微积分(二)课后题答案,复旦大学出版社__第六章
- 格式:pdf
- 大小:414.20 KB
- 文档页数:20
习 题 六 (A )1.根据定积分的几何意义说明下列各式的正确性 (1)0d cos 20=⎰x x π(2)x x x x d )1(2d )1(22222+=+⎰⎰-(3)0d 311=⎰-x x (3)x x dx x d 42111⎰⎰==解:(1)该定积分的几何意义如右图所示阴影部分面积的代数和,由对称性可知正确. (2)该定积分的几何意义如右图所示阴影部分面积的代数和,且在) 2 , 2(-范围内对称,所以是正确的.(3)该定积分的几何意义如右图所示阴影部分面积的代数和,且关于原点对称,所以正确. (4)原式dx x ⎰-=112等式左边的定积分的几何意义是右边图形阴影部分面积的代数和的2倍,且又因为阴影部分在1) , 1(-范围内关于轴对称,所以等式两边相等.2.不计算积分,比较下列积分值的大小 (1)x x d 210⎰与x x d 310⎰ (2)x x d 231⎰与x x d 331⎰(2)x x d ln 43⎰与x x d )(ln 243⎰ (4)x x d sin 20⎰π与x x d 20⎰π解:(1)由定积分的比较性可知在1) , 0(范围内32x x >,所以前者大于后者. (2)由定积分的比较性可知在3) , 1(范围内32x x <,所以前者小于后者. (3)由定积分的比较性可知在4) , 3(范围内2)(ln ln x x <,所以前者小于后者.1=a (4)由定积分的比较性可知在)2, 0(π范围x x <sin ,所以前者小于后者.3.用定积分性质估计下列积分值 (1)x d e2x -1⎰(2)x x d )sin 1(2454+⎰ππ(3)x xx d 151+⎰(4)x xxd sin 20⎰π解:(1)因为2x e -在]1 , 0[范围内的最大值为1,最小值为1-e 所以由定积分的估值定理可知:dx dx e dx e x l 12111⎰⎰⎰≤≤--1211≤≤⇒--⎰dx e e x(2)因为x 2sin 1+在22]45 , 4[ππ的最大值为2,最小值为1。
微积分第二版课后习题答案【篇一:微积分(上册)习题参考答案】0.11.(a)是(b)否(c)是(d)否2.(a)否(b)否(c)否(d)是(e)否(f)否(g)是(h)否(i)是1,2,3},{1,2,4},{1,3,4}, 3.f,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{{2,3,4},{1,2,3,4}.4. a?b5. a?b6~15. 略。
16. 证明:先证a-(b-c)?(ab)惹(ac).若x?a(b-c),则x蜗a,x①如果x?c,则x蜗a,②如果x?c,则x?b,所以x?aa-(b-c)?(ab)惹(ac).再证a-(b-c)惹(ac)?a(b-c).若x¢?(ab)惹(ac),则,x¢?ab或x¢吻ac.①如果x¢吻ac,有x¢?c,所以,x¢?bc,又x¢?a,于是x¢?a(b-c) ②如果x¢锨ac,x¢?ab,则有x¢?a,x¢?c,x¢?b,所以,x¢?bc,于是x¢?a(b-c). 因此有(a-b)惹(ac)?a(b-c).综上所述,a-(b-c)=(a-b)惹(ac),证毕. 17~19. 略。
20. cda.21. a?b{(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)};禳1镲xx?r,睚2镲铪参考答案禳禳11镲镲,,a?d-1,-,0,1,2,3,?a-c=睚0,-1,-睚镲镲44铪铪禳1镲a=睚-1,-,0,1,2,7.镲4铪xx危r,1x 2}x3,a?b={,a-b={xx?r,2x3}.b-cb-c;(ac),因此有b,也有x?(ab)惹a2={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)};b2={(u,v),(u,v),(v,u),(v,v)}22. a={(x,y,z)}x,y,z危?.0323~25. 略。
高等数学b2第六章教材答案高等数学B2 第六章教材答案第一节:函数极值和最值1. 函数的极值和最值是函数在定义域内的特殊点,它们在数学和实际问题中具有重要的应用价值。
下面是第六章教材中相关习题的答案:习题1:a) 求函数$f(x) = 3x^2 - 6x + 2$在区间[-1, 2]上的极大值和极小值。
解:首先求函数$f'(x) = 6x - 6$的零点,即$6x - 6 = 0$,得$x = 1$。
将$x = -1, x = 1, x = 2$代入$f(x)$中,分别得到$f(-1) = 13, f(1) = -1, f(2)= 10$。
所以$f(x)$在$x = 1$处取得极小值-1,在$x = -1$处取得极大值13。
b) 求函数$g(x) = x^3 - \frac{9}{2}x^2 + 3$在整个定义域上的最大值和最小值。
解:首先求函数$g'(x) = 3x^2 - 9x$的零点,即$3x^2 - 9x = 0$,得$x = 0, x = 3$。
将$x = 0, x = 3$代入$g(x)$中,分别得到$g(0) = 3, g(3) =\frac{27}{2}$。
