0 ( 1
sin t
t
dt )d(
x2 2
)
[ x2
2
x 1
2
sin t
t
dt
]10
1 0
x2 2
sin x2 x2
2 xdx
0
1
0
x
sin
x
2dx
1 (cos1 1) 2
1
例13 设f (t)连续, f (1) 0 , 解
1
例14 證明
n1n331 ,
n n2 4 2 2
n 為偶數
当 x 0 时, t 0; x a 时, t
2
∴
原式 = a 2
2 cos2 t d t
0
a2 2
2 0
(1
cos
2
t)d
t
y
y
a2 x2
a2
4
o
ax
1
例2 求 0a
1
dx
(x2 a2)3
(a 0)
解 令x a tant, dx a sec2 t d t
当 x 0 时, t 0; x a 时, t
t dt 1
1 t2
2
1
12(1
t
2
)
1 2
d (1 t 2 )
3
12 1t2 2
1 2
1 3
2 2 3
3 2
1
例4
1 x2 1
1
x4
dx 1
1 x2
1
2x 1 x4 1
2x dx
1
1 x2
1
dx
2x 1
1 1
x
2x 4 1