丁二烯生产技术
- 格式:docx
- 大小:22.34 KB
- 文档页数:4
乙腈法生产丁二烯难点问题探究摘要:乙腈抽提法生产丁二烯,即以乙腈为溶剂,利用萃取精馏和普通精馏的方法,从乙烯装置的副产碳四馏份中将丁二烯分离出来。
由于丁二烯的化学性质活泼,极易发生反应,造成各生产单元设备堵塞,泄漏等问题,存在一定的安全隐患。
本文主要针对生产过程中的难点问题进行探究和提出相应的解决对策。
关键词:乙腈法、丁二烯、难点、对策简介:乙腈法生产丁二烯工艺共分为5个单元,萃取精馏单元、丁二烯精制单元、水洗及溶剂回收单元、热水循环单元、回丁处理单元。
丁二烯装置利用乙烯装置裂解碳四为原料抽提分离出丁二烯。
在原料碳四馏份中除含丁二烯外,还有丁烷、丁烯、丁炔等多种C3~C5 烃类,这些组份沸点相近,又能形成共沸物,当在分离系统中加入溶剂乙腈后,各组份间的相对挥发度差值增大。
利用两级萃取精馏的方法,先除去丁烷、丁烯,后除去碳四炔烃,即得粗丁二烯;再经两级精馏除去重组份及丙炔,制得聚合级产品丁二烯。
1.丁二烯的物化性质丁二烯属共轭二烯烃,化学性质十分活泼,极易于氧发生反应。
无色无臭气体。
能溶于丙酮、苯、乙酸、酯等多数有机溶剂。
不能与下列物质共存:强氧化剂、卤素、氧。
火灾和爆炸:与空气混合能形成爆炸性混合物。
接触热、火星、火焰或氧化剂易燃烧爆炸。
化学反应性:遇高热可发生聚合反应,放出大量热量而引起容器破裂和爆炸事故。
3.1丁二烯装置脱轻塔一.塔底再沸器泄漏丁二烯装置脱轻塔由两台再沸器共同加热。
一个热源由溶剂回收塔顶乙腈和水馏出蒸汽加热,后者由循环热水提供换热。
被加热介质为高纯度丁二烯。
在再沸器气相管线阀门处很容易发生泄漏。
(图片 1)图片1 再沸器气相管线阀门泄漏图片 2 脱轻塔放空线堵塞原因分析:1.再沸器气相管线阀门一般采用闸阀,它存在一个白色阀腔区域,这个部分是一个死角,丁二烯在阀腔内无法流通,长时间停留。
在法兰和阀杆等密封处渗氧时,就会产生丁二烯端聚物。
丁二烯端聚物持续增长膨胀致使法兰变形泄漏。
丁二烯生产工艺技术丁二烯是一种重要的工业原料和化学品。
它是一种无色的气体,具有良好的弹性、电绝缘和耐化学腐蚀性能。
丁二烯广泛应用于合成橡胶、塑料、纤维、树脂和溶剂等方面。
下面将介绍一种常用的丁二烯生产工艺技术。
丁二烯的生产主要通过裂解石油烃和液化碳氢化合物来实现。
常用的丁二烯生产工艺中,最常用的方法是通过溶剂裂解。
下面简要介绍。
首先,将石油烃(如重油、轻油等)和液化碳氢化合物(如丙烷、丙二烯等)与溶剂(如丙酮、苯等)混合并预热,形成混合料。
然后将混合料注入裂解炉中,加热至高温,使之裂解。
在裂解炉内,石油烃和液化碳氢化合物被裂解成各种烃类和炔类化合物。
其中,丁二烯是最重要的产物之一。
裂解反应一般在催化剂的存在下进行,以提高反应效率和选择性。
常见的催化剂有粉末石英、铝酸盐等。
裂解反应得到的混合物通过冷却和分离后,从中提取纯净的丁二烯。
具体分离方法包括采用低温分离、沉淀分离和吸附分离等。
在分离过程中,一定要注意对环境的保护,避免有害物质外泄。
最后,通过蒸馏等工艺将提取的丁二烯进行精炼处理,以提高其纯度和质量。
在精炼过程中,还可以对丁二烯进行进一步的处理,如加氢、加氧等,以获得不同的丁二烯衍生物。
丁二烯生产工艺技术的发展离不开对设备的不断改进和创新。
目前,已经出现了一些新型的丁二烯生产技术,如基于甲醇裂解和基于生物质资源的生物裂解技术。
这些新技术具有环保、高效和可持续发展的优势,将在未来得到更广泛的应用。
总之,丁二烯的生产工艺技术是一个复杂而重要的过程。
通过不断改进和创新,我们可以提高丁二烯的产量和质量,同时减少对环境的影响,为工业生产提供可靠的丁二烯资源。
丁二烯萃取精馏工艺设计丁二烯是一种重要的基础化学品,广泛应用于合成合成橡胶、塑料、树脂和油墨等领域。
丁二烯的生产通常采用烷基锂催化剂聚合反应,生成丁二烯和其他杂质。
为了获得高纯度的丁二烯,需要进行精馏分离。
丁二烯萃取精馏是目前广泛采用的一种分离技术,具有操作简便、分离效率高、产品纯度高等优点。
丁二烯萃取精馏工艺的设计涉及到多个关键参数,如萃取剂种类、萃取剂用量、精馏塔塔板数目、进料温度、进料流量等。
下面将从这些方面介绍丁二烯萃取精馏工艺的设计。
1. 萃取剂种类萃取剂是丁二烯萃取精馏中的关键因素之一。
常用的萃取剂有苯、甲苯、二甲苯、正庚烷等。
不同的萃取剂对丁二烯的分离效果有所不同。
例如,苯的选择性较高,但易与丁二烯发生加成反应,形成高沸点产物,影响精馏效果。
因此,在选择萃取剂时应综合考虑其分离效果和化学性质,并选择合适的物料组合。
2. 萃取剂用量萃取剂用量是影响丁二烯萃取精馏效果的另一个重要因素。
一般而言,萃取剂用量越大,分离效果越好,但同时也会增加成本。
在确定萃取剂用量时,应综合考虑经济性和工艺效果,选择合适的用量。
3. 精馏塔塔板数目精馏塔塔板数目对丁二烯萃取精馏的分离效果有着极大的影响。
