高中数学重要结论
- 格式:doc
- 大小:437.00 KB
- 文档页数:9
函数二级结论1.若奇函数()f x 在原点处有定义,则(0)0f =,若奇函数()f x 周期为T ,则()0,()02Tf T f ==(需在相应点有定义)2.幂函数()a y x a Z =∈,当a 为奇数时为奇函数,当a 为偶数时为偶函数.3.形如()()y f x f x =+-的函数为偶函数,形如()()y f x f x =--的函数为奇函数.4.形如()y f x =的函数为偶函数.5.形如11x x a y a -=+的函数为奇函数6.形如)log ay bx =的函数为奇函数7.形如()2log 1bxa y a bx =+-的函数为偶函数8.形如x n y a m =+的函数关于点(log ,)2anm m中心对称 9.形如()(2)y f x f a x =+-的函数关于x a =轴对称,形如()(2)y f x f a x =--的函数关于点(,0)a 中心对称.10.形如()y f x a =-的函数关于x a =轴对称. 11.若()f x 满足()()x b f x a f -=+,则()f x 关于2ba x +=轴对称(括号内相加除以2). 12.若()f x 满足()()c x b f x a f 2=-++,则()f x 关于点⎪⎭⎫⎝⎛+c b a ,2中心对称;13.函数()f x a +与函数()f b x -关于2b ax -=轴对称(括号内零点之和除以2). 14.函数()f x a c ++与函数()d f b x --关于点(,)22b ac d-+中心对称 15.若()f x 满足()()f x a f x b +=+,则()f x 周期为a b - 16.若()f x 同时关于x a x b ==和轴对称,则()f x 周期为2a b - 若()f x 同时关于(,)(,)a m b m 和中心对称,则()f x 周期为2a b -若()f x 关于(,)a m 中心对称,同时关于x b =轴对称,则()f x 周期为4a b -17.若函数()f x 满足:()+()()f x a f x b C C ++=为常数,则()f x 周期为2a b - 特殊地:若()()f x a f x +=-,则()f x 周期为2a .18.若函数()f x 满足:()()()f x a f x b C C +⋅+=为常数,则()f x 周期为2a b - 特殊地:若1()()f x a f x +=±,则()f x 周期为2a . 19.若函数()f x 满足1()()1()f x f x a f x -+=+,则()f x 周期为2a .若函数()f x 满足()1()()1f x f x a f x ++=-,则()f x 周期为2a .若函数()f x 满足1()()1()f x f x a f x ++=-,则()f x 周期为4a .若函数()f x 满足()1()()1f x f x a f x -+=+,则()f x 周期为4a .20.若函数()f x 满足1()1()f x a f x +=-,则()f x 周期为3a .21.若函数()f x 满足()()(2)f x f x a f x a =+-+,则()f x 周期为6a 22.函数奇偶性的叠加:==//==,/= /±±⨯÷⎫⨯÷⨯÷⎬⨯÷⎭奇奇奇,偶偶偶奇偶奇奇偶,奇偶偶偶偶奇 奇(奇)=奇,奇(偶)=偶,偶(奇)=偶,偶(偶)=偶;(内偶则偶,内奇同外) 23.若()f x 为奇函数则()f x '为偶函数,若()f x 为偶函数则()f x '为奇函数. 24.32()(0)f x ax bx cx d a =+++≠的图像关于点(,())33b bf a a--中心对称.三角函数二级结论1.当A B C π++=时,tan tan tan tan tan tan A B C A B C ++=⋅⋅2.当4A B π+=时,(1+tan )(1tan )2A B += 当3A B π+=时,)(1)4A B +=当6A B π+=时,4(1+tan )(1tan )333A B += 3.在△ABC 中,sin()sin cos()cos tan()tan A B C A B C A B C +=⎧⎪+=-⎨⎪+=-⎩,sin 2()sin 2cos 2()cos 2tan 2()tan 2A B C A B C A B C +=-⎧⎪+=⎨⎪+=-⎩,sin cos 22cos sin 221tan 2tan 2A B C A B C A B C ⎧⎪+=⎪⎪+⎪=⎨⎪+⎪=⎪⎪⎩4.△ABC 中,若1122(,),(,)AB x y AC x y == ,则122112ABC S x y x y =-5.△ABC 三边长分别为,,a b c ,则)2ABC a b cS p ++==6.△ABC 三边长分别为,,a b c ,内切圆半径为r ,则=,()2ABC a b cS p r p ++⋅=7.△ABC 三边长分别为,,a b c ,外接圆半径为R ,=4ABC abcS R8.积化和差:[][][][]1cos cos =cos()cos()21sin sin =cos()cos()21sin cos =sin()sin()21cos sin =sin()sin()2αβαβαβαβαβαβαβαβαβαβαβαβ⎧⋅-++⎪⎪⎪⋅--+⎪⎨⎪⋅++-⎪⎪⎪⋅+--⎩和差化积:+cos +cos =2cos cos 22+cos cos =2sin sin 22+sin sin 2sin cos 22+sin sin 2cos sin 22αβαβαβαβαβαβαβαβαβαβαβαβ-⎧⋅⎪⎪-⎪--⋅⎪⎨-⎪+=⋅⎪⎪-⎪-=⋅⎩9.正弦平方差公式:22sin()sin()sinsin αβαβαβ+⋅-=- 余弦平方差公式:22cos()cos()cossin αβαβαβ+⋅-=-向量二级结论1.向量平方差公式:向量平方差公式1(极化恒等式):C如图:△ABC 中,D 为BC 中点则:22()()()()AB AC AD DB AD CD AD DB AD DB AD DB ⋅=+⋅-=+⋅-=-向量平方差公式2:C如图:平行四边形ABCD 中,22()()AC BD AD AB AD AB AD AB ⋅=+⋅-=-2.三角形四心的向量表达式与奔驰定理:(1)奔驰定理:已知点O 为△ABC 平面上一点,则0BOC AOC AOB OA O S B O S C S ⋅+⋅+⋅=(2)三角形四心的向量表达:①已知O 为△ABC 的重心,则0OA OB OC ++=②已知O 为△ABC 的垂心,则tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=(OA OB OB OC OA OC ⋅=⋅=⋅ )③已知O 为△ABC 的外心,则sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=(OA OB OC == )④已知O 为△ABC 的内心,则0a OA b OB c OC ⋅+⋅+⋅=3.单位向量:(1)对于非零向量a ,则aa是与a 共线的单位向量.(2)对于非零向量,a b ,若()a bp a bλ=+ ,则p 与,a b 夹角平分线共线(3)任意单位向量可设坐标为(cos ,sin )θθ4.向量与三点共线及向量的等和线:(1)三点共线的向量表达:如图,,A B C 三点共线,O 为线外一点:CA①若OC xOA yOB =+,则1x y +=,反之也成立.②若AC BC λμ=,则OC OA OB μλλμλμ=+++③若AC CB λ= ,即()OC OA OB OC λ-=-,将此式整理即能用,,OA OB OC 中任意两个为基底表示第三个. (2)向量的等和线:如图,向量,OA OB 不共线,若直线l 与直线AB 平行(或重合),称直线l 为基底,OA OB的等和线.若P 在直线l 上,且OP xOA yOB =+,则x y +为定值,x y +随O 与l 的距离成比例扩大或缩小:①当l 与AB 重合时:1x y += ②当l 过点O 时:0x y +=③当l 在O 与AB 之间时:01x y <+<④当l 在O 与AB 同侧,O 到AB 这一侧时:1x y +> ⑤当l 在O 与AB 同侧,AB 到O 这一侧时:0x y +<5.平行四边形对角线定理:平行四边形的两对角线平方和等于四边平方之和C如图:平行四边形ABCD 中,222222()()2()AC BD AD AB AD AB AD AB +=++-=+6.