「离散数学」讲义李克凡
- 格式:pdf
- 大小:4.35 MB
- 文档页数:84
离散数学第六版讲解
离散数学第六版主要研究一些不连续的数学问题,是研究离散量的结构及相互关系的学科,具有很强的抽象性。
离散数学的特征包括离散性、可构造性和抽象性。
离散性是指以离散量为研究对象,可构造性则是指在求解中注重过程与步骤,且步骤是有限的、有规则的,易于进行算法描述。
抽象性则体现在数值vs. 元素、运算vs. 关系以及研究推理的抽象性与形式化。
离散数学是计算机、软件专业本科生必修的专业基础课,一方面给后继课,如“数据结构”、“编译系统”、“操作系统”、“数据库原理”等提供必要的科学基础;另一方面,通过学习离散数学,培养和提高了同学们的抽象思维和逻辑推理能力,为大家今后继续学习和工作打下坚实的数学基础。
此外,网络上也有很多关于离散数学的讲解视频,如东北大学的《离散数学》课程、屈婉玲主讲的《离散数学》课程等。
这些视频可以帮助你更深入地理解离散数学的概念和应用。
以上内容仅供参考,建议查阅离散数学相关书籍获取更全面和准确的信息。
引言Discrete Math.离散数学研究离散对象及其相互间关系的一门数学学科。
研究离散结构的数学分支。
(辞海)计算机科学、信息科学、数字化科学的数学基础离散数学的内容:数理逻辑(Mathematics Logic)集合论(Sets)代数结构(Algebra Structure)图论(Graph Theory)组合论(Combination)线性代数(Linear Algebra)概率论(Probability Theory)……与高等数学的区别教学内容:数理逻辑(Mathematics Logic)集合论(Sets)代数结构(Algebra Structure)图论(Graph Theory)离散数学的由来与发展:一、古老历史:计数:自然数发展:图论:Konigsberg七桥问题二、年青新生:计算机:二进制运算离散数学课程设置:计算机系核心课程信息类专业必修课程其它类专业的重要选修课程离散数学的后继课程:数据结构、编译技术、算法分析与设计、人工智能、数据库、……离散数学课程的学习方法:强调:逻辑性、抽象性;注重:概念、方法与应用参考教材:1、离散数学(耿素云,屈婉玲,北大版)2、离散数学(方世昌,西安电子科大版)3、离散数学结构(第三版、影印版)(Bernard Kolman、Robert C.Busby、Sharon Ross,清华版)4、离散数学提要与范例(阮传概、卢友清,北京广播学院版)第一章命题逻辑(Proposition Logic)1、命题符号化及联结词2、命题公式及分类3、等值演算4、联结词全功能集5、对偶与范式6、推理理论逻辑学:研究推理的一门学科数理逻辑:用数学方法研究推理的一门数学学科——一套符号体系+ 一组规则数理逻辑的内容:古典数理逻辑:命题逻辑、谓词逻辑现代数理逻辑:逻辑演算、公理化集合论、递归论、模型论、证明论1、命题符号化及联结词命题(Proposition):一个有确定真或假意义的语句。
离散数学第一章知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
第一章通常是对离散数学的基础概念和预备知识进行介绍,为后续的学习打下坚实的基础。
以下是对离散数学第一章知识点的详细总结。
一、集合的基本概念集合是由一些确定的、不同的对象所组成的整体。
集合中的对象称为元素。
我们通常用大写字母来表示集合,用小写字母表示元素。
如果一个元素 a 属于集合 A,记作 a ∈ A;如果一个元素 b 不属于集合 A,记作 b ∉ A。
集合有两种常见的表示方法:列举法和描述法。
列举法是将集合中的元素一一列举出来,例如 A ={1, 2, 3, 4, 5}。
描述法是通过描述元素的共同特征来表示集合,例如 B ={x | x 是大于 0 小于 10 的整数}。
集合之间的关系包括子集、真子集和相等。
如果集合 A 中的所有元素都属于集合 B,那么 A 是 B 的子集,记作 A ⊆ B。
如果 A 是 B 的子集,且 B 中存在元素不属于 A,那么 A 是 B 的真子集,记作 A ⊂ B。
如果 A 和 B 包含相同的元素,那么 A 和 B 相等,记作 A = B。
二、集合的运算集合的基本运算有并集、交集和差集。
集合 A 和集合 B 的并集,记作 A ∪ B,是由属于 A 或者属于 B 的所有元素组成的集合。
集合 A 和集合 B 的交集,记作A ∩ B,是由同时属于 A 和 B 的所有元素组成的集合。
集合 A 与集合 B 的差集,记作 A B,是由属于 A 但不属于 B 的所有元素组成的集合。