所以$g(x)$在$x = 3$处取得最大值$\frac{27}{2}$,在$x = 0$处取得最小值3。
2. 函数的极值和最值在实际问题中有很多应用,比如优化问题、经济学中的最大效益等。
通过求解函数的极值和最值,可以找到使函数取得最优结果的变量取值。
习题2:一块长方形的地面上,以其一条边为底,作一个等腰直角梯形,使得梯形的上底与下底分别与已知两块木板的宽度相等。
问该等腰直角梯形的底边长度为多少,才能使梯形的面积最大。
解:设等腰直角梯形的底边长度为$x$,则梯形的上底和下底长度也都为$x$。
设梯形的高为$h$,根据勾股定理得到$h = \sqrt{2}x$。
梯形的面积$S(x) = \frac{1}{2}(x + x)(\sqrt{2}x)$。
微积分第六章练习题答案第六单练习题一、选择题1、在球x 2+y 2+z 2-2z =0内部的点是( C )A 、(0,0,0)B 、(0,0,-2)C 、111,,222⎛⎫ ⎪⎝⎭D 、111,,222⎛⎫-- ⎪⎝⎭2、点(1,1,1)关于xy 平面的对称点是( B )A 、(-1,1,1)B 、(1,1,-1)C 、(-1,-1,-1)D 、(1,-1,1)3、设函数z =f (x ,y )在点(x 0,y 0)处存在对x ,y 的偏导数,则00(,)x f x y '=( B ) A 、00000(2,)(,)lim x f x x y f x y x ∆→-∆-∆ B 、00000(,)(,)lim x f x y f x x y x∆→--∆∆C 、00000(,)(,)limx f x x y y f x y x∆→+∆+∆-∆ D 、0000(,)(,)lim x x f x y f x y x x →--4、函数z =f (x ,y )在点(x 0,y 0)处可微的充分条件是( D ) A 、f (x ,y )在点(x 0,y 0)处连续 B 、f (x ,y )在点(x 0,y 0)处存在偏导数 C 、00000lim (,)(,)0x y z f x y x f x y y ρ→''⎡⎤∆-∆-∆=⎣⎦D 、00000(,)(,)lim 0x y z f x y x f x y y ρρ→''∆-∆-∆⎡⎤=⎢⎥⎣⎦其中ρ=5、已知函数22(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y∂∂+=∂∂( B ) A 、22x y - B 、x y + C 、22x y + D 、x y -6、平行于z 轴且过点(1,2,3)和(-1,4,5)的平面方程是( A ). A 、03=-+y x B 、03=++y x C 、01=+-z y D 、5=z7、二元函数224),(y x y x f z +==在点(0,0)处( D ) A 、连续、偏导数不存在 B 、不连续、偏导数存在C 、连续,偏导数存在但不可微D 、可微8、若可微函数),(y x f z =在点),(000y x P 有极值,则( C ). A 、两个偏导数都大于零 B 、两个偏导数都小于零C 、两个偏导数在点),(000y x P 的值都等于零D 、两个偏导数异号9、二重积分⎰⎰+=Ddxdy y x I )sin(1,⎰⎰+=Ddxdy y x I )(sin 22,其中D是由1,21,0,0=+=+==y x y x y x 围成,则( C ). A 、21I I = B 、21I I < C 、21I I > D 、以上都不对10、设方程xyz =z =z (x ,y ),则z =z (x ,y )在点 (1,0,-1)处的全微分dz =( D )A 、dx +B 、dx -+C 、dx --D 、dx - 11、二元函数3322339z x y x y x =-++-的极小值点是( A ) A 、(1,0) B 、(1,2) C 、(-3,0) D 、(-3,2) 12、点00(,)x y 使(,)0x f x y '=且(,)0y f x y '=成立,则( D )A 、00(,)x y 是(,)f x y 的极值点B 、00(,)x y 是(,)f x y 的最小值点C 、00(,)x y 是(,)f x y 的最大值点D 、00(,)x y 可能是(,)f x y 的极值点 13、设区域D 是单位圆221x y +≤在第一象限的部分,则二重积分Dxyd σ=⎰⎰( C )A 、xydy B 、1dx xydy ⎰C 、1dy xydx ⎰ D 、12201sin 22d r dr πθθ⎰⎰14、110(,)xdx f x y dy -=⎰⎰( D )A 、1100(,)xdy f x y dx -⎰⎰ B 、110(,)xdy f x y dx -⎰⎰C 、11(,)dy f x y dx ⎰⎰ D 、110(,)ydy f x y dx -⎰⎰15、若1Ddxdy =⎰⎰,则积分域D 可以是( C )A 、由x 轴,y 轴及20x y +-=所围成的区域B 、由x =1,x =2,及y =2,y =4所围成的区域C 、由11,22x y ==所围成的区域D 、由1,1x y x y +=-=所围成的区域 二、填空题1、设)ln(22y x z +=,则xz∂∂= .222y x x + 2、交换二次积分的次序⎰⎰101),(xdy y x f dx = .