-微生物的生理
- 格式:ppt
- 大小:1.43 MB
- 文档页数:12
微⽣物⽣理复习题及答案第⼀章绪论1、什么是微⽣物⽣理学?研究热点是什么?微⽣物⽣理学是从⽣理⽣化的⾓度研究微⽣物的形态与发⽣、结构与功能、代谢与调节、⽣长于繁殖等的机理,以及这些过程与微⽣物⽣长发育以及环境之间的关系的学科。
研究热点:环境修复;微⽣物发电、⽣物燃料;资源开发利⽤。
2、简要说明微⽣物⽣理学与其他学科的关系。
微⽣物⽣理学既是⼀门基础学科⼜是⼀门应⽤学科。
它的发展与其他学科有着密切的联系,既依赖于微⽣物学、⽣物化学、细胞⽣物学、遗传学基础学科的理论和技术,还需要数学、物理学、化学、化学⼯程、电⼦信息学和设备制造⼯程等的理论和技术。
3、简述微⽣物⽣理学中常⽤的技术与⽅法。
(1)电⼦显微技术,⼀种公认的研究⽣物⼤分⼦、超分⼦复合体及亚细胞结构的有⼒⼿段,也是研究微⽣物不可缺少的⼿段。
(2)DNA分⼦铺展技术,可⽤来检查细菌、噬菌体的染⾊体结构,还可进⾏动态跟踪。
(3)超速离⼼技术(4)光谱分析技术,包括可见光光度法(定量分析),紫外分光光度法,荧光分光光度法,红外分光光度法。
(5)层析技术,⼀种基于被分离物质的物理、化学及⽣物学特性的不同,使它们再某种基质中移动速度不同⽽进⾏分离和分析的⽅法。
纸层析,薄层层析,柱层析。
(6)电泳技术,⽤于对样品进⾏分离鉴定或提纯的技术。
等电聚焦电泳,双向电泳,⽑细管电泳,变性梯度凝胶电泳。
(7)同位素⽰踪技术,利⽤放射性核素作为⽰踪剂对研究对象进⾏标记的威廉分析⽅法。
(8)基因芯⽚与⾼通量测序技术第⼆章微⽣物的细胞结构与功能1.细胞壁及细胞膜的⽣理作⽤是什么?(2)控制细胞⽣长扩⼤(3)参与胞内外信息的传递(4)防御功能(5)识别作⽤(ps1、维持细胞形状,控制细胞⽣长,保护原⽣质体。
细胞壁增加了细胞的机械强度,并承受着内部原⽣质体由于液泡吸⽔⽽产⽣的膨压,从⽽使细胞具有⼀定的形状,这不仅有保护原⽣质体的作⽤,⽽且维持了器官与植株的固有形态.另外,壁控制着细胞的⽣长,因为细胞要扩⼤和伸长的前提是要使细胞壁松弛和不可逆伸展.2.细胞壁参与了物质运输与信息传递细胞壁允许离⼦、多糖等⼩分⼦和低分⼦量的蛋⽩质通过,⽽将⼤分⼦或微⽣物等阻于其外。
微生物生理学简介微生物生理学是研究微生物(包括细菌、真菌、病毒等)在生理上的活动和代谢过程的学科。
微生物在地球上广泛存在,并在各个生态系统中扮演着重要角色。
了解微生物生理学有助于我们理解微生物的生命活动和其与环境之间的相互关系。
本文将从微生物的生长、代谢、运动等方面介绍微生物生理学的基本知识。
微生物的生长微生物的生长是指微生物个体数量的增加。
微生物可以通过两种主要方式进行繁殖:有丝分裂和无丝分裂。
有丝分裂适用于真菌和一些原生动物,通过细胞核的分裂和细胞质的分裂来产生新的个体。
无丝分裂适用于细菌和病毒等微生物,在此过程中,微生物通过复制DNA并将其分配给新形成的细胞来繁殖。
微生物的生长受到一系列因素的影响,包括温度、pH值、营养物质和氧气含量等。
不同的微生物对这些环境因素的要求各不相同。
例如,嗜热菌可以在高温环境中生长,而嗜冷菌则适应于低温环境。
微生物的代谢微生物通过代谢产生能量和合成生物分子。
代谢过程可以分为两个主要类型:有氧代谢和厌氧代谢。
有氧代谢是指微生物在氧气存在的情况下进行的代谢过程,产生较多的能量。
厌氧代谢是指微生物在氧气缺乏的条件下进行的代谢过程,产生较少的能量。
微生物通过新陈代谢和合成代谢来维持生理功能。
新陈代谢是指分解有机物质以产生能量的过程,合成代谢是指合成微生物所需的有机物质和细胞组件的过程。
微生物的运动微生物可以有不同的运动方式,包括游动、滑动和极纤毛等。
游动是指微生物利用鞭毛或纤毛等结构在液体中进行活动。
滑动是指微生物利用纤毛或假足等结构在固体表面上移动。
极纤毛是一种很短的纤毛,存在于细菌和某些原生动物中,用于以一种像旋转的方式推动细胞。
微生物的运动与其环境之间的相互作用密切相关。
微生物通过感知环境中的化学物质浓度、光照和温度等刺激来调整自己的运动方式。
