第3讲:速度选择器
- 格式:pptx
- 大小:420.88 KB
- 文档页数:6
高中物理速度选择器和回旋加速器解题技巧讲解及练习题一、速度选择器和回旋加速器1.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
(计算结果保留两位有效数字) (1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?(2)在(1)的情况下,在离电场和磁场区域右边界D =0.40m 处有与边界平行的平直荧光屏。
若只撤去电场,离子流击中屏上a 点;若只撤去磁场,离子流击中屏上b 点。
求ab 间距离。
(a ,b 两点图中未画出)【答案】(1)电场方向竖直向下;2×107m/s ;(2)0.53m 【解析】 【分析】 【详解】(1)电场方向竖直向下,与磁场构成粒子速度选择器,离子运动不偏转,根据平衡条件有qEqvB解得离子流的速度为Ev B==2×107m/s (2)撤去电场,离子在碰场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m R=解得mvR qB==0.4m 离子离开磁场区边界时,偏转角为θ,根据几何关系有1sin 2L R θ== 解得30θ=在磁场中的运动如图1所示偏离距离1cos y R R θ=-=0.054m离开磁场后离子做匀速直线运动,总的偏离距离为1tan y y D θ=+=0.28m若撤去磁场,离子在电场中做匀变速曲线运动通过电场的时间L t v≤加速度qE a m=偏转角为θ',如图2所示则21tan 2y v qEL vmv θ'=== 偏离距离为2212y at ==0.05m 离开电场后离子做匀速直线运动,总的偏离距离2tan y y D θ''=+=0.25m所以a 、b 间的距离ab =y +y '=0.53m2.如图所示的速度选择器水平放置,板长为L ,两板间距离也为L ,下极板带正电,上极板带负电,两板间电场强度大小为E ,两板间分布有匀强磁场,磁感强度方向垂直纸面向外,大小为B , E 与B 方向相互垂直.一带正电的粒子(不计重力)质量为m ,带电量为q ,从两板左侧中点沿图中虚线水平向右射入速度选择器. (1)若该粒子恰能匀速通过图中虚线,求该粒子的速度大小;(2)若撤去磁场,保持电场不变,让该粒子以一未知速度从同一位置水平射入,最后恰能从板 的边缘飞出,求此粒子入射速度的大小;(3)若撤去电场,保持磁场不变,让该粒子以另一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小.【答案】(1)E B ; (2qELm3)54qBL m 或4qBL m【解析】 【分析】 【详解】(1)若该粒子恰能匀速通过图中虚线,电场力向上,洛伦兹力向下,根据平衡条件,有:qv 1B =qE解得:1E v B=(2)若撤去磁场,保持电场不变,粒子在电场中做类平抛运动,则 水平方向有:L =v 2t竖直方向有:21122L at = 由牛顿第二定律有:qE =ma解得:2qELv m=(3)若粒子从板右边缘飞出,则2222L r L r =+-()解得:54r L=由233vqv B mr=得:354qBLvm=若粒子从板左边缘飞出,则:4Lr=由244vqv B mr=得:44qBLvm=3.图中左边有一对水平放置的平行金属板,两板相距为d,电压为U0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B0.图中右边有一半径为R的圆形匀强磁场区域,磁感应强度大小为B1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN方向射入磁场区域,最后从圆形区域边界上的P点射出,已知图中θ=60,不计重力,求(1)离子到达M点时速度的大小;(2)离子的电性及比荷qm.【答案】(1)0UdB(2)00133UdB B R【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d=联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =0013U qm =点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.4.如图所示,两平行金属板水平放置,板间存在垂直纸面的匀强磁场和电场强度为E 的匀强电场。
带电粒子在复合场中运动的应用一.速度选择器原理 当粒子的速度BEv =0时,粒子匀速运动,不发生偏转,可以从S 2孔飞出。
由此可见,尽管有一束速度不同的粒子从S 1孔进入,但能从S 2孔飞出的粒子只有一种速度,而与粒子的质量、电性、电量无关两个重要的功能关系——当粒子进入速度选择器时速度v EB0≠, 粒子将因侧移而不能通过选择器。
如图, 设在电场方向侧移∆d 后粒子速度为v当B Ev >0时: 粒子向f 方向侧移, F 做负功,功能关系 当BEv <0时:粒子向F 方向侧移, F 做正功,功能关系;二.质谱仪质谱仪主要用于分析同位素, 测定其质量, 荷质比和含量比, 如图所示为一种常用的质谱仪 设粒子的质量为m 、带电量为q (重力不计), 粒子经电场加速由动能定理有: 粒子在偏转磁场中作圆周运动有:联立①②解得:U L qB m 822= 228LB U m q =另:同位素荷质比和质量的测定: 粒子通过加速电场,通过速度选择器, 根据匀速运动的条件: 。
若测出粒子在偏转磁场的轨道直径为L , 则BqB mEBq mv R L 0222===, 所以同位素的荷质比和质量分别为EBqL B m BL B E m q 2;200==。