⎰⎰12),(y dx y x f dy3、若⎰⎰=--Ddxdy y x a π222,则=a ,其中D是由222a y x =+围成的区域.3234、⎰⎰Dd y x f σ),(在极坐标系下的二次积分为 ,其中D是由422=+y x 围成的区域.⎰⎰πθθθ202)sin ,cos (rdr r r f d四、计算题1、.求由方程xyz e z=所确定的函数),(y x f z =的偏导数x z ∂∂,yx z∂∂∂2解:设xyz e z y x F z -=),,(,则yz F x -=,xy e F z z -=xye yz F F x z z z x -=-=∂∂ 22)()())(()(xy e x yze yz xy e y z yz xye yzy x z z z z y z --∂∂--∂∂+='-=∂∂∂322322)(xy e e z y z xy z y e xyz e z e z zz z z ---+-= 2、设vuz arctan =,其中y x v y x u -=+=,23,求全微分dz解: xv v z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ 22223vu uv u v +-+⋅+= 2222)()23(23)()23()(3y x y x yx y x y x y x -+++--++-=yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ )1(22222-⋅+-+⋅+=vu uv u v 2222)()23(23)()23()(2y x y x yx y x y x y x -++++-++-=dy y zdx x z dz ∂∂+∂∂=dx y x y x y x y x y x y x ])()23(23)()23()(3[2222-+++--++-= dy y x y x yx y x y x y x ])()23(23)()23()(2[2222-++++-++-+3、设2z u v =,其中y x v y x u -=+=,23,求全微分dz 解:xvv z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂ 232u uv +⋅=2)23())(23(6y x y x y x ++-+=yv v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂ )1(222-⋅+⋅=u uv 2)23())(23(4y x y x y x +--+=dy yzdx x z dz ∂∂+∂∂=dx y x y x y x ])23())(23(6[2++-+= dy y x y x y x ])23())(23(4[2+--++ 4、求函数22(,)4()f x y x y x y =---的极值解:x f x 24-=,y f y 24--= 令0,0==y x f f 得2,2-==y x 由2,0,2-====-==yy xy xx f C f B f A 知0>-B AC 且0<A 故),(y x f 在点(2,-2)处有极大值, 极大值为8)2,2(=-f5、、计算二重积分⎰⎰+Ddxdy y x )23(,其中D是由X 轴、Y 轴及直线2=+y x 所围成的区域解:⎰⎰+Ddxdy y x )23( ⎰⎰-+=x dy y x dx 202)23(⎰++-=22)422(dx x x=320解法二:原式⎰⎰-+=y dx y x dy 202)23(⎰+--=202)6221(dy y y 320=6、、计算二重积分⎰⎰Ddxdy xxsin ,其中D是由直线x y =和曲线2x y =所围成的闭区域. 解:⎰⎰Ddxdy x xsin ⎰⎰=x x dy xx dx 2sin 10dx x x xx)(sin 210-=⎰dx x x x )sin (sin 10-=⎰1sin 1-=7、计算二重积分2Dx ydxdy ⎰⎰,其中D是由X 轴、Y 轴及直线2x y +=所围成的区域解:⎰⎰Dydxdy x 2 ⎰⎰-=x ydy x dx 2022⎰+-=20234)44(21dx x x x =158解法二:原式⎰⎰-=y ydx x dy 2022⎰-+-=20432)6128(31dy y y y y 158=8、计算二重积分2y De dxdy ⎰⎰,其中D是由直线,1,0y x y x ===所围成的闭区域解: 本题只能先对x 积分再对y 积分⎰⎰Dydxdy e 2⎰⎰=yy dx e dy 0102dy ye y 210⎰=)(212102y d e y ⎰= )1(21-=e 五、应用题1.求由曲线3x y =及直线0,2==y x 所围成的图形的面积以及由该图形绕y 轴旋转一周所产生的旋转体的体积(要求作出草图). 阴影部分面积⎰=203dx x S2414x == 4旋转体的体积⎰-=802312])(2[dy y V y π08)534(35y y -=ππ564=2、求由曲线2y x =和2x y =所围成的图形的面积以及由该图形绕Y轴旋转 一周所产生的旋转体的体积(要求作出草图).解:阴影部分面积⎰-=102)(dx x x S01)3132(323x x -== 31旋转体的体积⎰-=1222])()[(dy y y V y π01)5121(52y y -=π3 =π10。