塔板数目越多,精馏分离效果越好,但同时也会增加设备复杂度和成本。
在选择塔板数目时,应根据实际情况,综合考虑分离效果和成本,选择适当的塔板数目。
4. 进料温度和进料流量进料温度和进料流量是丁二烯萃取精馏中比较重要的参数。
进料温度过高会导致产物分解,影响精馏效果;进料流量过大会降低分离效率。
在确定进料温度和进料流量时,应综合考虑分离效果和工艺经济性,选择合适的操作条件。
丁二烯萃取精馏工艺的设计需要综合考虑多个参数,包括萃取剂种类、萃取剂用量、精馏塔塔板数目、进料温度和进料流量等。
在设计工艺时,应根据实际情况,综合考虑分离效果和成本,选择合适的操作条件,以获得高效、经济、稳定的生产工艺。
丁二烯生产技术进展及国内外市场分析1.引言-介绍丁二烯的基本概念和应用领域-阐述本文的研究目的和意义2.丁二烯生产技术进展-传统工艺生产丁二烯的介绍-现代工艺生产丁二烯的介绍-分析传统工艺和现代工艺的优缺点3.国内外丁二烯市场分析-分析国内外丁二烯市场的需求量和产能-分析中国丁二烯产业的现状和发展趋势-分析全球丁二烯市场的竞争格局和趋势4.丁二烯生产技术的改进与发展-引进和开发新技术的介绍-分析新技术的优势和局限性-探讨改进和发展丁二烯生产工艺的前景5.结论-对丁二烯市场和生产技术的变化作出预测-指出我国丁二烯产业的发展方向和策略-总结本文的重点和意义6.参考文献-列举本文引用的参考文献资料1. 引言丁二烯是一种非常重要的工业化学品,具有广泛的应用领域,例如合成橡胶、合成塑料、制药等方面。
随着工业化和城市化的迅速发展,丁二烯的需求量日益增加,丁二烯产业也成为了一个具有重要意义的产业。
然而,丁二烯的生产技术在不断进步和改进,同时国内外竞争激烈。
因此,本文旨在探究丁二烯生产技术的进展并分析其在国内外市场的现状和前景。
2. 丁二烯生产技术进展传统工艺生产丁二烯主要包括磷酸催化剂法、氧化法和烷基化法。
其中,磷酸催化剂法生产效率较高,在丁二烯产业的早期发挥了重要作用。
但是,该方法存在催化剂烧结和生产过程中产生的环境污染等问题。
现代工艺生产丁二烯主要包括轻质烃烷基化技术和蒸汽裂解技术。
轻质烃烷基化技术是利用催化剂在高温和高压下使质子转移,产生丁二烯。
该方法具有生产效率高、环保等优点,被广泛应用于现代丁二烯产业。
蒸汽裂解技术是将烃类在高温和高压下裂解,制得丁烷、丁二烯等有机物,是目前最主要的丁二烯生产工艺。
传统工艺和现代工艺各有优劣。
传统工艺能够生产高纯度的丁二烯,但是成本比较高并且存在环境污染问题。
现代工艺具有较低的生产成本和环境污染较小的特点,但是其产品质量相对较差。
因此,现代制造商会在传统工艺和现代工艺之间选择合适的方法来生产丁二烯。
丁二烯生产工艺流程设计与安全评价丁二烯是一种重要的化工原料,在合成橡胶、塑料和化学品制造中具有广泛的应用。
为了确保丁二烯的生产过程高效、安全、稳定,需要进行工艺流程设计和安全评价。
本文将探讨丁二烯生产工艺的流程设计以及安全评价的相关内容。
一、工艺流程设计1. 原料准备:丁二烯的主要原料是丁烯和乙醇。
其中丁烯为乙醇脱水制备,需要确定合适的脱水剂、温度和时间等参数,以提高丁烯的纯度和产率。
2. 反应装置设计:丁二烯的生产主要是通过丁烯的烯烃加聚反应完成的。
反应器的设计应考虑反应温度、压力、催化剂的选择以及反应器的尺寸和材料等因素。
同时,为了提高反应效率和产品质量,还需要考虑适当的搅拌和冷却条件。
3. 分离纯化:在反应后,需要进行产品的分离纯化。
这包括对乙醇催化剂的回收利用、丁二烯和其他副产物的分离、纯化和再生等步骤。
分离纯化过程的设计需结合实际情况和工艺要求,选择适当的分离技术和设备,以提高产品的纯度和收率。
4. 产品储存和运输:生产完成后,丁二烯需要储存和运输至下游工艺或客户处。
应选择适当的储罐和容器,对丁二烯进行储存和包装,确保产品的安全性和稳定性。
二、安全评价1. 火灾和爆炸风险评估:丁二烯是易燃易爆的化学品,因此应对生产过程中的火灾和爆炸风险进行评估。
包括对原料、反应装置、储存设施和环境条件等因素进行分析,预测潜在的火灾和爆炸风险,并采取相应的措施进行防范。
2. 有害物质防护:丁二烯的生产过程中还包括一些有害物质的生成和释放,如有毒气体、废水和废气等。
应对这些有害物质进行评估,确定其对环境和人体的潜在风险,并采取相应的防护设施和处理措施,以减少对环境和人体的影响。
3. 装置安全设计:在丁二烯生产工厂的设计过程中,应考虑装置的安全设计。
包括对设备的选择、设计和材料的选择,以及安全设备的设置。
同时,在施工和运营过程中,还需要进行定期的安全检查和维护,确保装置的正常运行和安全性。
4. 应急预案和培训:针对丁二烯生产过程中可能发生的事故和紧急情况,需要制定相应的应急预案。
