系中(第一个基本图的两个顶点分别落在坐标轴上,且菱形较短的对角线与x轴垂直),设其中第一个基本图的对称中心O1的坐标为(x1,1),则x1=;图2018的对称中心的横坐标为.34.(2018•合肥二模)在如图所示的网格中,每个小三角形均为等边三角形,点A、B、C、D都在格点上.(1)将△ADC向左平移,使点C与点B重合,画出平移后的△EFB;(2)将△ADC绕点C逆时针旋转60°,点D的对应点为点G,画出旋转后的三角形;(3)若点P是△ABC内一点,且满足P A2+PC2=PB2,则∠APC=°.2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(12)——图形的变换参考答案与试题解析一.选择题(共6小题) 1.【解答】解:如图,延长AD ,BE 相交于点M ,∵DF ∥CH ,∴△DFG ∽△HCG , ∴AA AA =AA AA ,∵DM ∥BH ,∴△DMG ∽△HBG , ∴AA AA=AA AA,∵CH =BH , ∴DF =DM ,又∵△MDE ∽△CDF , ∴AA AA =AA AA , ∴AA AA=AA AA,∴DF 2=DE •CD =1×4=4, ∴AA =√4=2. 故选:A . 2.【解答】解:作点B 关于直线EC 的对称点T ,连接PT ,AT .∵四边形ABCD 是正方形, ∴∠ABC =∠CBE =90°, ∵AB =BC =BE =2, ∴∠CEB =45°,∵EB =ET ,∠CEB =∠CET =45°, ∴∠AET =90°,∴AT =√AA 2+AA 2=√42+22=2√5, ∴PB =PT ,∴P A +PB =P A +PT ≥AT , ∴P A +PB ≥2√5,∴P A +PB 的最小值为2√5, 故选:D . 3.【解答】解:∵AB =AC , ∴∠B =∠C ,∵∠AEC =∠AED +∠DEC =∠B +∠BAE ,∠AED =∠B ,∴∠DEC =∠BAE ,∴△BAE ∽△CED ,∴AA AA=AA AA , ∵AB =AC =6,AD =DC =3,BE =52, ∴6AA =523, ∴CE =365,故选:C . 4.【解答】解:如图,延长EF 交BQ 的延长线于G . ∵AA AA =AA AA ,∴EG ∥BC ,∴∠G =∠GBC ,∵∠GBC =∠GBP ,∴∠G =∠PBG ,∴PB =PG ,∴PE +PB =PE +PG =EG ,∵CQ =14EC , ∴EQ =3CQ ,∵EG ∥BC ,∴△EQG ∽△CQB ,∴AA AA =AA AA =3,∵BC =6,∴EG =18,∴EP +PB =EG =18,故选:C .5.【解答】解:由俯视图易得最底层有4个小正方体,第二层最多有4个小正方体,那么搭成这个几何体的小正方体最多为4+2+2=8个.故选:B .6.【解答】解:如图,过点B 作BH ⊥AC 于H 点,作射线HE ,∵△ABC 是等边三角形,BH ⊥AC ,∴AH =2=CH ,∵∠BED =∠BHD =90°,∴点B ,点D ,点H ,点E 四点共圆,∴∠BHE =∠BDE =45°,∴点E 在∠AHB 的角平分线上运动,∴当AE ⊥EH 时,AE 的长度有最小值,∵∠AHE =45°,∴AH =√2AE =2,∴AE 的最小值为√2,故选:B .二.填空题(共14小题)7.【解答】解:①AC =1,∠B =30°可知BC =√3,由翻折可知:B ′C =BC =√3,因为AB '⊥AC ,由勾股定理可知:AB '=√A′A 2−AA 2=√2,正确.②当点P 位于AB 中点时,CP =PB =P A =AC =PB ′,∠B 'P A =P AC =60°,PB '∥AC ,所以四边形ACPB '是平行四边形,又PC =AC ,所以四边形ACPB '是菱形,正确.③当∠B 'P A =30°时,可知四边形BCB ′P 是菱形,BP =BC =√3;AP =2−√3,AA AA =12不成立,故不正确.④当CP ⊥AB 时,∠B '=∠B 'CA =30°,AC =AB ',∠ACP =∠B =30°,设AP =a ,则AB '=AC =2a ;AB =4a ,PB =3a ;所以:AP :AB ':BP =a :2a :3a =1:2:3,正确.