此外,还有补集的概念。
如果给定一个全集 U,集合 A 的补集记作A,是由属于 U 但不属于 A 的所有元素组成的集合。
集合运算满足一些重要的定律,如交换律、结合律、分配律等。
例如,A ∪ B = B ∪ A(并集的交换律),A ∩ B =B ∩ A(交集的交换律),(A ∪ B) ∪ C = A ∪(B ∪ C)(并集的结合律),(A ∩B) ∩ C =A ∩ (B ∩ C)(交集的结合律)等。
离散数学导论离散数学是数学的一个分支,侧重于非连续或离散的数值和结构。
它与连续数学形成对比,连续数学主要关注于连续的数值和结构。
离散数学在计算机科学、信息技术、通信工程和其他领域中有着广泛的应用。
本文将介绍离散数学的一些基本概念和主要应用领域。
一、排列与组合排列和组合是离散数学中的基本概念,它们用于确定事物的排列方式和组合方式。
排列是指从一组事物中选取一部分进行排列,而组合是指从一组事物中选取一部分进行组合。
排列和组合在算法设计、密码学和概率论等领域中有着重要的应用。
二、图论图论是研究图和网络结构的数学分支。
图由节点(顶点)和连接节点的边组成。
图论可以用于描述和解决各种实际问题,如交通网络、社交网络和通信网络等。
图论的一些重要概念包括图的遍历、最短路径和最小生成树等。
三、布尔代数布尔代数是一种逻辑系统,用于描述逻辑关系和逻辑运算。
它主要关注真值逻辑,即真和假的组合和运算。
布尔代数在计算机科学、电路设计和逻辑推理等方面有广泛的应用。
布尔代数的基本运算包括与、或、非和异或等。
四、数论数论是研究整数性质的数学分支。
它涉及素数、最大公约数、同余关系和数论函数等内容。
数论在密码学、编码理论和算法设计等领域中有着重要的应用。
例如,RSA加密算法就是基于数论的。
五、概率论概率论是研究随机事件及其概率分布的数学分支。
它主要关注事件发生的可能性,以及如何计算和描述这种可能性。
概率论在统计学、决策分析和风险评估等领域中有广泛的应用。
一些重要的概念包括条件概率、期望值和方差等。
六、离散数学在计算机科学中的应用离散数学在计算机科学中有着广泛且重要的应用。
例如,图论可以用于设计和分析网络算法;概率论可以用于设计和分析随机算法;布尔代数可以用于逻辑电路设计和布尔函数优化等。
离散数学的基本概念和方法为计算机科学的发展提供了理论基础。
总结离散数学是一门基础而重要的学科,它在计算机科学、信息技术和其他领域中有着广泛的应用。
本文介绍了离散数学的一些基本概念和主要应用领域,包括排列与组合、图论、布尔代数、数论和概率论等。
离散数学大一第1章知识点总结离散数学是一门学科,它主要研究离散的数学结构和离散的数学对象。
它与连续数学形成鲜明的对比,连续数学主要研究连续的数学结构和连续的数学对象。
离散数学在计算机科学、信息科学、数学、电子工程等领域有着广泛的应用。
离散数学的第1章主要介绍了一些基本概念和基础知识。
这些知识对学习离散数学后续的内容起到了铺垫作用。
首先,我们来讨论集合的概念。
在离散数学中,集合是一个基本的概念。
它是指具有确定的、互不相同的对象所组成的整体。
集合中的对象称为元素。
集合可以用列表、描述、特征等方式表示。
在集合中,元素的顺序是不重要的,而且每个元素只能在集合中出现一次。
集合之间可以进行交集、并集、差集等运算。
接下来,我们介绍了逻辑的基本概念。
在离散数学中,逻辑主要研究命题和命题之间的关系。
命题是一个陈述句,它要么是真的,要么是假的。
逻辑运算符包括否定、合取、析取、条件、双条件等。
通过使用逻辑运算符,我们可以构建复合命题。
离散数学中还介绍了数学归纳法。
数学归纳法是一种证明方法,它用于证明与自然数有关的命题。
数学归纳法的基本思想是:首先证明基础情况成立,然后假设一个数k的情况成立,再证明k+1的情况也成立。
通过这种方式,我们可以证明自然数的某个性质对所有数值都成立。
离散数学的第1章还介绍了关系和函数。
关系是一个集合,其中包含了有序对。
关系可以是自反的、对称的、传递的等。
函数是一种特殊的关系,它的每一个输入都有且只有一个输出。
函数可以表示为图表、公式或算法的形式。
函数的定义域和值域是函数的重要概念。
另外,离散数学的第1章还介绍了图论的基础知识。
图是由节点和边组成的结构。
节点表示对象,边表示节点之间的关系。
图可以是有向的、无向的、加权的、连通的等。
图的表示方法包括邻接矩阵和邻接表等。
总的来说,离散数学的第1章主要介绍了集合、逻辑、数学归纳法、关系、函数和图论的基本概念和基础知识。
这些知识对后续章节的学习至关重要,构建了离散数学的基础框架。