丁二烯生产技术进展2011-08-25丁二烯通常指1,3-丁二烯,是一种非常重要的石油化工原料,可以合成顺丁橡胶(BR)、丁苯橡胶(SBR)、丁腈橡胶(NBR)、苯乙烯-丁二烯-苯乙烯弹性体(SBS)、氯丁橡胶(CR)、丙烯腈-丁二烯-苯乙烯(ABS)树脂等多种产品,还可用于生产己二腈、己二胺、尼龙66、1,4-丁二醇等有机化工产品,用途十分广泛。
丁二烯的生产方法主要有乙烯裂解副产C4抽提法和C4烷烃或烯烃脱氢法,其中,乙烯裂解副产丁二烯约占全球丁二烯总生产能力的98%,是丁二烯的主要生产工艺。
从乙烯裂解装置副产混合C4抽提丁二烯工艺使用不同的溶剂来区分,主要有以日本合成橡胶(JSR)公司为代表的乙腈(ACN)工艺、日本瑞翁(Zeon)公司的二甲基甲酰胺(DMF)工艺和德国巴斯夫(BASF)公司的N-甲基吡咯烷酮(NMP)工艺三种流程。
自20世纪50年代丁二烯抽提工艺实现工业化以来,各大技术专利商均一直致力于技术改进,并在装置能耗物耗、运行稳定性和安全性等方面取得突破性进展,丁二烯抽提工艺也日趋成熟。
近年来,丁二烯技术研究主要集中在新型设备应用、萃取精馏系统的局部改进、反应精馏组合工艺研究、新型阻聚剂系统开发和丁二烯生产新技术的研究等方面。
1 萃取精馏工艺的改进1.1 隔壁精馏塔丁二烯第一萃取精馏工艺巴斯夫公司对传统的丁二烯抽提工艺进行了改进,第一萃取精馏塔采用隔壁精馏塔,一萃部分采用隔壁塔与萃取洗涤塔、溶剂脱气塔组合的新工艺,萃取溶剂采用含水的NMP溶液,分离可得到粗1,3-丁二烯。
C馏分换热后进入隔壁塔第一分区的中部,来自萃取洗涤塔的底部物流循环进入4第一分区的上部,来自溶剂脱气塔的一股溶剂进入第二分区的上部,第二分区的炔烃化合物塔顶抽出粗1,3-丁二烯产品,从隔壁塔的下部共用塔区域抽出含C4的溶剂,这股物流进入溶剂脱气塔进行溶剂再生,脱气塔塔釜物流循环。
来自隔壁精馏塔第一分区的顶部物流加入到萃取洗涤塔的下部,通过在萃取洗涤塔的上部区域加入一股溶剂进行逆流萃取,从萃取洗涤塔的顶部抽出抽余液。
丁二烯抽提工艺方法的比较与选择摘要:丁二烯的加工利用水平和化工利用技术的发展对国家合成橡胶工业生产的发展有着重要影响。
丁二烯的生产可分为乙腈法、二甲基甲酰胺法和N甲基吡咯烷酮法三种。
不论是哪种溶剂,抽提工艺一般都采用两段萃取精馏,即先用溶剂萃取丁二烯及炔烃,把它们与丁烷,丁烯馏分分开,再用同一溶剂在炔烃萃取精馏塔中萃取掉炔烃,得到丁二烯馏分,丁二烯馏分脱除轻重组分后,便得到丁二烯。
三种方法都有各自的特点,在选择生产丁二烯的方法时,要详细比较各自的优缺点,选择出最适合的工艺方法。
关键词:丁二烯工艺;溶剂;抽提1丁二烯的简介丁二烯,通常是指1,3-丁二烯,又称乙烯基乙烯,分子式C4H6,无色气体。
熔点108.9℃,沸点4.41℃,微溶于水和醇,易溶于苯、甲苯、氯仿、等有机溶剂。
丁二烯在常温常压下为无色而略带大蒜味的气体,易液化,易燃,聚合。
丁二烯具有麻醉和刺激作用,可能引起遗传缺陷,可致癌。
丁二烯是碳四馏分中最重要的组分,是石油化工的基本原料之一,在石油化工烯烃原料中的地位仅次于乙烯和丙烯,世界丁二烯主要用于合成橡胶以及ABS树脂等。
2丁二烯的生产方法我国丁二烯的生产经历了酒精接触分解、丁烯或丁烷氧化脱氢和蒸气裂解制乙烯联产C4抽提分离三个发展阶段。
C4抽提分离这种方法价格低廉,经济上占优势,是目前世界上丁二烯的主要来源。
只有少数一些丁烷、丁烯资源丰富的国家采用脱氢法。
目前我国正在运行的丁二烯生产装置,绝大多数都是随着乙烯工业的发展而逐步配套建设起来的[1]。
2.1乙腈法乙腈法(ACN法)乙腈法以含水10%左右的乙腈为溶剂,由两段萃取精馏、两段普通精馏、和溶剂回收等工艺单元组成。
原料裂解碳四第一萃取精馏塔,与塔顶来的乙腈接触。
丁烷、丁烯、反丁烯-2等从塔顶馏出,塔底含丁二烯和重组分的乙腈溶液由釜液泵送至汽提塔将烃类组分从乙腈溶液中汽提出来。
汽提塔中部炔烃浓度最高,侧线采出送入炔烃闪蒸塔汽提塔釜液由汽提塔釜液泵打出,作为循环溶剂。
丁二烯生产工艺技术探讨316200摘要:丁二烯是重要的有机化工原料,作为一种共轭烯烃,丁二烯可以发生多种反应,如自聚或与其他化合物共聚制成合成橡胶和合成树脂。
有必要研究丁二烯的生产加工工艺技术措施,降低生产成本,提高石油化工生产的经济效益。
关键词:丁二烯;生产工艺;技术分析1.丁二烯的性质与用途丁二烯,通常指1,3-丁二烯,又称乙烯基乙烯,分子式,无色气体。
熔点108.9℃,沸点4.41℃,微溶于水和醇,易溶于有机溶剂。
有轻微的大蒜味,易液化,易燃,聚合。
贮存时可加少量(1%以下)叔丁基邻苯二酚、对苯二酚、混甲酚、二芳基胺基化合物等作稳定剂。
丁二烯是生产合成橡胶(丁苯橡胶、顺丁橡胶、丁腈橡胶、氯丁橡胶)的主要原料。
随着苯乙烯塑料的发展,利用苯乙烯与丁二烯共聚,生产各种用途广泛的树脂(如ABS树脂、SBS树脂、BS树脂、MBS树脂),使丁二烯在树脂生产中逐渐占有重要地位。
此外,丁二烯可用于生产乙叉降冰片烯(乙丙橡第三单体)、1,4-丁二醇(工程塑料主要原料)、己二腈(尼龙66单体)、环丁砜、蒽酮、四氢呋喃等等,因而也是重要的基础化工原料。