故答案为:①②④.8.【解答】解:设AC =BC =x ,则CD =AA AAAA =A√33=√3x ,∵∠BAC =∠ACD =90°,∴∠BAC +∠ACD =180°,∴AB ∥CD ,∴△ABE ∽△DCE ,∴AAAA =AA AA =√3A=√33, 故答案为:√33 9.【解答】解:∵AB :BC =3:5,设AB =3x ,BC =5x ,∵四边形ABCD 是矩形,∴CD =AB =3x ,AD =BC =5x ,分两种情况:①当∠CA 1E =90°时,△A 1CE 为直角三角形,如图1所示:∵∠DCA 1+∠DA 1C =∠DA 1C +∠EA 1N =90°,∴∠DCA 1=∠EA 1N ,由折叠的性质得:AN =A 1N ,AE =A 1E ,∠EAN =∠EA 1N ,∴∠DCA 1=∠DAC ,∵∠CDA 1=∠ADC =90°,∴△CDA 1∽△ADC ,∴AA 1AA =AA AA ,即AA′3A =3A5A , ∴DA 1=95x ,∴AN =5A −95A 2=85x , DN =95x +85x =175x ,∴AN :DN =817; ②当∠A 1CE =90°时,△A 1CE 为直角三角形,如图2所示:∵∠A 1CD +∠CA 1D =∠A 1CD +∠ACD =90°,∴∠CA 1D =∠ACD ,∵∠A 1DC =∠CDA =90°,∴△A 1DC ∽△CDA ,∴A 1A AA =AA AA ,即A 1A 3A =3A 5A ,∴A 1D =95x ,由折叠的性质得:AN =A 1N ,∴DN =12(A 1A ﹣2A 1D )=12(95x +5x ﹣2×95x )=85x , AN =AD ﹣DN =5x −85x =175x ,∴AN :DN =178,综上所述,AN :DN 的值为817或178,故答案为:817或178.10.【解答】解:①:CD '=BD '时,如图,由折叠性质,得AD =AD ′,∠DAE =∠D ′AE ,∵四边形ABCD 是矩形,∴AB =CD ,∠ABC =∠DCB =90°,∵△BCD ′为等腰三角形,∴D ′B =D ′C ,∠D ′BC =∠D ′CB ,∴∠DCD ′=∠ABD ′,在△DD ′C 和△AD ′B 中,{AA =AAAAAA′=AAAA′AA′=AA′,∴△DD ′C ≌△AD ′B ,∴DD ′=AD ′,∴DD ′=AD ′=AD ,∴△ADD ′是等边三角形,∴∠DAD ′=60°,∴∠DAE =30°,∴DE =12AE , 设DE =x ,则AE =2x ,(2x )2﹣x 2=82,解得:x =8√33,即DE =8√33.②:当CD '=CB 时,如图,连接AC ,由于AD '=8,CD '=8,而AC =√142+82=2√65>8+8;故这种情况不存在.③当BD '=BC 时,如图过D '作AB 的垂线,垂足为F ,延长D 'F 交CD 于G ,由于AD '=BD ',D 'F =D 'F ;易知AF =BF ,从而由勾股定理求得D 'F =√AA′2−AA 2=√82−72=√15,又易证△AD 'F ∽△D 'EG ,设DE =x ,D 'E =x ,∴A′A AA′=A′A AA ,即A 8=8−√157; 解得x =64−8√157, 故答案为:8√33或64−8√157.11.【解答】解:分两种情况:①若点A 1在AC 左侧,如图1所示:∵∠C =90°,AC =8,BC =6,∴AB =√AA 2+AA 2=√82+62=10,∵点D 是AB 的中点,∴AD =12AB =5,∵A 1D ⊥AC ,∠C =90°∴A 1D ∥BC∴AA AA =AA AA =AA AA =12, ∴AE =EC =12AC =4,DE =12BC =3, ∵将△ADP 沿DP 所在的直线翻折得△A 1DP ,∴A 1D =AD =5,A 1P =AP ,∴A 1E =A 1D ﹣DE =5﹣3=2,∴在Rt △A 1PE 中,A 1P 2=A 1E 2+PE 2,∴AP 2=22+(4﹣AP )2,∴AP =52;②若点A 1在AC 右侧,延长A 1D 交AC 于E ,如图2所示:则A 1E =DE +A 1D =3+5=8,在Rt △EA 1P 中,A 1P 2=A 1E 2+EP 2,∴AP 2=82+(AP ﹣4)2,∴AP =10,故答案为:52或10.12.