矩形对角线定理:矩形所在平面内任意一点到矩形两对角线端点距离的平方和相等.D CBAP如图,四边形ABCD 为矩形,P 为矩形所在平面上一点,则2222PA PC PB PD +=+数列二级结论1.等差数列{}n a 中,若,,0m n m n a n a m a +===且则 .2.等差数列{}n a 中,若,,()m n m n S n S m S m n +===-+且则.3.等差数列{}n a 中,21221(21),()m m m i m i S m a S m a a -+-=-=+ .4.等差数列{}n a 和{}n b 前n 项和分别为n S 和n T ,则2121n n n n a S b T --=,21212121p p q q a S q b T p ---=⋅-. 5.等差数列{}n a ,若()M N S S M N =≠ ,则K M N K S S +-=.6.等差数列{}n a ,110(0)a a >< ,且()M N S S M N =≠,若M N +为偶数,则当2M Nn +=时, n S 最大,若M N +为奇数,则当1122M N M N n n +++-==或 时,n S 最大(最小). 7.等差数列{}n a ,公差为d ,则232,,m m m m m S S S S S -- 也成等差数列且公差为2m d .8.等差数列{}n a ,公差为d ,则m n m n S S S mnd +=++9.等差数列{}n a 前2n 项中:+1=n n S a S a 奇偶,前21n -项中:=1S n S n -奇偶 10.等差数列{}n a 首项为1a ,公差为d ,前n 项和为n S ,则n S n ⎧⎫⎨⎬⎩⎭也为等差数列且首项仍为1a ,公差为2d .11.等比数列{}n a 中:211232112321,()m m m m m m m a a a a a a a a a a a --+⋅⋅⨯⨯=⋅⋅⨯⨯=⋅ .12.{}n a 是公比为q 的正项等比数列,则{}log m n a 是公差为log m q 的等差数列.13.等比数列{}n a 公比为q ,前n 项和为n S ,数列1n a ⎧⎫⎨⎬⎩⎭前n 项和为n T ,数列111n a q -⎧⎫⎛⎫⎪⎪⋅⎨⎬ ⎪⎝⎭⎪⎪⎩⎭前n 项和为n M ,则1nn nS a a T = ;1n n n S q M -=14.等比数列{}n a 公比为q ,则232,,m m m m m S S S S S -- 也成等比数列且公比为mq . 15.等比数列{}n a 公比为q ,前n 项连乘积为n T ,则232,,m mm m mT T T T T 也成等比,且公比为2m q 16.{}n a 为公差不为零的等差数列,且,,m k p a a a 依次成等比数列,则公比为p kk m-- 17.等比数列{}n a 公比为q ,若11q -<<,则n S 趋近于11a q- 18.等比数列{}n a ,mm n m n S S q S +=+。
高中数学常见结论三角形中的结论 1、三角形中,任意两角的余弦之和大于零,即coscos 0,cos cos 0,cos cos 0A B A C B C +>+>+>2、三角形中,tan tan tan tan tan tan A B C A B C ++=⨯⨯3、三角形中,sin sin A B A B >⇔>,其他同理4、锐角三角形中,任意一个角的正弦值大于另一个角的余弦值,即sincos ,sin cos A B A C >>,其他同理5、钝角三角形中(角C 为钝角),一个锐角的正弦值小于另一个锐角的余弦值。
即sin cos ,sin cos A B B A <>6、直角三角形中的结论都有逆定理7、三角形内切圆的半径:2S r a b c ∆=++,特别地,直角三角形中:2a b cr +-=8、三角形中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…函数中的结论1、函数()y f x =在定义域D 上单调递增⇔对任意的12,,x x D ∈若12x x >,都有12()()f x f x >⇔对任意的12,,x x D ∈1212()(()())0x x f x f x -->⇔对任意的12,,x x D ∈1212()()0f x f x x x ->- ⇔对任意的,x D ∈/()0f x ≥恒成立⇔对任意的,x D ∈总存在t>0,使()()f x t f x +>2、函数()y f x =在定义域D 上单调递减,对应以上结论是什么?3、函数单调递增、递减的运算性质:(加、减、乘、除、开方) (1)增+增=增,减+减=减,增-减=增,减-增=减,(2)()k f x ⨯与()f x 的单调性的关系是 (3)1()f x 与()f x 的单调性的关系是 (4()f x 的单调性的关系是4、对称轴、对称中心、周期之间的结论是:(1)若函数y=f(x)满足:f(x+a)=f(a-x)↔x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x)=f(2a-x) ↔ x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x+a)=f(b-x) ↔ x=2a b+是y=f(x)的一条对称轴.(2)函数y=f(x)满足:f(x+a)=-f(a-x) ↔A (a,0)是y=f(x)的一个对称中心. 函数y=f(x)满足:f(x)=-f(2a-x) ↔A (a,0)是y=f(x)的一个对称中心.函数y=f(x)满足:f(x+a)=-f(b-x) ↔A(2a b+,0)是y=f(x)的一个对称中心 (3)函数y=f(x)满足:f(x+T)=f(x) ↔T 是y=f(x)的一个周期函数y=f(x)满足:f(x+a)=f(x+b) ↔T=a-b 是y=f(x)的一个周期(a >b ) 函数y=f(x)满足:f(x+a)=-f(x) ,则T=2a 是y=f(x)的一个周期(4)若x=a,x=b 是函数y=f(x)的两条对称轴,则T=2(a-b) (a >b ) ,反之也成立若A(a,0),B(b,0)是函数y=f(x)的两个对称中心,则T=2(a-b) (a >b ), 反之也成立 若x=a,B(b,0)分别是函数y=f(x)的对称轴和对称中心,则T=4(a-b) (a >b )5、若两个函数()y f x a =+,()y f b x =-有对称轴,则对称轴是2b a x -=6、函数奇偶性:函数y=f(x)是定义域D 上的偶函数⇔对任意的,x D ∈()()0f x f x --=恒成立⇔对任意的,x D ∈()1()f x f x -=恒成立7、函数y=f(x)是定义域D 上的奇函数⇔对任意的,x D ∈()()0f x f x -+=恒成立⇔对任意的,x D ∈()1()f x f x -=-恒成立8、函数奇偶性的运算性质:加减乘除:偶+偶=偶,偶-偶=偶,偶⨯偶=偶,偶÷偶=偶奇+奇=奇,奇-奇=奇,奇⨯奇=奇,奇÷奇=奇 偶⨯偶=偶,偶⨯奇=奇,奇⨯奇=偶 除法运算结论依然 9、奇偶性与单调性的关系:奇函数在关于原点对称的两区间上的单调性相同 偶函数在关于原点对称的两区间上的单调性相反 10、奇函数定义域中若有0,则(0)0f =11、奇函数定义域中若有最大值M 和最小值N ,则M+N=0 12、奇偶性与导数的关系:奇函数的导函数是偶函数 偶函数的导函数是奇函数 13、若函数y=f(x)是偶函数,则()()f x f x =14、若函数y=f(x)是D 上的上凸函数⇔对12,,x x D ∈有1212()()()22f x f x x x f ++<15、若函数y=f(x)是D 上的上凹函数⇔对12,,x x D ∈有1212()()()22f x f x x xf ++>16、二次函数2y ax bx c =++是偶函数⇔b=0三次函数32y ax bx cx d=+++是奇函数⇔b=d=017、二次函数在限定区间上的最值问题:讨论对称轴与区间的位置关系----大大小小(1)当a>0时,求最小值讨论对称轴在区间的左、内、右,求最大值讨论对称轴与区间中点的位置关系(2)当a<0时,求最大值讨论对称轴在区间的左、内、右,求最小值讨论对称轴与区间中点的位置关系18、二次函数2y ax bx c =++的对称轴是2b x a=-,三次函数32y ax bx cx d =+++的对称中心是,()33b b f aa ⎛⎫--⎪⎝⎭19、若函数y=f(x)在定义域D 上连续可导,且在定义域的任何子区间上导函数不恒为0,则/()0f x ≥⇔y=f(x)在D 上单调递增/()0f x ≤⇔y=f(x)在D 上单调递减20、若函数y=f(x)在定义域D 上连续可导,/0()0f x =不能保证0()f x 为极值,反之成立。