1.丁二烯生产工艺技术对比分析丁二烯的生产目前大多采用抽提工艺,抽提工艺中最重要的操作就是萃取精馏。
目前,以抽提为工艺基础衍生出的生产方法主要有三种,这三种工艺技术都是通过所用溶剂的不同来命名的。
分别为:乙腈法、二甲基甲酰胺生产法和N-甲基吡咯烷酮法。
接下来对三种工艺技术优缺点进行对比分析:2.1乙腈生产法(ACN法)乙腈法,即ACN法,是指用10%的乙腈作为溶剂并结合使用两段萃取精馏来生产丁二烯的方法。
工艺流程图如图1。
ACN法下的丁二烯生产,其优势有三点:①乙腈法具有萃取剂易于获得,工艺可靠;②能阻止双烯烃热聚;③工艺流程中不需要压缩机。
但其缺点也非常显而易见:①采用含水10%的溶剂,因乙腈沸点低,又与丁二烯形成共沸物,所以须增设水萃取回收并提浓乙腈的系统;②运转过程中损失较大;③毒性较大。
丁二烯生产工艺流程
《丁二烯生产工艺流程》
丁二烯(1,3-丁二烯)是一种重要的有机化合物,广泛用于合成橡胶、合成树脂、合成塑料等工业领域。
下面将详细介绍丁二烯的生产工艺流程。
首先,丁二烯的生产主要依赖于乙烷和丙烷的裂解反应。
乙烷和丙烷是石油和天然气中常见的烃类化合物,在加工过程中可以被裂解成丁二烯和其他烃类产品。
其次,丁二烯的生产通常采用热裂解技术,即将乙烷和丙烷在高温下反应裂解。
这一过程需要在高温和高压条件下进行,以促进反应的进行并提高丁二烯的产率。
接下来,通过分离和提纯技术,可以将裂解反应产生的混合气体中的丁二烯分离出来。
通常采用的方法包括冷凝、吸附和精馏等技术,以获得高纯度的丁二烯产品。
最后,经过提纯处理后的丁二烯可以被用于合成各种有机化合物,例如合成橡胶、合成树脂、合成塑料等。
丁二烯作为重要的原料化合物,在化工工业中有着广泛的应用和市场需求。
综上所述,丁二烯的生产工艺流程主要包括热裂解、分离和提纯等步骤。
这一工艺流程在化工工业中具有重要的意义,对于推动化工产业的发展和提升丁二烯产品质量具有重要意义。
丁烯氧化脱氢制丁二烯技术研究丁烯氧化脱氢制丁二烯技术研究引言丁二烯是一种重要的有机化工原料,在合成橡胶、树脂、塑料和溶剂等方面具有广泛的应用。
传统的丁二烯生产工艺主要通过丁烯-丁烷异构化、丁烷脱氢和丙烯丁二烯化的方式制备,但这些方法存在能耗高、非可再生能源消耗多以及环境污染等问题。
近年来,一种新的丁二烯生产技术——丁烯氧化脱氢制丁二烯逐渐引起了人们的关注。
本文将介绍丁烯氧化脱氢制丁二烯技术的研究进展。
一、丁烯氧化脱氢制丁二烯的机理丁烯氧化脱氢制丁二烯是利用催化剂催化乙炷氧化生成丙烯和丁烯,然后再经过选择性脱氢反应得到丁二烯的方法。
该方法相较于传统的制备工艺来说更加环保、高效。
首先,催化剂被选择性地选择催化乙炔氧化反应。
随着研究的进展,人们发现过渡金属催化剂如Pd、Pt、Ru、Ir等在这一反应中表现出较好的催化活性和选择性。
其次,丙烯与丁烯的脱氢反应是通过催化剂促进进行的。
一些研究表明,添加碱金属催化剂如K、Cs等可以有效提高丙烯和丁烯的选择性脱氢。
最后,通过控制反应条件如温度、压力、催化剂种类和添加剂等,可以实现丁烯的选择性生成,进一步提高丁二烯的产率。
二、丁烯氧化脱氢制丁二烯的研究进展1. 催化剂的研究进展过渡金属催化剂是丁烯氧化脱氢制丁二烯的核心。
在过去的研究中,人们广泛探索了不同催化剂对该反应的催化活性和选择性的影响。
研究发现,Pd基催化剂表现出较好的活性和选择性,因此被认为是最有潜力的催化剂之一。
此外,制备高分散度催化剂也成为了研究的重点,以提高反应的效率和选择性。
2. 添加剂的研究进展在丁烯氧化脱氢制丁二烯的过程中,添加剂的引入对催化剂的活性和选择性起到了重要的作用。
研究表明,碱金属催化剂的引入可以提高丙烯和丁烯的选择性脱氢。
此外,添加一些促进剂如硫、氯等也能够改善催化剂的性能。
3. 反应条件的研究进展反应条件对丁烯氧化脱氢制丁二烯的反应效果具有重要影响。
温度、压力、反应物比例和催化剂用量等参数的优化可以提高反应的选择性和产率。
丁二烯项目概述丁二烯是合成橡胶,合成树脂的重要单体,主要用于合成顺丁橡胶,丁腈橡胶及ABS树脂等。
除此之外,丁二烯也是多种涂料和有机化工原料。
工艺技术丁二烯的主要原料为混合丁烯中的丁烯馏分,原料是普通化工产品,属于易得品,通过外购即可获得。
丁二烯生产方式主要有碳四馏分抽提分离和合成法(包括丁烷脱氢,丁烯脱氢,丁烯氧化脱氢等)两大类。
目前除美国外世界各国丁二烯几乎全部直接来自烃类裂解制乙烯时副产碳四馏分。
美国丁二烯的来源,大约一半来自丁烷丁烯脱氢,一般直接来自裂解碳四馏分。
碳四馏分分离法:以石脑油或柴油为裂解原料生产丁烯时,副产的碳四馏分一般为原料量的8%~10%(质量)。
其中丁二烯含量高达40%~50%(质量),所以,从裂解碳四馏分中分离丁二烯是经济的生产方法。
工业上均采用萃取精留的方法,即由馏分中加入乙腈,甲基甲酰胺等溶剂增大丁二烯与其他碳四烃的相对挥发度,通过精馏分离得到丁二烯。