【解答】解:分两种情况:①当DF ⊥BC 时,如图1所示:则DF ∥AC ,∴∠DFE =∠AEF ,∵∠ACB =90°,AC =4,AB =5,∴BC =3,由折叠的性质得:∠DEF =∠AEF ,DE =AE ,DF =AF ,∴∠DFE =∠DEF ,∴DE =DF ,∴DE =DF =AF =AE ,设DE =DF =AF =AE =x ,∵DF ∥AC ,∴△BDF ∽△BCA ,∴AA AA =AA AA , ∴AA 3=A 4,解得:BD =34x ,在Rt △CDE 中,由勾股定理得:(4﹣x )2+(3−34x )2=x 2, 解得:x =209,或x =20(舍去), ∴AF =209,BD =53, ∴CD =BC ﹣BD =43, 作FG ⊥AE 于G ,则FG =CD =43, ∴AG =√AA 2−AA 2=169, ∴EG =AE ﹣AG =209−169=49,∴EF =√AA 2+AA 2=4√109; ②当DE ⊥BC 时,如图2所示:此时D 与C 重合,E 为AC 的中点,F 为AB 的中点,∴EF 为△ABC的中位线, ∴EF =12BC =32;综上所述,若△DEF 有一边垂直BC ,则EF 为4√109或32; 故答案为:4√109或2.13.【解答】解:在Rt △ABC 中,∠C =90°,AB =10cm ,AC =8cm ,∴BC =6cm ,①若点A '落在BC 上,如图:点A 关于直线PQ 的对称点A ',∵点A 关于直线PQ 的对称点A ',∴A 'Q =AQ ,AP =A 'P ,∵AP =5,∴PC =3,A 'C =4,A 'B =2,∴A 'A =4√5,作A 'H 垂直AB ,由勾股定理可得:{A ′A 2−AA 2=A′A 2A′A 2−AA 2=A′A 2A′A 2−AA 2=A′A 2,设AQ =AQ '=x ,BH =y ,∴{4−A 2=(4√5)2−(10−A )2A 2−(10−A −A )2=4−A 2, 解得:{A =5011A =65, 故AQ 的长为5011.②若点A '落在AB 上,如图:∵点A 关于直线PQ 的对称点A ',∴PQ ⊥AB ,∴△APQ ~△ABC ,∴AA AA =AA AA , ∴510=AA 8,∴AQ =4. 综上所述:若点A 关于直线PQ 的对称点A '恰好落在△ABC 的边上,则AQ 的长为5011或4cm .故答案为5011或4..14.【解答】解:如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时, 则MN ⊥AB ,BN =B ′N ,∵△ABC 是等边三角形,∴AB =AC =BC ,∠ABC =60°,∵点M 为边BC 的中点,∴BM =12BC =12AB =2, ∴BN =12BM =1, 如图2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AC 上时,则MN ⊥BB ′,四边形BMB ′N 是菱形,∵∠ABC =60°,点M 为边BC 的中点,∴BN =BM =12BC =12AB =2,故答案为:1或2.15.【解答】解:∵AB :BC =3:5,设AB =3x ,BC =5x ,∵四边形ABCD 是矩形,∴CD =AB =3x ,AD =BC =5x ,分两种情况:①如图所示,当∠DFE =90°时,△DEF 为直角三角形,∵∠CDF +∠CFD =∠EFN +∠CFD =90°,∴∠CDF =∠EFN ,由折叠可得,EF =EB ,∴∠EFN =∠EBN ,∴∠CDF =∠CBD ,又∵∠DCF =∠BCD =90°,∴△DCF ∽△BCD ,∴AA AA =AA AA ,即AA 3A =3A 5A ,∴CF =95x , ∴FN =5A −95A 2=8A 5, ∴CN =CF +NF =95x +85x =175x , ∴BN =5x −175x =85x ,∴CN :BN =178; ②如图所示,当∠EDF =90°时,△DEF 为直角三角形,∵∠CDF +∠CDB =∠CDF +∠CBD =90°,∴∠CDF =∠CBD ,又∵∠DCF =∠BCD =90°,∴△DCF ∽△BCD ,∴AA AA =AA AA ,即AA 3A =3A 5A ,∴CF =95x ,∴NF =5A +95A 2=175x , ∴CN =NF ﹣CF =85x ,∴BN =5x −85x =175x , ∴CN :BN =817, 综上所述,CN :BN 的值为178或817,故答案为:178或817.16.【解答】解:①当AP =PF 时,易得△ABP ≌△PCF ,则PC =AB =6,故PB =2. ②当AF =PF 时,△ABC ∽△F AP ,∴AA AA =AA AA =68,即PC =92. ∴PB =72. ③当AF =AP 时,点P 与点B 重合,不合题意.综上所述,PB 的长为2或72.故答案是:2或72. 17.【解答】解:当点F 在AD 上时,S △AMF =12AF •AB =12×1×AF ,∴当AF 取最大值时,△AMF 的面积最大,∴AF =6即点F 与点D 重合.如图所示:由翻折的性质可知:FM =AF =6.在Rt △FMC 中,MC =√AA 2−AA 2=√62−12=√35.故答案为:√35.18.【解答】解:小球沿着坡面向下前进了10m 假设到A 处,过C 作CB ⊥AB , ∵i =1:3,∴tan A =AA AA =13, 设BC =xcm ,AB =3xcm ,x 2+(3x )2=102,解得:x =√10或x =−√10(不合题意,舍去),故答案为:√10.19.【解答】解:DF ∥AC ,或∠BFD =∠A .理由:∵∠A =∠A ,AA AA =AA AA ,∴△ADE ∽△ACB ,∴①当DF ∥AC 时,△BDF ∽△BAC ,∴△BDF ∽△EAD .②当∠BFD =∠A 时,∵∠B =∠AED ,∴△FBD ∽△AED .故答案为DF ∥AC ,或∠BFD =∠A .20.【解答】解:要使△BEF 与△OFE 相似,设OD =t , ∵∠FEO =∠FEB =90°,∴只要AA AA =AA AA 或AA AA =AA AA ,即:BE =2t 或AA =12t , ①当BE =2t 时,BO =4t ,∵△BEF ~△OFE ,∴AA AA =AA AA ,∴2A 2−A =4A ,∴t 1=0(舍去)或t 2=1.5,∴B (6,0).②当AA =12t 时, (ⅰ)当B 在E 的左侧时,AA =AA −AA =32A , ∵△BEF ~△OFE ,∴AA AA =AA AA , ∴2A 2−A =32A ,∴t 1=0(舍去)或t 2=23.∴B (1,0).(ⅱ)当B 在E 的右侧时,AA =AA +AA =52A , ∵△BEF ~△OFE ,∴AA AA =AA AA , ∴2A 2−A =52A ,∴t 1=0(舍去)或t 2=65, ∴B (3,0).综上,B (1,0)(3,0)(6,0).故答案为:(1,0)(3,0)(6,0).三.解答题(共14小题)21.【解答】解:(1)如图,△A ′B ′C ′即为所求.(2)如图,△DEF 即为所求.(3)△A ′B ′C ′与△DEF 成中心对称,对称中心是线段OD 与线段FC ′的交点.22.【解答】解:如图,过B 作BE ⊥PD 于E ,在Rt △APD 中,由tan60°=600AA,得AD =600÷tan60°=200√3(米), CD =BE =286√3−200√3=86√3(米),在Rt △PBE 中,由tan70°=AA AA 得,PE =86×1.73×2.75≈409.1(米),∴BC =600﹣409.1≈191(米),答:建筑物BC 的高为191米.23.【解答】解:(1)如图,线段A ′B ′即为所求.(2)如图,矩形A ′B ′CD 即为所求(答案不唯一).24.