高中数学四心常用结论
高中数学四心常用结论如下:
“四心”定义:
1、重心:三边中线的交点,重心将中线长度分成2:1。
2、垂心:三条高线的交点,高线与对应边垂直。
3、内心:三条角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等。
4、外心:三条中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。
结合奔驰定理分析四心性质:
对于△ABC,若O为△ABC平面内一个点,设O为△ABC所在平面上一点,内角A,B,C所对的边分别为a,b,c,则:
1、重心:若O为重心,根据相似的知识可知由OA,OB,OC分成的三个三角形的面积相同,都为△ABC的1/3,则有:向量OA+向量OB+向量OC=向量0。
2、外心:若O为外心,则由三角形的正弦定理可知,a/Sin∠A=b/Sin∠B=c/Sin ∠C=2R,则有:OA=OB=OC=a/2sin∠A=b/2sin∠B=c/2sin∠C。
3、内心:若O为内心,则圆与△ABC的三条边相切,则三个小三角形的面积就可以用底乘高来表示,且高相同都为圆的半径,则三个小三角形的面积比就等价
于底边之比,即S△BOC:S△AOC:S△AOB=a:b:c。
根据奔驰定理,即可得出结论:a向量OA+b向量OB+c向量OC=向量0。
4、垂心:若O为垂心,向量OA·tan∠A+向量OB·tan∠B+向量OC·tan∠C=0向量。
1.点P 处的切线PT 平分△PF1F2在点P 处的外角.2.PT 平分△PF 1F 2在点P 处的外角,那么焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相离.,以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.4.假设000(,)P x y 在椭圆22221x y a b +=上,那么过0P 的椭圆的切线方程是00221x x y ya b+=. 5.假设000(,)P x y 在椭圆22221x y a b+=外 ,那么过Po 作椭圆的两条切线切点为P 1、P 2,那么切点弦P 1P 2的直线方程是00221x x y y ab+=.6.椭圆22221x y ab+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,那么122tan 2F PF S b γ∆=.7.椭圆22221x y a b+=〔a >b >0〕的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).8.过椭圆焦点F 作直线与椭圆相交 P 、Q ,A 为椭圆长轴上一个顶点,连AP 和AQ 交F椭圆准线于M 、N 两点,那么MF ⊥NF.9.过椭圆焦点F 的直线与椭圆交于P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,那么MF ⊥NF.10.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,那么22OM ABb k k a⋅=-,即0202y a x b K AB -=。
1.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2.PT 平分△PF 1F 2在点P 处的内角,那么焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相交以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切〔内切:P 在右支;外切:P 在左支〕4.假设000(,)P x y 在双曲线22221x y a b-=〔a >0,b >0〕上,那么过0P 的双曲线的切线方程是00221x x y ya b-=. 5.假设000(,)P x y 在双曲线22221x y a b-=〔a >0,b >0〕外 ,那么过Po 作双曲线的两条切线切点为P 1、P 2,那么切点弦00221x x y ya b-=. 6.双曲线22221x y a b-=〔a >0,b >o 〕的焦点为F 1,F 2,点P 为双曲线上一点12F PF γ∠=,那么双曲线的焦点角形122t 2F PF S b co γ∆=.7.双曲线22221x y a b-=〔a >0,b >o 〕的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上,10||MF ex a =+,20||MF ex a =- 当00(,)M x y 在左支上时10||MF ex a =-+,20||MF ex a =--8.过双曲线焦点F 作直线与双曲线交于P 、Q ,A 为双曲线长轴上一顶点,连AP 和AQ 交于焦点F 双曲线准线于M 、N ,那么MF ⊥NF. 焦点F 的直线与双曲线交于P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于M ,A 2P 和A 1Q 交于点N ,那么MF ⊥NF.10.AB 是双曲线22221x y a b-=的不平行于对称轴的弦,M ),(00y x 为AB 的中点那么0202y a x b K K AB OM =⋅,即0202y a xb K AB =。
高中数学圆锥曲线常用98条结论1.椭圆的离心率小于1,且焦点在中心到长轴的垂线上。
2. 长轴和短轴的长度分别为2a和2b,则椭圆的标准方程为(x/a)+(y/b)=1。
3. 椭圆的焦距为c=√(a-b)。
4. 椭圆的面积为πab。
5. 椭圆的周长近似为2π√((a+b)/2)。
6. 椭圆的离心率为e=c/a。
7. 双曲线的离心率大于1,且焦点在中心到长轴的垂线上。
8. 长轴和短轴的长度分别为2a和2b,则双曲线的标准方程为(x/a)-(y/b)=1。
9. 双曲线的焦距为c=√(a+b)。
10. 双曲线的面积为πab。
11. 双曲线的渐近线方程为y=±(b/a)x。
12. 双曲线的离心率为e=c/a。
13. 抛物线的离心率等于1,且焦点在抛物线的顶点上。
14. 抛物线的标准方程为y=4ax。
15. 抛物线的焦距等于a。
16. 抛物线的面积为2/3×a×(4a/3)。
17. 抛物线的顶点坐标为(0,0)。
18. 抛物线的准线方程为y=-a。
19. 圆的标准方程为(x-a)+(y-b)=r。
20. 圆的直径为圆心的两倍半径。
21. 圆的周长为2πr。
22. 圆的面积为πr。
23. 直线与圆相交,切点到圆心的距离垂直于直线。
24. 切线方程为y-y=k(x-x),其中k为切线斜率。
25. 直线与圆相切,切点坐标为(x,y),则切线方程为(y-y)=k(x-x),其中k为直线斜率。
26. 椭圆的切线方程为(ay/b)+(x/a)=1。
27. 双曲线的切线方程为(ay/b)-(x/a)=1。
28. 抛物线的切线方程为y=2ax。
29. 椭圆的法线方程为(by/a)+(x/a)=1。
30. 双曲线的法线方程为(by/a)-(x/a)=1。
31. 抛物线的法线方程为y=-x/(2a)。
32. 椭圆的两条直径的交点在椭圆的中心点上。
33. 椭圆的两条直径的长度之和为2a。
34. 椭圆的两条直径的中垂线交于椭圆的中心点。