1. 在方向如图所示的匀强电场(场强为E )和匀强磁场(磁感应强度为B一电子沿垂直电场线和磁感线方向以速度v 0射入场区,则( )A .若v 0>E/B ,电子沿轨迹Ⅰ运动,射出场区时,速度v >v 0B .若v 0>E/B ,电子沿轨迹Ⅱ运动,射出场区时,速度v <v 0C .若v 0<E/B ,电子沿轨迹Ⅰ运动,射出场区时,速度v >v 0D .若v 0<E/B ,电子沿轨迹Ⅱ运动,射出场区时,速度v <v 02、如图为质谱仪的原理图。
若某带正电的粒子由静止开始经过加速电场加速后,进入速度选择器,选择器中存在相互垂直的匀强电场和匀强磁场,其中匀强电场的场强为E ,方向水平向右,匀强磁场磁感应强度为B 1,方向垂直纸面向外,粒子恰沿直线穿过速度选择器,并从G 点垂直于MN 进入偏转磁场。
仿真实验辅助下的高中物理大单元教学设计----以“带电粒子在磁场中的运动”为例高二年级第一学期,学时(2课时)1、教材分析(人教版2019选择性必修二)①本章节主要讲述了带电粒子在匀强磁场中的运动规律,涉及到洛伦兹力、磁感应强度以及带电粒子在磁场中的速度、加速度等概念,为后续章节奠定基础。
②教材重点介绍了带电粒子在磁场中的三种运动情况:直线运动、圆周运动和螺旋运动,并讨论了它们的条件与应用。
③本章节还涉及到磁场对带电粒子运动轨迹的影响,使学生了解磁场对物体运动的影响,并理解磁场在生活中的实际应用。
④教材内容紧密结合实际生活,如质谱仪、同旋加速器、速度选择器、磁流体发电机等应用实例,有助于激发学生的学习兴趣和探究欲望。
2、学情分析①学生已经掌握了带电粒子在电场中的运动规律,有一定的物理基础,但是磁场对带电粒子的影响是一个新的领域,需要引导学生进行理解与探讨。
②部分学生可能对磁场概念抽象,难以理解磁场与带电粒子运动之间的关系,需要通过仿真实验模拟粒子运动形态帮助学生加深理解。
③学生对磁场的应用和带电粒子在磁场中的运动规律具有一定的好奇心和探究欲望,有利于培养学生的科学探究能力。
④部分学生可能存在思维定势,认为磁场和电场没有太大区别,需要通过对比分析引导学生正确理解磁场与电场的区别。
3、核心素养3.1.物理观念①让学生认识并理解洛伦兹力、磁感应强度等基本概念。
②帮助学生掌握带电粒子在磁场中直线运动、圆周运动和螺旋运动的条件与特点。
③通过仿真实验让学生理解磁场对带电粒子运动轨迹的影响,激发学生对磁场应用的兴趣和探究欲望。
3.2.科学思维①培养学生运用洛伦兹力、磁感应强度等概念分析带电粒子在磁场中的运动,提高学生的分析和解决问题能力。
②引导学生通过对比带电粒子在磁场和电场中的运动特点,发现它们的区别与联系,培养学生的归纳与综合思维能力。
③培养学生通过实验和实际例子来验证磁场对带电粒子运动的影响,提高学生的实践操作能力和创新思维。
高考物理速度选择器和回旋加速器解题技巧讲解及练习题一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D 上的A 点处.已知A 点与狭缝S 2的水平间距为3L ,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)1223=∶t t π【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R= 则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期2RT v π=运动时间101263Lt T v π==电场中,离子运动时间203=Lt v 则磁场中和在电场中时间之比1223=∶t t π3.如图,平行金属板的两极板之间的距离为d ,电压为U 。
(第三章)磁场知识点1.了解磁现象和磁场:能说出电流的磁效应;能描述磁场和地磁场;知道我国古代在磁现象方面的研究成果及其对人类文明的影响;能举例说明磁现象在生产和生活中的应用.用罗盘指引航向,探索航道,将船舶航向的变动与指南针指向变动的对应关系总结出来,画出的航线在古代称作“针路”或“针径”。
利用“针路”,船能够靠指南针导航。
1.磁场的产生:磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,本质上讲磁场是由于电荷运动所产生的。
变化的电场空间也产生磁场。
2.磁场的基本特性:磁场对处于其中的磁极、电流和运动电荷有力的作用;磁极与磁极、磁极与电流、电流与电流之间的相互作用都是通过磁场发生的。
3.磁场的方向:规定在磁场中任意一点小磁针北极的受力方向(小磁针静止时N极的指向)为该点处磁场方向。
4.磁现象的电本质:奥斯特发现电流磁效应(电生磁)后,安培提出分子电流假说:认为在原子、分子等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极;从而揭示了磁铁磁性的起源:磁铁的磁场和电流的磁场一样都是由电荷运动产生的;根据分子电流假说可以解释磁化、去磁等有关磁现象。
5地磁场(1)地球是一个巨大的磁体、地磁的N极在地理的南极附近,地磁的S极在地理的北极附近;(2)地磁场的分布和条形磁体磁场分布近似;(3)在地球赤道平面上,地磁场方向都是由北向南且方向水平(平行于地面);(4)近代物理研究表明地磁场相对于地球是在缓慢的运动和变化的;地磁场对于地球上的生命活动有着重要意义。
知识点2.理解磁感应强度:知道磁感应强度的概念,会运用磁感应强度的概念描述磁场.1.定义:在磁场中垂直于磁场方向的通电直导线,所受的安培力F跟电流I和导线长度L之乘积IL的比值叫做磁感应强度,定义式为B=F/IL。
2.对定义式的理解:(1)式中反映的F、B、I方向关系为:B⊥I,F⊥B,F⊥I,则F垂直于B和I所构成的平面。