丁烷脱氢法:由天然气或碳四馏分中分离得到的丁烷,可脱氢制丁二烯,丁烷脱氢需强吸热过程,需要输入大量热量。
工业上得到应用有菲利浦法、胡德利法。
菲利浦法生产步骤多,操作麻烦,工业应用不广。
胡德利法因需减压操作,催化剂再生十分麻烦,设备条件苛刻。
此法只在美国采用,近年产量日趋减少。
丁烯脱氢法:工艺过程因蒸汽用量大,60年代后被丁烯氧化脱氢取代。
丁烯氧化脱氢法:丁烯催化氧化脱氢反应是可逆反应,转化率因受化学平衡限制而不高。
氧化脱氢法是在脱氢时通入氧气(空气),改脱氢反应为氧化反应。
从而大幅度提高丁烯转化率及丁二烯选择性。
1965年美国石油—得克萨斯化学公司工业化,过程采用铁尖晶石催化剂,反应器温度入口约350℃,出口约580℃,丁烯转化率可达78%~80%,丁二烯选择性92%~95%。
氧化脱氢法的丁烯转化率及选择性较其他脱氢法高得多。
工艺技术比较由于轮胎企业对合成橡胶原料的需求日益增长,仅仅依靠裂解碳四抽提分离生产丁二烯的产量已不能满足国内橡胶生产的需求,另外随着丁二烯需求的增长。
丁二烯生产技术现状及发展方向1.丁烯氧化脱氢制丁二烯技术1.1反应原理在进行丁烯氧化脱氢生产丁二烯过程中,会释放出大量的热量,此时可以借助系统的提纯处理来获取丁二烯,丁烯完全氧化后可以得到一氧化碳、二氧化碳和水。
但是在实际反应过程中受多方面因素影响,从而导致氧化反应发生一系列的变化,最终得到多种含氧化合物。
氧化降解后会生成丙酮、甲醛等氧化合物,氧化生成四个碳原子的含氧化合物,如丁烯醛、丁酮等。
在进行深度氧化反应过程中,脱氢后可以得到乙烯基乙炔等产物,然后通过一系列的氧化后可以得到二氧化碳、一氧化碳和水等產物,该阶段所生成的产物与副产物又能够通过凝结聚合形成新的产物。
1.2工艺流程丁烯氧化脱氢制丁二烯的工艺生产流程主要包括油吸收和氧化脱氢反应两个单元。
其中氧化脱氢反应单元又能够细分为反应、水冷以及洗醛三个主要环节。
图一所示为氧化脱氢反应单元的主要流程示意图。
在反应器内,丁烯与空气在催化剂的作用下发生反应,从而生成丁二烯以及醛酸等一系列副产物。
由于整个反应为放热反应,为了避免放热温度过高对反应温度造成影响,需要在反应器内注入大量蒸汽,从而有效控制反应温度,以此来有效延长催化剂的操作周期。
之后对反应器生成的产物借助水冷塔进行冷却处理,将复合产物中的酸成分分离,再通过生成器压缩机对水冷后生成气进行加压,在洗醛塔中加压水洗清除产物中的醛和酮成分,最后将生成气引入油吸收系统进行下一个生成环节。
图二所示为油吸收单元的基本操作流程,通过油吸收单元可以有效分离和剔除生成气中的C4烃。
通常情况下,油吸收单元需要先进行吸收油吸收,随后开展重吸收油吸收,这样可以有效地减少C4以及吸收油的损耗。
在吸收塔中洗醛塔顶产生的C4物料与吸收油进行逆流接触,而C4相关物料能够溶于吸收油,从而在解析塔中被吸收油分解提取。
塔顶的C4物料能够直接参与到丁二烯抽提单元,该过程中塔釜的吸收油能够循环使用,并且还可以与尾气混合在一起进入重油吸收系统并进行二次抽取和循环利用,进一步对尾气中的C4物料进行收集和提取,并回收,从而有效提高吸收油的再利用效率。
丁二烯装置的生产原理丁二烯,也称为异戊二烯,是一种重要的有机化合物,其具有广泛的应用领域,特别是在橡胶工业中。
丁二烯的生产原理主要是通过石油 cracking 过程中的副产物获得,下面将详细介绍丁二烯装置的生产原理。
一、丁二烯的产生过程丁二烯主要通过烃类原料在催化剂的作用下进行热裂解而得到。
在裂解炉中,烃类原料如丁烷、丁烯等被加热至高温,并与催化剂接触。
在高温和催化剂的作用下,烃类原料发生裂解反应,产生丁二烯等副产物。
这些副产物通过分离和精馏等工艺步骤,最终得到纯净的丁二烯产品。
二、丁二烯装置的工艺流程1. 原料准备:丁二烯的主要原料为丁烷和丁烯,这些原料在装置中被送入裂解炉进行反应。
为了提高丁二烯的产率和纯度,原料需要经过预处理步骤,例如脱蜡、脱硫等。
2. 裂解反应:原料进入裂解炉后,通过加热至高温和催化剂的作用,发生裂解反应。
在裂解过程中,烃类原料中的碳-碳键被断裂,生成丁二烯等副产物。
3. 分离和精馏:裂解反应产生的气体混合物经过冷却和减压等操作,将其中的丁二烯和其他副产物分离开来。
分离过程中,可以利用气相色谱等技术,根据不同组分的沸点差异进行分离。
4. 纯化:分离得到的丁二烯产品还含有少量杂质,需要进行进一步的纯化处理。
常用的方法是采用吸附剂或溶剂将杂质吸附或溶解,从而提高丁二烯的纯度。
5. 储存和包装:经过纯化处理后,丁二烯产品被储存于专用的容器中,并进行适当的包装。
由于丁二烯具有易燃易爆的特性,储存和包装过程需要严格控制温度、压力和防火措施,确保产品的安全。
三、丁二烯装置的技术要点1. 催化剂选择:丁二烯装置的催化剂是实现高效裂解反应的关键。
选择合适的催化剂可以提高丁二烯的产率和选择性。
2. 反应条件控制:裂解反应需要在适当的温度和压力条件下进行。