高中数学16个---------------二级结论结论一 奇函数的最值性质已知函数f(x)是定义在集合D 上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D 上有最值,则f(x)max +f(x)min =0,且若0∈D,则f(0)=0.例1 设函数22(1)sin ()1x xf x x ++=+的最大值为M,最小值为m,则M+m= .跟踪集训1.(1)已知函数2()ln(193)1f x x x =++,则1(lg 2)(lg )2f f + =( ) A.-1B.0C.1D.2(2)对于函数f(x)=asin x+bx+c(其中,a,b∈R,c∈Z),选取a,b,c 的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是......( )A.4和6 B.3和1C.2和4D.1和2结论二 函数周期性问题已知定义在R 上的函数f(x),若对任意的x∈R,总存在非零常数T,使得f(x+T)=f(x),则称f(x)是周期函数,T 为其一个周期.常见的与周期函数有关的结论如下:(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.(2)如果f(x+a)=1()f x (a≠0),那么f(x)是周期函数,其中的一个周期T=2a. (3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a. (4)如果f(x)=f(x+a)+f(x-a)(a≠0),那么f(x)是周期函数,其中的一个周期T=6a. 例2 已知定义在R 上的函数f(x)满足f 3()2x + =-f(x),且f(-2)=f(-1)=-1, f(0)=2,则f(1)+f(2)+f(3)+…+f(2 014)+f(2 015)=( )A.-2B.-1C.0D.1跟踪集训2.(1)奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=( )A.-2B.-1C.0D.1(2)定义在R 上的函数f(x)满足f(x)= 2log (1),0,(1)(2),0,x x f x f x x -≤⎧⎨--->⎩则f(2 014)=( )A.-1B.0C.1D.2结论三 函数的对称性已知函数f(x)是定义在R 上的函数.(1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x= 2a b+对称,特别地,若f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a 对称.(2)若f(a+x)+f(b-x)=c,则y=f(x)的图象关于点(,)22a b c+中心对称.特别地,若f(a+x)+f(a-x)=2b 恒成立,则y=f(x)的图象关于点(a,b)中心对称.例3 已知定义在R 上的函数f(x)满足f(x+1)=f(1-x),且在[1,+∞)上是增函数,不等式f(ax+2)≤f(x -1)对任意的x∈1[,1]2恒成立,则实数a 的取值范围是( )A.[-3,-1] B.[-2,0] C.[-5,-1]D.[-2,1]跟踪集训3.(1)若偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)= .(2)函数y=f(x)对任意x∈R 都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2 016)+f(2 017)+f(2 018)的值为 . 结论四 反函数的图象与性质若函数y=f(x)是定义在非空数集D 上的单调函数,则存在反函数y=f -1(x).特别地,y=a x与y=log a x(a>0且a≠1)互为反函数,两函数图象在同一直角坐标系内关于直线y=x 对称,即(x 0, f(x 0))与(f(x 0),x 0)分别在函数y=f(x)与反函数y=f -1(x)的图象上.例4 设点P 在曲线y=12e x上,点Q 在曲线y=ln(2x)上,则|PQ|的最小值为( ) A.1-ln 2B.2(1-ln 2)C.1+ln 2D.2(1+ln 2)跟踪集训4.若x 1满足2x+2x=5,x 2满足2x+2log 2(x-1)=5,则x 1+x 2=( )A.52 B.3 C. 72D.4 结论五 两个对数、指数经典不等式 1.对数形式:1-11x +≤ln(x+1)≤x(x>-1),当且仅当x=0时,等号成立. 2.指数形式:e x≥x+1(x∈R),当且仅当x=0时,等号成立.例5 设函数f(x)=1-e -x.证明:当x>-1时, f(x)≥1x x +. 跟踪集训5.(1)已知函数f(x)=1ln(1)x x+-,则y=f(x)的图象大致为( )(2)已知函数f(x)=e x,x∈R.证明:曲线y=f(x)与曲线y=12x 2+x+1有唯一公共点.结论六 三点共线的充要条件设平面上三点O,A,B 不共线,则平面上任意一点P 与A,B 共线的充要条件是存在实数λ与μ,使得OP OA OB λμ=+,且1λμ+=.特别地,当P 为线段AB 的中点时, 1122OP OA OB =+.例6 已知A,B,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式20x OA xOB BC ++=成立的实数x 的取值集合为( )A.{-1} B. ∅ C.{0} D.{0,-1}跟踪集训6.在梯形ABCD 中,已知AB∥CD,AB=2CD,M、N 分别为CD 、BC 的中点.若AB AM AN λμ=+,则λμ+= .结论七 三角形“四心”的向量形式设O 为△ABC 所在平面上一点,角A,B,C 所对的边长分别为a,b,c,则 (1)O 为△ABC 的外心⇔ ||||||2sin aOA OB OC A===.(2)O 为△ABC 的重心⇔ 0OA OB OC ++=.(3)O 为△ABC 的垂心⇔ OA OB OB OC OC OA ⋅=⋅=⋅.(4)O 为△ABC 的内心⇔ 0aOA bOB cOC ++=. 例7 已知A,B,C 是平面上不共线的三点,动点P 满足1[(1)(1)(12)],3OP OA OB OC R λλλλ=-+-++∈,则点P 的轨迹一定经过( ) A.△ABC 的内心B.△ABC 的垂心C.△ABC 的重心D.AB 边的中点跟踪集训7.(1)P 是△ABC 所在平面内一点,若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是△ABC 的( ) A.外心 B.内心 C.重心 D.垂心(2)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足,(0,)2OB OCOP AP λλ+=+∈+∞,则P 点的轨迹一定通过△ABC 的( )A.外心 B.内心 C.重心 D.垂心 (3)O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足(),[0,)||||AB ACOP OA AB AC λλ=++∈+∞,则P 的轨迹一定通过△ABC 的( )A.外心 B.内心 C.重心D.垂心结论八 等差数列1.若S m ,S 2m ,S 3m 分别为等差数列{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.2.若等差数列{a n }的项数为2m,公差为d,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m =m(a m +a m+1),S 偶-S 奇=md,1m m S a S a +=奇偶. 3.若等差数列{a n }的项数为2m-1,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m-1=(2m-1)a m ,S 奇=ma m ,S 偶=(m-1)a m ,S 奇-S 偶=a m ,1S mS m =-奇偶. 例8 (1)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m=( ) A.3 B.4 C.5D.6(2)等差数列{a n }的前n 项和为S n ,已知a m-1+a m+1- 2m a =0,S 2m-1=38,则m 等于 . 跟踪集训8.(1)等差数列{a n }的前n 项和为S n ,若S 10=20,S 20=50,则S 30= .(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d= .结论九 等比数列已知等比数列{a n },其公比为q,前n 项和为S n .(1)数列1{}n a 也为等比数列,其公比为1q. (2)若q=1,则S n =na 1,且{a n }同时为等差数列.(3)若q≠1,则S n =11111(1)()11111n n n n a a q a q a a aq q q q q q qλλλ--==-=-=-----. (4)S n ,S 2n -S n ,S 3n -S 2n ,…仍为等比数列(q≠-1或q=-1且n 为奇数),其公比为q n.(5)S n ,2n n S S , 32nnS S ,…仍为等比数列,公比为2n q .例9 (1)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列1{}na 的前5项和为( )A.158或5 B.3116或5 C.3116D.158(2)设等比数列{a n }的前n 项和为S n ,若63S S =3,则96SS =( )A.2 B.73C.83D.3跟踪集训9.在等比数列{a n }中,公比为q,其前n 项和为S n .已知S 5=3116,a 3= 14,则1234511111a a a a a ++++= . 