这种对环境的感知和反应既可以是积极的,也可以是消极的,有助于微生物适应不同的生态环境。
结论微生物生理学作为一个重要的学科,研究微生物在生理上的活动和代谢过程。
微生物生理学微生物生理学,简单来说就是研究微生物的生命活动和代谢规律。
微生物是一类生命活动丰富、功能多样的生物,对各种化合物都有代谢能力,常常作为重要的工业菌来使用。
微生物生理学研究更是应用广泛,如农业、医学、食品、环保等领域。
下面,我们从微生物的代谢入手,探讨一下微生物生理学的一些基本概念和应用。
第一部分微生物代谢微生物代谢是微生物生理学的核心之一。
代谢是生命活动的基本过程,包括有机物的分解与合成,能量的产生与利用等。
在微生物代谢中,可以分为两种类型,即可以在顺应郭中生存的化能型微生物和以化学反应为生存基础的化学型微生物。
1.1 化能型微生物化能型微生物,也叫做碳源化微生物,可以分解有机物质并利用氮气、二氧化碳等化合物产生大量的能量,从而完成其生存过程。
常见的化能型微生物有产酸菌、膜糖体菌等。
这些微生物能够利用糖类、脂肪、蛋白、醇等有机物质产生能量,产生的能量可以用于合成细胞组分或响应外界刺激。
此外,还可以利用无机物质进行能量代谢,例如硫化氢细菌可以利用硫化氢合成ATP。
1.2 化学型微生物化学型微生物,也叫做于外营养物质微生物,不依靠外界有机体大量提供生存必需物质,而是通过化学反应来获得维持基本功能的能量和生物分子。
最典型的例子是大多数甲烷杆菌,它们不依赖于外部有机体大量提供生命必需物质,而是利用甲烷和碳酸盐进行代谢反应,获得能量和所需化合物质。
与化能型微生物不同的是,化学型微生物更多的是通过化学反应来维持生命活动和代谢。
第二部分微生物生理学的应用微生物生理学的应用十分广泛,从食品工业到医学领域,都可以利用到微生物生理学知识。
下面,我们重点介绍其中几个应用。
2.1 食品工业微生物在食品工业中起着极其重要的作用。
酸奶、芝士、酱油等食品的生产离不开微生物的应用。
微生物可以发酵,产生酸、酸性物质、酵素、蛋白质等,根据不同的产品需要,制定不同的菌种和发酵条件,从而生产出不同的食品。
2.2 医学领域微生物在医学领域的应用十分广泛。
第四章微生物的生理一、名词解释1. 酶:是由细胞产生的、能在体内或体外起催化作用的一类具有活性中心和特殊构象的生物大分子,包括蛋白质酶和核酸类酶。
2. 酶的活性中心:指酶的活性部位,是酶蛋白分子中直接参与和底物结合,并与酶的催化作用直接有关的部位。
酶的活性部位中心有两个功能部位:结合部位和催化部位。
3. 辅酶:全酶中与酶蛋白结合的非蛋白质的小分子有机物或者金属离子,全酶一定要在酶蛋白和辅酶或辅基同时存在时才起作用。
4. 酶的专一性:一种酶只作用一种物质或一类物质,或催化一种或一类化学反应,产生相应的产物。
酶的第五专一性包括结构专一性和立体异构专一性。
5. 微生物的新陈代谢:微生物从外界环境中不断地摄取营养物质,经过一系列的生物化学反应,转变成细胞的组分,同时产生废物并排泄到体外,这是微生物与环境之间的物质交换过程。
6. 生长因子:是一类调节微生物正常代谢所必需,但不能用简单的碳、氮源自行合成的有机物。
主要包括维生素、碱基、嘌呤、嘧啶、生物素和烟酸等。
7. 培养基:根据各种微生物对营养的需要,包括水、碳源、氮源、无机物及生长因子等按一定的比例配制而成的,用以培养微生物的基质。
8. 选择性培养基:根据某微生物的特殊营养要求或对各种化学物质敏感程度的差异而设计、配制的培养基。
可在培养基中加入染料、胆汁酸盐、金属、酸、碱或抗生素等其中的一种,用以抑制非目的微生物的生长,并使所要分离的目的微生物生长繁殖。
9. 鉴别培养基:几种细菌由于对培养基中某一成分的分解能力不同,其菌落通过指示剂显示出不同的颜色而被区分开,这种起鉴别和区分不同细菌作用的培养基叫作鉴别培养基。
10. 加富培养基:由于样品中细菌数量少,或是对营养要求比较苛刻不易培养出来,故用特别的物质或成分配制而成的促使微生物快速生长的培养基,这种用特别物质或成分配制而成的培养基称为加富培养基。
11. 主动运输:是指物质逆浓度梯度,在载体的协助下,在能量的作用下运进或运出细胞膜的过程。