温度过高会导致副产物增多,温度过低则会降低丁二烯的产率。
3. 分离和精馏技术:分离和精馏过程中,需要根据副产物的物理特性进行合理的操作,以提高丁二烯的纯度和回收率。
NMP法丁二烯抽提生产工艺分析摘要:就目前石化企业丁二烯抽提生产工艺优劣来看,虽然在NMP工艺中仍有一些缺点,但总的来讲,其工艺要比DMF更优秀一些;特别是在能耗、性能、聚合以为及环保等方面表现更为突出。
论文主要从NMP法和DMF法两种工艺进行对比,从而更好地分析和突出NMP法丁二烯抽提生产工艺的优点。
一、简述丁二烯1,3-丁二烯简称丁二烯,它是石油化工企业生产装置中的一种十分重要的有机原料。
由于在化工装置生产中所应用的萃取溶剂不同,其生产工艺也有所不同;通常有N-甲基吡咯烷酮法(简称NMP法)、二甲基甲酰胺法(简称DMF法)以及乙腈法(简称ACN法)三种不同的工艺生产法。
但由于乙腈溶剂具有极强的毒性,再加上人们在环保认识的不断深入;所以,这一工艺很快就被淘汰。
而NMP工艺技术在生产过程中由于有着极大的优势而得到了越来越多的应用。
二、分析NMP法与DMF法的技术对比1、技术对比(1)流程对比1)压缩机的设置在NMP工艺中的压缩机并不是设置在主流程上的,它是把已脱除抽余液、丁二烯的汽提气一同输送至精馏塔的塔底,从而实现塔内物料的平衡。
由于只有极少一部分气量通过压缩机,其压缩比很小;所以,只需要使用一台一段螺杆压缩机便可以完成相关操作;另外,当压缩机停止工作后,其主流程还会继续工作。
而DMF工艺中的压缩机通常都在主流程上设置,且是前后两工序的必要通道。
另外,在压缩机中还会有大气量通过,其压缩比非常大;所以,在这一过程中需要使用到一台两段螺杆压缩机才有完成其作业,且两段间还需要冷却压缩气,当压缩机停止工作后,其主流程就会立即中断。
两者相对比,NMP工艺在压缩机设置方面要灵活许多,同时故障率也要小一些。
2)再沸器的设置在NMP工艺中的萃取系统中,通常只是在精馏塔和脱气塔塔底设置相应的加热器或再沸器,且数量极少。
由于再沸器在运作过程中极易出现蒸汽泄漏的问题,且设备检修工作量非常大。
因此,NMP工艺中再沸器数量比较少,则可以有效地降低设备检修次数。
丁二烯橡胶生产工艺以丁二烯橡胶生产工艺为标题,下面将详细介绍丁二烯橡胶的生产工艺及其相关信息。
一、丁二烯橡胶的概述丁二烯橡胶是一种合成橡胶,属于不共聚物弹性体。
它具有较高的抗拉强度、耐磨性和耐寒性,常用于制造轮胎、橡胶管、密封件等各种橡胶制品。
二、丁二烯橡胶的生产工艺丁二烯橡胶的生产主要包括以下几个步骤:1. 丁二烯的制备:丁二烯是丁烯的异构体,可以通过石油裂解或脱氢剂法从石油中提取得到。
在工业生产中,常用的方法是通过丁二烯烷基锂合成法或氢化法得到高纯度的丁二烯。
2. 丁二烯的聚合:将高纯度的丁二烯与聚合催化剂(如锂有机化合物)在聚合反应器中进行聚合反应。
聚合反应器通常为密闭式,能够控制反应温度和压力,以获得所需的聚合物性能。
3. 聚合物的处理:经过聚合反应后得到的聚合物为粘稠液体,需要进行进一步的处理。
一般采用蒸馏、溶剂萃取或凝固分离等方法,将杂质、残留催化剂等去除,得到纯净的丁二烯橡胶。
4. 橡胶的加工:将纯净的丁二烯橡胶通过破碎、混炼、塑化等加工步骤,使其具有良好的可加工性。
根据不同的需求,可以通过挤出、压延、注塑等方法将橡胶制成不同形状的制品。
5. 产品的检测和质量控制:对丁二烯橡胶制品进行物理性能测试、化学分析等检测,确保产品的质量符合要求。
同时,通过质量控制手段,监控生产过程中的各个环节,以提高产品的一致性和稳定性。
丁二烯橡胶的生产工艺具有以下优势:1. 原料丰富:丁二烯是石油裂解产物之一,石油资源广泛且丁二烯含量相对较高,保证了原料供应的稳定性。
2. 产品多样性:丁二烯橡胶在加工过程中,可以通过调整聚合反应条件和加工工艺,得到不同性能的橡胶制品,满足不同领域的需求。
3. 应用广泛:丁二烯橡胶的耐磨性、耐寒性和抗拉强度优异,广泛应用于轮胎、橡胶管、密封件等多个领域。
然而,丁二烯橡胶生产工艺也面临一些挑战:1. 环境污染:丁二烯橡胶生产过程中产生的废水、废气和废渣等污染物对环境造成一定影响,需要采取相应的污染治理措施。
丁二烯生产技术收录: 2009-02-24 发布: 2009-02-24丁二烯是一种重要的石油化工基础有机原料和合成橡胶单体,是C4馏分中最重要的组分之一,在石油化工烯烃原料中的地位仅次于乙烯和丙烯。
由于其分子中含有共轭二烯,可以发生取代、加成、环化和聚合等反应,使得其在合成橡胶和有机合成等方面具有广泛的用途,可以合成顺丁橡胶(BR)、丁苯橡胶(SBR)、丁腈橡胶、苯乙烯-丁二烯-苯乙烯弹性体(SBS)、丙烯腈-丁二烯-苯乙烯(ABS)树脂等多种橡胶产品,此外还可用于生产己二腈、己二胺、尼龙66、1,4-丁二醇等有机化工产品以及用作粘接剂、汽油添加剂等,用途十分广泛。