结论十 多面体的外接球和内切球1.长方体的体对角线长d 与共点三条棱长a,b,c 之间的关系为d 2=a 2+b 2+c 2;若长方体外接球的半径为R,则有(2R)2=a 2+b 2+c 2.2.棱长为a 的正四面体内切球半径r=612a ,外接球半径R= 64a . 例10 已知一个平放的各棱长为4的三棱锥内有一个小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的78时,小球与该三棱锥的各侧面均相切(与水面也相切),则小球的表面积等于( )A. 76π B. 43π C. 23π D. 2π跟踪集训10.(1)已知直三棱柱的底面是等腰直角三角形,直角边长是1,且其外接球的表面积是16π,则该三棱柱的侧棱长为( )A. 14 B. 23 C. 46D.3(2)已知正三角形ABC 的三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A.74π B.2π C. 94πD.3π 结论十一 焦点三角形的面积公式1.在椭圆22221x y a b+= (a>b>0),F 1,F 2分别为左、右焦点,P 为椭圆上一点,则△PF 1F 2的面积122tan2PF F Sb θ=,其中θ=∠F 1PF 2.2.在双曲线22221x y a b -=1(a>0,b>0)中,F 1,F 2分别为左、右焦点,P 为双曲线上一点,则△PF 1F 2的面积122tan2PF F b Sθ=,其中θ=∠F 1PF 2.例11 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=3π,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B. 233C.3D.2跟踪集训11.(1)如图,F 1,F 2是椭圆C 1: 2214x y +=与双曲线C 2的公共焦点,A,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D. 62(2)已知F 1,F 2是椭圆C: 22221x y a b+= (a>b>0)的两个焦点,P 为椭圆C 一上点,且12PF PF ⊥.若△PF 1F 2的面积为9,则b= . 结论十二 圆锥曲线的切线问题1.过圆C:(x-a)2+(y-b)2=R 2上一点P(x 0,y 0)的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)=R 2.2.过椭圆22221x y a b +=上一点P(x 0,y 0)的切线方程为00221x x y y a b+=.3.已知点M(x 0,y 0),抛物线C:y 2=2px(p≠0)和直线l:y 0y=p(x+x 0).(1)当点M 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线.(2)当点M在抛物线C外时,直线l与抛物线C相交,其中两交点与点M的连线分别是抛物线的切线,即直线l为切点弦所在的直线.(3)当点M在抛物线C内时,直线l与抛物线C相离.例12 已知抛物线C:x2=4y,直线l:x-y-2=0,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点,当点P(x0,y0)为直线l上的定点时,求直线AB的方程.跟踪集训12.(1)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为( ) A.2x+y-3=0 B.2x-y-3=0 C.4x-y-3=0 D.4x+y-3=0(2)设椭圆C:22143x y+=,点P3(1,)2,则椭圆C在点P处的切线方程为.结论十三圆锥曲线的中点弦问题1.在椭圆E:22221x ya b+= (a>b>0)中:(1)如图①所示,若直线y=kx(k≠0)与椭圆E交于A,B两点,过A,B两点作椭圆的切线l,l',有l∥l',设其斜率为k0,则k0·k=22ba -.(2)如图②所示,若直线y=kx与椭圆E交于A,B两点,P为椭圆上异于A,B的点,若直线PA,PB的斜率存在,且分别为k1,k2,则k1·k2=22ba -.(3)如图③所示,若直线y=kx+m(k≠0且m≠0)与椭圆E交于A,B两点,P为弦AB的中点,设直线PO的斜率为k0,则k0·k=22ba -.[提醒]该结论常变形为:以椭圆22221x y a b +=内任意一点(x 0,y 0)为中点的弦AB 的斜率k=2020x b a y -⋅.2.在双曲线E: 22221x y a b -= (a>0,b>0)中,类比上述结论有:(1)k 0·k=22b a .(2)k 1·k 2=22b a .(3)k 0·k=22b a. 例13 已知椭圆E: 22221x y a b+= (a>b>0)的右焦点为F(3,0),过点F 的直线交椭圆E 于A 、B 两点.若AB的中点坐标为(1,-1),则椭圆E 的方程为( )A.2214536x y += B.2213627x y += C. 2212718x y += D.221189x y += 跟踪集训13.(1)椭圆C: 22143x y +=的左,右顶点分别为A 1,A 2,点P 在椭圆上且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是 .(2)如图,在平面直角坐标系xOy 中,过坐标原点的直线交椭圆22142x y +=于P,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA 的斜率为k.对任意k>0,求证:PA⊥PB.结论十四圆锥曲线中的一类定值问题在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P(非顶点)与曲线上的两动点A,B满足直线PA 与PB的斜率互为相反数(倾斜角互补),则直线AB的斜率为定值.图示条件结论已知椭圆22221x ya b+= (a>b>0),定点P(x0,y0)(x0y0≠0)在椭圆上,A,B是椭圆上的两个动点,直线PA,PB的斜率分别为k PA,k PB,且满足k PA+k PB=0 直线AB的斜率k AB为定值22b xa y已知双曲线22221x ya b-= (a,b>0),定点P(x0,y0)(x0y0≠0)在双曲线上,A,B是双曲线上的两个动点,直线PA,PB的斜率分别为k PA,k PB,且满足k PA+k PB=0 直线AB的斜率k AB为定值22b xa y-已知抛物线y2=2px(p>0),定点P(x0,y0)(x0y0≠0)在抛物线上,A,B是抛物线上两个动点,直线PA,PB的斜率分别为k PA,k PB,且满足k PA+k PB=0 直线AB的斜率k AB为定值py-例14 已知抛物线C:y2=2x,定点P(8,4)在抛物线上,设A,B是抛物线上的两个动点,直线PA,PB的斜率分别为k PA,k PB,且满足k PA+k PB=0.证明:直线AB的斜率k AB为定值,并求出该定值.跟踪集训14.已知椭圆C:22143x y+=,A为椭圆上的定点且坐标为31,2(),E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数.证明:直线EF的斜率为定值,并求出这个定值.结论十五圆锥曲线中的一类定点问题若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)对于椭圆22221x ya b+= (a>b>0)上异于右顶点的两动点A,B,以AB为直径的圆经过右顶点(a,0),则直线l AB过定点2222(,0)a baa b-⋅+.同理,当以AB为直径的圆过左顶点(-a,0)时,直线l AB过定点2222(,0)a baa b--⋅+.(2)对于双曲线22221x ya b-= (a>0,b>0)上异于右顶点的两动点A,B,以AB为直径的圆经过右顶点(a,0),则直线l AB过定点2222(,0)a baa b+⋅-.同理,对于左顶点(-a,0),则定点为2222(,0)a baa b+-⋅-.(3)对于抛物线y 2=2px(p>0)上异于顶点的两动点A,B,若0OA OB ⋅=,则弦AB 所在直线过点(2p,0).同理,抛物线x 2=2py(p>0)上异于顶点的两动点A,B,若OA OB ⊥,则直线AB 过定点(0,2p).例15 已知抛物线y 2=2px(p>0)上异于顶点的两动点A,B 满足以AB 为直径的圆过顶点.求证:AB 所在的直线过定点,并求出该定点的坐标.跟踪集训15.