【解答】解:(1)【问题发现】①如图1,∵∠AOB =∠COD =40°,∴∠COA =∠DOB ,∵OC =OD ,OA =OB ,∴△COA ≌△DOB (SAS ),∴AC =BD ,∴AA AA =1;②∵△COA ≌△DOB ,∴∠CAO =∠DBO ,∵∠AOB =40°,∴∠OAB +∠ABO =140°,在△AMB 中,∠AMB =180°﹣(∠CAO +∠OAB +∠ABD )=180°﹣(∠DBO +∠OAB +∠ABD )=180°﹣140°=40°,故答案为:①1;②40°;(2)【类比探究】如图2,AA AA =√3,∠AMB =90°,理由是: Rt △COD 中,∠DCO =30°,∠DOC =90°, ∴AA AA =tan30°=√33, 同理得:AA AA =tan30°=√33, ∴AA AA =AA AA ,∵∠AOB =∠COD =90°,∴∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴AA AA =AA AA =√3,∠CAO =∠DBO ,在△AMB 中,∠AMB =180°﹣(∠MAB +∠ABM )=180°﹣(∠OAB +∠ABM +∠DBO )=90°;(3)【实际应用】①点C 与点M 重合时,如图3,同理得:△AOC ∽△BOD ,∴∠AMB =90°,AA AA =√3,设BD =x ,则AC =√3x ,Rt △COD 中,∠OCD =30°,OD =1,∴CD =2,BC =x ﹣2,Rt △AOB 中,∠OAB =30°,OB =√7,∴AB =2OB =2√7,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2,∴(√3x )2+(x ﹣2)2=(2√7)2,x 2﹣x ﹣6=0,∴(x ﹣3)(x +2)=0,∴x 1=3,x 2=﹣2,∴AC =3√3;②点C 与点M 重合时,如图4,同理得:∠AMB =90°,AA AA =√3,设BD =x ,则AC =√3x ,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2,∴(√3x )2+(x +2)2=(2√7)2,∴x 2+x ﹣6=0,∴(x +3)(x ﹣2)=0,∴x 1=﹣3,x 2=2,∴AC =2√3;综上所述,AC 的长为3√3或2√3.25.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)∵P(a,b)是△ABC的AC边上的一点,∴将△ABC向右平移1个单位再向下平移5个单位后得到对应的点的坐标为:(a+1,b﹣5),∴(a+1,b﹣5)关于y轴对称点的坐标为:(﹣a﹣1,b﹣5).26.【解答】解:(1)△A₁B₁C₁如下图所示;A₁的坐标为(2,1),B₁的坐标为(3,﹣3).(2)△A₂B₂C₂如下图所示:27.【解答】解:(1)过点A 作AD ⊥BC 于点D ,∵∠B =30°,∴cos ∠B =AA AA =√32, ∴BD =√32AB ,∵△ABC 是等腰三角形,∴BC =2BD =√3AB ,故can 30°=AA AA =√3;(2)过点A 作AE ⊥BC 于点E ,∵canB =85,则可设BC =8x ,AB =5x ,∴AE =√AA 2−AA 2=3x ,∵S △ABC =24,∴12BC ×AE =12x 2=24, 解得:x =√2,故AB =AC =5√2,BC =8√2,从而可得△ABC 的周长为18√2.28.【解答】(1)证明:如图1,∵∠AEB =90°,EG ⊥DE ,∴∠AEB =∠DEG =90°,∴∠AEH =∠BEG ,∵BC ⊥AQ ,∴∠AEQ =∠BCQ =90°,∵∠AQE =∠BQC ,∴∠EAH =∠EBG ,∴△AEH ∽△BEG ;(2)解:∵∠BFE =∠AEB =90°,∴tan ∠EBF =AA AA =AA AA , ∵△AEH ∽△BEG , ∴AA AA =AA AA , ∴AA AA=AA AA ∵BF =6,BG =5.EF =3, ∴36=AA 5,∴AH =52:(3)如图2,延长FE 、BC ,交于点M ,作GN ⊥EF 于点N ,∵BF =6,cos ∠FBG =35,∴cos ∠FBG =AA AA =35, ∴6AA =35 ∴BM =10,∴MF =√AA 2−AA 2=8,∵BG =5,∴点G 为BM 中点∴点N 为MF 的中点,∴NG =12BF =12×6=3,NF =12MF =12×8=4, ∵∠ENG =∠DEG =∠DFE =90°,∴∠NEG +∠NGE =90°,∠NEG +∠FED =90°,∴∠NGE =∠FED ,∴△ENG ∽△DFE ,∴AA AA=AA AA 设EF =a , ∴3A =4−A AA∴DF =13A (4﹣a )=43 解得a =2∴EF =2.29.【解答】解:(1)如图所示,△A 1B 1C 1即为所求,点A 的对应点A 1的坐标为(﹣1,4)(2)如图所示,△A 2B 2C 2即为所求;(3)由题可得,△A 2B 2C 2中,A 2B 2边上的高为:√13=4√1313, ∴sin ∠B 2A 2C 2=4√1313√5=4√6565. 故答案为:4√6565.30.【解答】解:在R △BCF 中,∠CBF =45°,∴BC =FC ,在Rt △CBE 中,设BC =FC =x ,∵∠CBE =61°,∴CE =BC tan ∠CBE =1.8x ,在Rt △CAE 中,AAA ∠AAA =AAAA ,∵∠CAE =31°,AB =48,∴0.6=1.8A A +48, ∴x =24,∴EF =CE ﹣FC =0.8x =19.2(米),答:旗杆EF 的长为19.2米.31.【解答】解:过点A 作AM ⊥EF 于M ,过点C 作CN ⊥EF 于N ,∵AB =1.6米,CD =1.75米,∴MN =0.15米,∵∠EAM =45°,∴AM =ME ,设AM =ME =x 米,∵BD =30米∴CN =(x +30)米,EN =(x ﹣0.15)米,∵∠ECN =15°, ∴tan ∠ECN =AA AA =A −0.15A +30,解得:x ≈11.3,则EF =EM +MF =11.3+1.6=12.9(米). 答:旗杆的高EF 为12.9米.32.【解答】解:(1)如图所示:(2)点A 在(1)的图形变换过程中所经过的路径是一段圆弧,其半径为2√5,圆心角为90°, 所以长度为90⋅A ×2√5180=√5A .33.【解答】解:(1)图4中,特征点的个数为17,在n 个图中,特征点个数为4n +1.故答案为17.4n +1.(2)由题意可知x 1=√3,x 2=2√3,x 3=3√3,…,x n =n √3,∴图2018的对称中心的横坐标为2018√3,故答案为√3,2018√3.34.【解答】解:(1)如图所示,△EFB 即为所求;(2)如图所示,△BCG 即为所求;(3)如图所示,将△ABP 绕点A 顺时针旋转60°得到△ACD ,连接PD ,∴△ADP 是等边三角形,CD =BP ,∴∠APD =60°,AP =DP ,∵P A 2+PC 2=PB 2,∴PD 2+PC 2=CD 2,∴△CPD 是直角三角形,∴∠CPD =90°,∴∠APC =∠APD +∠CPD =60°+90°=150°.故答案为:150.。
中考复习综合训练图形的变换
一、选择题
1.平移图中的图案,能得到下列哪一个图案()
A. B. C. D.
2.(2016•衡阳)下列几何体中,哪一个几何体的三视图完全相同()
A. 球体
B. 圆柱体
C. 四棱锥
D. 圆锥
3.若△ABC∽△DEF,且AB:DE=1:3,则S△ABC:S△DEF=()
A. 1:3
B. 1:9
C. 1:
D. 1:1.5
4.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()
A. B. BC2=AB•BC C. D.
5. 右图是由几个相同的小正方体搭成的一个几何体,从左边看得到的平面图形是()
A. B. C. D.
6.如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD沿EF对开后,再把矩形EFCD沿MN 对开,依次类推,若各种开本的矩形都相似,那么等于()
A. 0.618
B.