丁二烯的生产方法目前,世界丁二烯的来源主要有两种,一种是从炼油厂C4馏分脱氢得到,该方法目前只在一些丁烷、丁烯资源丰富的少数几个国家采用。
另外一种是从乙烯裂解装置副产的混合C4馏分中抽提得到,这种方法价格低廉,经济上占优势,是目前世界上丁二烯的主要来源。
根据所用溶剂的不同,该生产方法又可分为乙睛法(ACN法)、二甲基甲酰胺法(DMF法)和N-甲基吡咯烷酮法(NMP法)3种。
1 乙腈法该法最早由美国Shell公司开发成功,并于1956年实现工业化生产。
它以含水10%的乙腈(ACN)为溶剂,由萃取、闪蒸、压缩、高压解吸、低压解吸和溶剂回收等工艺单元组成。
1977年Shell公司在改造中增加了冷凝器和水洗塔,并将闪蒸和低压解吸的气相合并压缩,其中约8%经冷凝送往水洗塔洗去溶剂,塔顶气相返回原料蒸馏塔,这样就除去了C4烃中的C5烃。
其余气体一部分送往高压解吸塔,另一部分作为再沸气体送往萃取蒸馏塔塔底以提供热能,从而省去了一台再沸器,降低了蒸汽用量。
水洗塔底溶剂的约1%送往溶剂回收精制系统,以保证循环溶剂的质量。
对炔烃含量较高的原料需要进行加氢处理,或采用精密精馏、两段萃取才能得到纯度较高的丁二烯。
目前,该方法以意大利SIR工艺和日本JSR工艺为代表。
意大利SIR工艺以含水5%的ACN为溶剂,采用5塔流程(氨洗塔、第一萃取精馏塔、第二萃取精馏塔、脱轻塔和脱重塔)。
在第一萃取精馏塔前加一氨水洗涤塔,用以除去原料中0.04%-0.08%(质量百分数)的醛酮。
炔烃由第二萃取蒸馏塔第75块塔板侧线采出,送往接触冷凝器。
脱重塔塔底和接触冷凝器底部物料合并,其热能回收后用于原料蒸发器。
该工艺不仅能使丁二烯收率达到96%-98%,还能使丁二烯与炔烃分离,丁二烯产品纯度可以达到99.5%以上。
该技术的特点是流程简单,溶剂解吸在萃取精馏塔下段完成;第一萃取精馏塔采用两点进料,有利于改善塔内液相的浓度分布,减少该塔上段的液相负荷,降低能耗;在第一萃取精馏塔下部设置一台换热器,起中间再沸器的作用,可充分利用塔底热能提高烃类从溶剂中的分离效率;采用在第二萃取精馏塔第75块塔板侧线除炔烃的技术,使丁二烯与炔烃几乎完全分离。
日本JRS工艺以含水10%的ACN为溶剂,采用两段萃取蒸馏,第一萃取蒸馏塔由两塔串联而成。
该工艺经过了1980年和1988年两次重大的改造。
1980年的改造采用热偶合技术,即将第二萃取蒸馏塔顶全部富含丁二烯的蒸汽,不经冷凝直接送入脱重塔中段,同时将脱重塔内下降液流的一部分从中段塔盘上抽出,送往第二萃取蒸馏塔作为塔顶回流液,这样第二萃取蒸馏塔塔顶不需要冷凝器,这部分的热量将全部加到脱重塔,使该塔塔底再沸器的热负荷比热偶合前降低40%左右,从而实现大幅度节能。
1988年的改造主要解决系统热能回收问题,即在提浓塔和脱轻塔安装中间冷凝器,将提浓塔从进料板附近上、下两段串联相接,这样即可使上塔负荷大幅度降低,又不会影响塔的操作条件。
将塔分为上下两段,下塔操作压力提高,塔内温度相应升高,这样中间冷凝器就可回收到高品位的热能。
此外,溶剂回收塔塔底废水的热能,可用于该塔进料管线的预热器,加上解析塔从侧线采出炔烃也可回收部分热能,因而该工艺在同类工艺中的能耗是最低的。
采用ACN法生产丁二烯的特点是:(1)沸点低,萃取、汽提操作温度低,易防止丁二烯自聚;(2)汽提可在高压下操作,省去了丁二烯气体压缩机,减少了投资;(3)粘度低,塔板效率高,实际塔板数少;(4)毒性微弱,在操作条件下对碳钢腐蚀性小;(5)丁二烯分别与正丁烷、丁二烯二聚物等形成共沸物,溶剂精制过程复杂,操作费用高;(6)蒸汽压高,随尾气排出的溶剂损失大;(7)用于回收溶剂的水洗塔较多,相对流程长。
2 二甲基甲酰胺法二甲基甲酰胺法(DMF法)又名GPB法,由日本瑞翁公司于1965年实现工业化生产,并建成一套4.5万吨/年生产装置。
该生产工艺包括四个工序,即第一萃取蒸馏工序、第二萃取蒸馏工序、精馏工序和溶剂回收工序。
原料C4汽化后进入第一萃取精馏塔,溶剂DMF由塔的上部加入。
溶解度小的丁烷、丁烯、C3使丁二烯的相对挥发度增大,并从塔顶分出,而丁二烯、炔烃等和溶剂一起从塔底导出,进入第一解吸塔被完全解吸出来,冷却并经螺杆压缩机压缩后进入第二萃取精馏塔进一步分离。
不含C4组分的溶剂从解吸塔底高温采出,用作萃取精馏、精馏、蒸发等工序的热源,热量回收后重新循环使用。
炔烃、丙二烯、硫化物、羰基化合物这些有害杂质在溶剂中的溶解度较高,为防止乙烯基乙炔爆炸,并进一步回收溶剂中的丁二烯,第二萃取塔底排出的富溶剂送往丁二烯回收塔,塔顶为粗丁二烯。
回收塔塔顶馏出的丁二烯和少量杂质返回第二萃取塔前的压缩机人口,塔釜含炔烃的溶剂送至第二解吸塔,从该塔塔顶分出乙烯基乙炔,稀释后用作锅炉燃料,釜液为溶剂,循环回萃取精馏塔。
经两段萃取精馏得到的粗丁二烯中的杂质采用普通精馏除去。
比丁二烯挥发度大的C3、水分等,在脱轻塔顶除去,比丁二烯挥发度小的残余2-丁烯、1,2-丁二烯、C5以及在生产过程中产生的少量丁二烯二聚物在脱重塔塔底除去。