已知椭圆22143x y +=,直线l:y=kx+m 与椭圆交于A,B 两点(A,B 不是左、右顶点),且以AB 为直径的圆过椭圆的右顶点.求证:直线l 过定点,并求该定点的坐标.结论十六 抛物线中的三类直线与圆相切问题AB 是过抛物线y 2=2px(p>0)焦点F 的弦(焦点弦),过A,B 分别作准线l:2p-的垂线,垂足分别为A 1,B 1,E 为A 1B 1的中点.(1)如图①所示,以AB 为直径的圆与准线l 相切于点E.(2)如图②所示,以A 1B 1为直径的圆与弦AB 相切于点F,且|EF|2=|A 1A|·|BB 1|.(3)如图③所示,以AF 为直径的圆与y 轴相切.例16 过抛物线y 2=2px(p>0)的对称轴上一点A(a,0)(a>0)的直线与抛物线相交于M,N 两点,自M,N 向直线l:x=-a 作垂线,垂足分别为M 1,N 1.当a=2p时,求证:AM 1⊥AN 1.跟踪集训16.已知抛物线C:y 2=8x 与点M(-2,2),过C 的焦点且斜率为k 的直线与C 交于A,B 两点,若0MA MB ⋅=,则k= .答案全解全析结论一 奇函数的最值性质跟踪集训1.(1)D 令g(x)=ln(-3x),x∈R,则g(-x)=ln(+3x),因为g(x)+g(-x)=ln(-3x)+ln(+3x)=ln(1+9x 2-9x 2)=ln 1=0,所以g(x)是定义在R 上的奇函数.又lg =-lg 2,所以g(lg2)+g=0,所以f(lg 2)+f=g(lg 2)+1+g+1=2.故选D.(2)D 令g(x)=f(x)-c=asin x+bx, 易证g(x)是奇函数.又g(-1)+g(1)=f(-1)-c+f(1)-c=f(-1)+f(1)-2c, 而g(-1)+g(1)=0,c 为整数, ∴f(-1)+f(1)=2c 为偶数. 1+2=3是奇数,故不可能,选D.结论二 函数周期性问题跟踪集训2.(1)D 由f(x+2)是偶函数可得f(-x+2)=f(x+2),又由f(x)是奇函数得f(-x+2)=-f(x-2),所以f(x+2)=-f(x-2), f(x+4)=-f(x), f(x+8)=f(x),故f(x)是以8为周期的周期函数,所以f(9)=f(8+1)=f(1)=1,又f(x)是定义在R上的奇函数,所以f(0)=0,所以f(8)=f(0)=0,故f(8)+f(9)=1,故选D.(2)C 当x>0时,有f(x)=f(x-1)-f(x-2),①同理有f(x+1)=f(x)-f(x-1),②①+②得f(x+1)=-f(x+2),即f(x+3)=-f(x).所以f(x+6)=-f(x+3)=f(x),T=6.故f(2 014)=f(4)=-f(1)=f(-1)-f(0)=log22-0=1,故选C.结论三函数的对称性跟踪集训3.(1)答案 3解析因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x),又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.(2)答案 4解析因为函数y=f(x-1)的图象关于点(1,0)对称,所以f(x)是R上的奇函数. f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),故f(x)的周期为4.所以f(2 017)=f(504×4+1)=f(1)=4,所以f(2 016)+f(2 018)=-f(2 014)+f(2 014+4)=-f(2 014)+f (2 014)=0,所以f(2 016)+f(2 017)+f(2 018)=4.结论四反函数的图象与性质跟踪集训4.C 因为2x+2x=5,所以x+2x-1=,同理x+log2(x-1)=,令t=x-1,则x=t+1,即t1是t+2t=的解,t2是t+log2t=的解,且t1=x1-1,t2=x2-1.如图所示,t1为函数y=2t与y=-t的图象交点P的横坐标,t2为函数y=log2t与y=-t的图象交点Q的横坐标,所以P(t1,),Q(t2,log2t2),所以P,Q为对称点,且t1+t2=t1+=t1+=.所以x1+x2=t1+1+t2+1= +2=.故选C.结论五两个对数、指数经典不等式跟踪集训5.(1)B 由题意得f(x)的定义域为{x|x>-1且x≠0},所以排除选项D.令g(x)=ln(x+1)-x,则由经典不等式ln(x+1)≤x知,g(x)≤0恒成立,故f(x)=<0恒成立,所以排除A,C,故选B.(2)证明令g(x)=f(x)-=e x-x2-x-1,x∈R.g'(x)=e x-x-1,由经典不等式e x≥x+1恒成立可知,g'(x)≥0恒成立,所以g(x)在R上为单调递增函数,且g(0)=0,所以函数g(x)有唯一零点,即两曲线有唯一公共点.结论六三点共线的充要条件跟踪集训6.答案解析解法一:由=λ+μ及题意得=λ·(+)+μ·(+),则++ =0,得++=0,得λ+μ-1+=0.又因为,不共线,所以由平面向量基本定理得解得所以λ+μ=.解法二:如图,连接MN并延长交AB的延长线于T.由已知易得AB=AT,∴==λ+μ.∴=λ+μ,∵T、M、N三点共线,∴λ+μ=1,则λ+μ=.结论七三角形“四心”的向量形式跟踪集训7.(1)D 由·=·,可得·(-)=0,即·=0,∴⊥,同理可证⊥,⊥,∴P是△ABC的垂心.(2)C 设BC的中点为M,则=,则有=+λ,即=λ,∴P点的轨迹所在直线一定通过△ABC的重心.(3)B 解法一:为上的单位向量,为上的单位向量,则+的方向为∠BAC的平分线的方向.又λ∈[0,+∞),∴λ的方向与+的方向相同.=+λ,∴点P在上移动.∴P的轨迹一定通过△ABC的内心.故选B.解法二:由于P点轨迹通过△ABC内一定点且该定点与O点位置和△ABC的形状无关,故取O点与A点重合,由平行四边形法则很容易看出P点在∠BAC的平分线上,故选B.结论八等差数列跟踪集训8.(1)答案90解析(S20-S10)-S10=(S30-S20)-(S20-S10),S30=3S20-3S10=3×50-3×20=90.(2)答案 5解析设等差数列的前12项中奇数项的和为S奇,偶数项的和为S偶,由已知条件,得解得又S偶-S奇=6d,所以d==5.结论九等比数列跟踪集训9.答案31解析由等比数列的性质知,a1a5=a2a4=,则++++=++====31.结论十多面体的外接球和内切球跟踪集训10.(1)A 因为该三棱柱外接球的表面积是16π,所以外接球的半径R=2.又直三棱柱底面是等腰直角三角形,直角边长是1,故该三棱柱的侧棱长是=,故选A.(2)C 由题意知,正三角形ABC的外接圆半径为=,则AB=3,过点E的截面面积最小时,截面是以AB为直径的圆面,截面面积S=π×=.结论十一焦点三角形的面积公式跟踪集训11.(1)D 设双曲线C2的方程为-=1,则有+===4-1=3.又四边形AF1BF2为矩形,所以焦点三角形AF1F2的面积为tan 45°=,即==1.所以=-=3-1=2.故双曲线的离心率e==== .故选D.(2)答案 3解析在焦点三角形PF1F2中,⊥,故=|PF1||PF2|,又|PF1|2+|PF2|2=|F1F2|2,|PF1|+|PF2|=2a,则(|PF1|+|PF2|)2-2|PF1||PF2|=|F1F2|2,4a2-2|PF1|·|PF2|=4c2,所以|PF1||PF2|=2b2,则=b2=9,故b=3.结论十二圆锥曲线的切线问题跟踪集训12.(1)A 如图,圆心坐标为C(1,0),易知A(1,1).又k AB·k PC=-1,且k PC==,∴k AB=-2.故直线AB的方程为y-1=-2(x-1),即2x+y-3=0,故选A.(2)答案x+2y-4=0解析由于点P在椭圆+=1上,故所求的切线方程为+=1,即x+2y-4=0.结论十三圆锥曲线的中点弦问题跟踪集训13.(1)答案解析设PA2的斜率为k2,PA1的斜率为k1,则k1·k2=-=-,又k2∈[-2,-1],所以k1∈.(2)证明设P(x0,y0),则A(-x0,-y0),C(x0,0),k AC==,又k PA==k,所以k AC=,由k BA·k BP =-知,k BP·k BA=k BP·k AC=·k PB=-,所以k PB·k=-1,即PA⊥PB.结论十四圆锥曲线中的一类定值问题跟踪集训14.解析设直线AE的方程为y=k(x-1)+,联立得消去y,整理得(4k2+3)x2+(12k-8k2)x+4-12=0,则x E==.①同理,可得x F=.②所以k EF===,将①②代入上式,化简得k EF=.所以直线EF的斜率为定值,这个定值为.结论十五圆锥曲线中的一类定点问题跟踪集训15.解析设A(x1,y1),B(x2,y2),联立得消y,得(4k2+3)x2+8kmx+4m2-12=0,则有Δ=(8km)2-4(4k2+3)·(4m2-12)>0,即m2<4k2+3,即m2<4k2+3,①因为以AB为直径的圆过椭圆的右顶点(2,0),所以(x1-2,y1)·(x2-2,y2)=0,即x1x2-2(x1+x2)+4+y1y2=0, 即x1x2-2(x1+x2)+4+(kx1+m)(kx2+m)=0.把①代入化简得7m2+16km+4k2=0,得m=-2k或m=-.当m=-2k时,直线l:y=kx-2k过右顶点(2,0),与题意不符,故舍去;当m=-时,直线l:y=kx-过定点,且满足m2<4k2+3,符合题意.所以l:y=kx+m过定点.结论十六抛物线中的三类直线与圆相切问题跟踪集训16.答案 2解析如图所示,因为·=0,所以MA⊥MB,故点M在以AB为直径的圆上,又准线为x=-2,直线AB经过焦点F(2,0),所以有MF⊥AB,又k MF==-,所以k AB=2.。