C.
D. 2
7.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()
A. 向下移动1格
B. 向上移动1格
C. 向上移动2格
D. 向下移动2格
8.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()
A. B. 2 C. D.
9. 如图,矩形ABCD中,对角线AC、BD相交于点O,点E、F、G、H分别是AO、BO、CO、DO的中点,连接EF、FG、GH、EH,则下列说法不正确的是()
A. △OEF和△OAB是位似图形
B. △OEH和△OFG是位似图形
C. △EFH和△ABD是位似图形
D. △OHG和△OGF是位似图形
10.如图,将矩形纸片ABCD中折叠,使顶点B落在边AD的E点上折痕FG交BC于G,交AB于F,若
∠AEF=20°,则∠FGB的度数为()
A. 25°
B. 30°
C. 35°
D. 40°
二、填空题
11.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO 缩小,则点B的对应点B′的坐标是________
12.如图①,在长方形ABCD中,E点在AD上,且∠ABE=40°,分别以BE、CE为折痕进行折叠并压平,如图②.若图②中∠BCE=n°,则∠AED的度数为________°.(用含n的代数式表示)
13.在正方形网格中,△ABC的位置如图所示,则tanB的值为________.
14.一长方形纸条,按如图所示的方向折叠OG为折痕,若量得∠AOB′=110°,则∠B′OG=________°.
15.如图,把矩形ABCD沿EF翻转,点B恰好落在AD边的B′处,若AE=1,DE=3,∠EFB=60°,则矩形ABCD 的面积是________
16. 如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为________.
三、解答题
17.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,求证:AE∥CF.
18.如图,直角坐标系中,△ABC的顶点都在网格点上.
(1)平移△ABC,使点C与坐标原点O是对应点,请画出平移后的三角形,并指出A、B两点的对应点A1、B1的坐标;
(2)求△ABC的面积.
19. 如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.
(1)求证:AG=CG.
(2)求证:AG2=GE•GF.
20.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B,C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3 时,求线段DH的长.
参考答案
一、选择题
B A B B B B D D D C
二、填空题
11.(,﹣1)或(﹣,1)
12.2n-80
13.
14.35°
15.
16.(2018,+1)
三、解答题
17.证明:连接BF,∵△AEF是由△AEB翻折得到,
∴BF⊥AE,BE=EF,
∵BE=CE,
∴BE=EC=EF,
∴∠BFC=90°,
∴CF⊥BF,又AE⊥BF,
∴AE∥CF.
18.(1)解:A′(1,﹣3)、B′(3,1)
(2)解:△ABC的面积为:× × =5.
19.(1)证明:∵四边形ABCD是菱形,
∴AB∥CD,AD=CD,∠ADB=∠CDB,
∴∠F∠FCD,
在△ADG与△CDG中,,∴△ADG≌△CDG,
∴∠EAG=∠DCG,
∴AG=CG;
(2)证明:∵△ADG≌△CDG,
∴∠EAG=∠F,
∵∠AGE=∠AGE,
∴△AEG∽△FGA,
∴,
∴AG2=GE•GF
20.(1)解:BD=CF.
理由如下:由题意得,∠CAF=∠BAD=θ,
在△CAF和△BAD中,
,
∴△CAF≌△BAD,
∴BD=CF;
(2)解:①由(1)得△CAF≌△BAD,
∴∠CFA=∠BDA,
∵∠FNH=∠DNA,∠DNA+∠NDA=90°,
∴∠CFA+∠FNH=90°,
∴∠FHN=90°,即BD⊥CF;
②连接DF,延长AB交DF于M,
∵四边形ADEF是正方形,AD=3 ,AB=2,∴AM=DM=3,BM=AM﹣AB=1,
∵△ABC绕点A逆时针旋转45°,
∴∠BAD=45°,
∴AM⊥DF,
∴DB= = ,
∵∠MAD=∠MDA=45°,
∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,∴△DMB∽△DHF,
∴= ,即= ,
解得,DH= .。