脱重塔顶可以得到纯度在99.5%以上的聚合级丁二烯。
DMF法工艺的特点是:(1)对原料C4的适应性强,丁二烯含量在15%-60%范围内都可生产出合格的丁二烯产品;(2)生产能力大,成本低,工艺成熟,安全性好、节能效果较好,产品、副产品回收率高达97%;(3)由于DMF对丁二烯的溶解能力及选择性比其他溶剂高,所以循环溶剂量较小,溶剂消耗量低;(4)无水DMF可与任何比例的C4馏分互溶,因而避免了萃取塔中的分层现象;(5)DMF与任何C4馏分都不会形成共沸物,有利于烃和溶剂的分离,但由于其沸点较高,溶剂损失小;(6)热稳定性和化学稳定性良好;(7)由于其沸点高,萃取塔及解吸塔的操作温度都较高,易引起双烯烃和炔烃的聚合;(8)无水情况下对碳钢无腐蚀性,但在水分存在下会分解生成甲酸和二甲胺,因而有一定的腐蚀性。
3 N-甲基吡咯烷酮法N-甲基吡咯烷酮法(NMP法)由德国BASF公司开发成功,并于1968年实现工业化生产,建成一套7.5万吨/年生产装置。
其生产工艺主要包括萃取蒸馏、脱气和蒸馏以及溶剂再生工序。
粗C4馏分气化后进入主洗涤塔底部,含有8%水的N-甲基吡咯烷酮萃取剂由塔顶进入,丁二烯和更易溶解的组分及部分丁烷和丁烯被吸收,同时不含丁二烯的丁烷和丁烯从塔顶排出。
主洗塔底部的富溶剂进入精馏塔,在此溶剂吸收的丁烷和丁烯被更易溶的丁二烯、丙二烯和乙炔置换出来,含有乙炔和丙二烯的丁二烯从精馏塔侧线以气态采出进入后洗塔。
在后洗塔中,用新鲜溶剂将其他组分溶解,粗丁二烯由其塔顶蒸出后冷凝液化进入蒸馏工序,塔釜富溶剂返回精馏塔的中段。
精馏塔釜的富溶剂先进入闪蒸罐中部分脱气,再进人脱气塔脱烃,并控制NMP中的水平衡,少量炔烃从侧线离开脱气塔,其余脱下的烃经冷却塔进入循环压缩机,最后返回精馏塔底部。
从后洗塔出来的粗丁二烯在第一蒸馏塔脱除甲基乙炔,在第二蒸馏塔中脱除1,2一丁二烯和C5烃,由第二蒸馏塔顶得到丁二烯产品。
汽提后的溶剂抽出总量的0.2%进行再生,以免杂质积累。
NMP法工艺的特点是:(1)溶剂性能优良,毒性低,可生物降解,腐蚀性低;(2)原料范围较广,可得到高质量的丁二烯,产品纯度可达99.7%-99.9%;(3)C4炔烃无需加氢处理,流程简单,投资低,操作方便,经济效益高;(4)NMP具有优良的选择性和溶解能力,沸点高、蒸汽压低,因而运转中溶剂损失小;(5)热稳定性和化学稳定性极好,即使发生微量水解,其产物也无腐蚀性,因此装置可全部采用普通碳钢。
4 生产工艺新进展近年来,美国UOP和BASF公司共同开发出抽提联合工艺,即将UOP的炔烃选择加氢工艺(KLP工艺)与BASF公司的丁二烯抽提蒸馏工艺结合在一起,先将C4馏分中的炔烃选择加氢,然后采用抽提蒸馏技术从丁烷和丁烯中回收1,3-丁二烯。
在加氢工序中,原料C4馏分与一定计量的氢气混合,进入装有KLP-60催化剂的固定床反应器中,并采用足够高的压力使反应混合物保持液相。
随后KLP反应器流出物进入蒸馏塔中进行汽化,并作为抽提工序的原料,同时移除工艺过程中形成的少量重质馏分。
在丁二烯抽提工序中,从蒸发器顶部出来的蒸汽进入主洗涤塔,并用NMP进行抽提蒸馏。
塔底富含丁二烯的物流进入精馏塔,然后再进入最后一个蒸馏塔,可产出纯度大于99.6%的1,3-丁二烯。
该工艺的优点是丁二烯产品纯度高,收率高,公用工程费用低,维修费用低,操作安全性高。
对于丁二烯抽提过程,最近有报道称采用一种分壁式技术(Divided-wall Technology)可以改进传统的抽提工艺,降低装置能耗和投资成本。
传统的丁二烯抽提工艺为浓缩的粗C4馏分先通过吸收工序(含主洗涤器、精馏器和后洗涤器),再将从后洗涤器顶部馏出的粗丁二烯在两个精馏塔中进行精馏。
在第一个精馏塔中馏出轻质馏分;在第二个精馏塔中,重质馏分被分离后从塔底移除,丁二烯产品从塔顶馏出。
采用分壁式技术后,可使两步精馏工序在一个装备中进行,这样就可节省1-2个热交换器和外围设备。
分壁式精馏塔由6个区域组成,分别为第1区域(精馏段,重组分和轻组分/丁二烯分离)、第2区域(提馏段,轻组分和重组分/丁二烯分离)、第3区域(精馏段,丁二烯和轻组分分离)、第4区域(提馏段,丁二烯和重组分分离)、第5区域(提馏段,丁二烯和轻组分分离)、第6区域(精馏段,丁二烯和重组分分离)。
对这几个区域进行优化设计,如调整分壁长度、进料塔板位置及塔顶回流比等,可进一步降低精馏的投资和操作成本。
在该塔设计中可应用计算机软件模拟技术,按照装置的实际运行条件进行模拟试验,整个过程的物料平衡达到99.99%以上。
除精馏工序外,分壁式技术还可应用于吸收工序的设计,基本思路是将精馏器和后洗涤器结合在一个分壁塔中。
将设计的分壁接近于塔的顶部,以使粗丁二烯和C4气相混合物流从塔顶溢出。
在整个丁二烯抽提过程中两处采用分壁式技术后,工艺流程大大简化,从而降低了投资成本和维修成本,同时也降低了因丁二烯自聚导致爆炸的可能性。