一.集合与简易逻辑1. 摩根律: ðU (A ∪B)= (ðU A)∩( ðU B);ðU (A ∩B)=( ðU A)∪( ðU B). 2. 分配律:(A ∩B )∪C=(A ∪C)∩(B ∪C); (A ∪B)∩C=(A ∩C)∪(B ∩C). 3. 结合律:(A ∪B)∪C=A ∪(B ∪C); (A ∩B)∩C=A ∩(B ∩C) 4. 吸收率:A ∩(A ∪B)=A ; A ∪(A ∩B)=A.5. 容斥原理:card (A ∪B)= card A+ card B- card (A ∩B);card (A ∪B ∪C)= card A+ card B+ card C- card (A ∩B) -card (B ∩C) - card (C ∩A) + card (A ∩B ∩C)6. 对于条件A 和结论B 若条件A 能推出结论B ,则条件A 是结论B 成立的充分条件;若结论B 能推出条件A则条件A 是结论B 成立的必要条件。
二.函数1. 函数图像变换:① 函数y=f(x)的图像与函数y=f(-x)的图像关于y 轴对称; ② 函数y=f(x)的图像与函数y=-f(x)的图像关于x 轴对称; ③ 函数y=f(x)的图像与函数y=-f(-x)的图像关于原点对称;④ 函数y=f(x)的图像与函数y=f -1(x)的图像关于直线y=x 对称;⑤ 函数y=f(x)的图象与函数y= -f -1(-x)的图象关于直线y= -x 对称; ⑥ 函数y=f(x)的图象与函数y=f(2a-x)的图象关于直线x=a 对称; ⑦ 函数f(x)的图象与函数y=2b -f(x)的图象关于直线y=b 对称; ⑧ 函数f(x)的图象与函数y=2b -f(2a -x)的图象关于点(a, b)对称;⑨ 函数y=f(|x|)的图像与函数y=f(x)的图像在y 轴右方重合,然后将右方翻折倒左方(即左侧部分与其右侧部分关于y 轴对称)。
高中数学周期性常用结论1. 余数为1的整数的阶一定是2的倍数。
2. 余数为2的整数的阶一定是偶数。
3. 余数为偶数的整数的平方的余数一定是0或1。
4. 模3余数为0或3的平方的余数一定是0。
5. 模3余数为1或2的平方的余数一定是1。
6. 模4余数为1或3的平方的余数一定是1。
7. 模4余数为0或2的平方的余数一定是0。
8. m和m+2都是奇数时,m和m+2互质。
9. 偶数不能表示成两个奇质数之和。
10. 一定存在一个模4余数为3的质数。
11. 模8余数为1或7的质数的平方的余数一定是1。
12. 模8余数为3或5的质数的平方的余数一定是5。
13. 模7余数为3的整数的立方的余数一定是6。
14. 模7余数为2的整数的立方的余数一定是1。
15. 质数p(p>3)的形式一定为6k±1。
16. 奇数次方的结果的模数同底数的模数相同。
17. 质数p(p>3)的倍数n一定可以表示为n=a²+b²(a,b为整数)。
18. 任意正整数都可以表示为四个平方数之和。
19. 若公式$f(x)=ax^2+bx+c$有解,则$(a,b,c)$一定是三个连续自然数。
20. 若$a|b$且$a>1$,则$2a\\leq b$。
21. $gcd(a,b)=gcd(a,a+b)$。
22. 若$gcd(a,b)=1$,则$gcd(a+b,a-b)\\in\\{1,2\\}$。
23. 若$a|b$且$b|c$,则$gcd(a,c)=\\frac{a}{gcd(a,b)}\\cdot\\frac{b}{gcd(b,c)}\\cdot gcd(b,c)$。
24. 若$a|b$且$b|a$,则$a=\\pm b$。
25. 若$a|b$,则$a|bc$。
26. $(\\frac{a}{b},\\frac{c}{d})=\\frac{(a,c)}{(b,d)}$($a,b,c,d$互质)。
27. $\\varphi(p^n)=p^n-p^{n-1}$。
高中数学结论高中数学结论是数学学科的基础,是我们学习数学知识的框架。
在数学教育中,高中数学结论旨在帮助学生理解数学概念、运算方法和定理推导的逻辑思维。
下面将给出一些高中数学结论的相关参考内容,以供参考。
一、代数结论:1. 次数为n的多项式方程有n个根。
2. 有理数是整数的商的集合。
3. 平方根和多次方根不是有理数的是无理数。
4. 这两个无理数是相等的,当且仅当它们的小数部分都是无限循环小数。
5. 分母是质数的普通分数,无论如何约分都不能化为有限小数。
6. 两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积。
7. 若两个正整数的公约数只有1,则它们互质。
8. 若a和b为整数,则公式(a+b)^2=a^2+2ab+b^2成立。
二、几何结论:1. 两直线相交于一点,这两个角称为相交角,相交角互补。
2. 两垂直相交的直线,它们互为背街角,且每两条相邻角互补。
3. 两条相交线形成的两对内错角互补。
4. 直角三角形斜边的平方等于两个直角边的平方和。
5. 三角形两边之和大于第三边,两边之差小于第三边。
6. 两角的角和等于90°,则这两个角互余。
7. 直线和平面只有一个公共点的是垂足。
8. 平行线被截割后,对应角相等。
三、概率与统计结论:1. 所有概率的总和为1。
2. 独立事件的乘法原理成立。
3. 随机事件的概率等于事件发生的次数除以总的可能次数。
4. 形成互补事件的两个事件,它们概率之和为1。
5. 事件的必然发生与不可能发生的概率分别为1和0。
6. 样本空间包含了所有可能的基本事件。
以上是高中数学常见的一些结论,它们是数学知识体系中的基础,对于深入理解和应用数学知识非常重要。
希望以上内容对你有所帮助。
高中数学常用公式、重要结论及典型例题函数与导数(内部资料翻录必究)相关概念1. 函数的定义域:定义域是一个集合,要用集合或区间来表示,如果用区间表示,不能用“或”连接,要用U “”连接。
2. 如()f x 的定义域为[,]a b ,则复合函数(())f g x 的定义域由()a g x b ≤≤求出。
3. 任何一个定义域关于原点对称的函数)(x f ,都可以写成一个奇函数)(x h 与一个偶函数)(x g 之和的形式(事实上,这种表示还是唯一的,令()()()()12h x f x f x =--,()()()()12g x f x f x =+-即可)。
1) 凸函数(凹函数):设函数)(x f 在区间I 有定义,若对12,(0,1)x x I t ∀∈∈、,都有 )()1()())1((2121x f t x tf x t tx f -+≤-+(或)()1()())1((2121x f t x tf x t tx f -+≥-+),则称)(x f 为区间I 上的凸函数(或凹函数)。
2) 凸函数(凹函数)快速判断:如果函数)(x f 的二阶导数存在,则()0f x ''>时,)(x f 是凹函数(图像开口向上);()0f x ''<时,)(x f 是凸函数(图像开口向下)。
此性质往往可以用来快速判断函数图像类选填题。
3) 函数)(x f y =在0x 处可导,如果0()0f x '>,则)(x f 在0x 附近递增;如果0()0f x '<,则)(x f 在0x 附近递减。
此性质往往可以用来速解某些函导混合类选填题难题。
4. 方程)0(02≠=++a c bx ax 在),(21k k 内有且只有一个实根,等价于12()()0f k f k ⋅< 5. 闭区间上二次函数的最值:)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处或区间的两端点处取得,具体如下: (1)当0a >时,若[]q p a bx ,2∈-=,则{}min max ()(),()max (),()2b f x f f x f p f q a =-=; 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = (2)当0a <时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =, 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = 6. 函数单调性的等价关系(1)设[]1212,,,x x a b x x ∈≠那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数7. 单调性的典型应用:(1)利用单调性求函数值域(2)利用单调性解方程:例如,对于方程2332(2038)484152x x x x x -+=-+- 可将其变形为2323(2038)4(2038)4x x x x x x -++-+=+ 构造函数3()4f x x x =+,原方程变为2(2038)()f x x f x -+=考虑到()f x 为单调递增函数,故必有22038x x x -+=,解得2x =或19x =。
高中数学常用的42个结论1.并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.2.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.3.补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A;∁U(A∩B)=(∁UA)∪(∁UB);∁U(A∪B)=(∁UA)∩(∁UB).4.改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.5.否定结论:对原命题的结论进行否定.6.倒数性质(1)a>b,ab>0⇒;(2)a<0<b⇒;(3)a>b>0,d>c>0⇒.7.有关分数的性质若a>b>0,m>0,则8.分式不等式的解法9.两个恒成立的充要条件(1)一元二次不等式ax2+bx+c>0对任意实数x恒成立⇔(2)一元二次不等式ax2+bx+c<0对任意实数x恒成立⇔10.几个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)(a,b∈R),当且仅当a=b时取等号.(3)(a,b∈R),当且仅当a=b时取等号.(4)(a,b同号),当且仅当a=b时取等号.11.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.12.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.13.函数单调性的两个等价结论设∀x1,x2∈D(x1≠x2),则(1)(或(x1-x2)[f(x1)-f(x2)]>0)⇔f(x)在D上单调递增.(2)(或(x1-x2)[f(x1)-f(x2)]<0)⇔f(x)在D上单调递减.14.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.15.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.16.函数周期性的常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=,则T=2a(a>0).(3)若f(x+a)=,则T=2a(a>0).17.幂函数的图象和性质指数函数图象的特点18.指数函数的图象恒过点(0,1),(1,a),,依据这三点的坐标可得到指数函数的大致图象.19.函数y=ax与y=(a>0,且a≠1)的图象关于y轴对称.20.指数函数y=ax与y=bx的图象特征:在第一象限内,图象越高,底数越大;在第二象限内,图象越高,底数越小.21.换底公式的三个重要结论①logab=;②logambn=logab;③logab·logbc·logcd=logad.22.对数函数图象的特点(1)对数函数y=logax(a>0且a≠1)的图象过定点(1,0),且过点(a,1),,函数图象只在第一、四象限.(2)函数y=logax与y=log1ax(a>0且a≠1)的图象关于x轴对称.(3)在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.23.函数图象平移变换的八字方针(1)“左加右减”,要注意加减指的是自变量.(2)“上加下减”,要注意加减指的是函数值.24.函数图象自身的轴对称(1)f(-x)=f(x)⇔函数y=f(x)的图象关于y轴对称.(2)函数y=f(x)的图象关于x=a对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x)⇔f(-x)=f(2a+x).(3)若函数y=f(x)的定义域为R,且有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=对称.25.函数图象自身的中心对称(1)f(-x)=-f(x)⇔函数y=f(x)的图象关于原点对称.(2)函数y=f(x)的图象关于(a,0)对称⇔f(a+x)=-f(a-x)⇔f(x)=-f(2a-x)⇔f(-x)=-f(2a+x).(3)函数y=f(x)的图象关于点(a,b)成中心对称⇔f(a+x)=2b-f(a-x)⇔f(x)=2b-f(2a-x).26.两个函数图象之间的对称关系(1)函数y=f(a+x)与y=f(b-x)的图象关于直线x=对称(由a+x=b-x得对称轴方程);(2)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称;(3)函数y=f(x)与y=2b-f(-x)的图象关于点(0,b)对称.27.有关函数零点的三个结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.28.“对勾”函数f(x)=x+(a>0)的性质(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0, ]上单调递减.(2)当x>0时,x=时取最小值2;当x<0时,x=-时取最大值-2.29.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.30.象限角31.轴线角32.三角函数定义的推广设点P(x,y)是角α终边上任意一点且不与原点重合,r=|OP|,则sin α=,cos α=,tan α=.33.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化.34.同角三角函数的基本关系式的几种变形(1)sin2α=1-cos2α=(1+cos α)(1-cos α);cos2α=1-sin2α=(1+sin α)(1-sin α);(sin α±cos α)2=1±2sin αcos α.(2)sin α=tan αcos α.35.四个必备结论(1)降幂公式:cos2α=,sin2α=.(2)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.(3)tan α±tan β=tan(α±β)(1∓tan αtan β),1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=.(4)辅助角公式asin x+bcos x=,其中tan φ=.36.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.37.与三角函数的奇偶性相关的结论(1)若y=Asin(ωx+φ)为偶函数,则有φ=kπ+(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=Acos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+(k∈Z).(3)若y=Atan(ωx+φ)为奇函数,则有φ=kπ(k∈Z).38.对称中心与零点相联系,对称轴与最值点相联系.y=Asin(ωx+φ)的图象有无数条对称轴,可由方程ωx+φ=kπ+(k∈Z)解出;它还有无数个对称中心,即图象与x 轴的交点,可由ωx+φ=kπ(k∈Z)解出.39.相邻两条对称轴间的距离为,相邻两对称中心间的距离也为,函数的对称轴一定经过图象的最高点或最低点.40.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sin A>sin B⇔cos A<cos B.41.三角形中的三角函数关系(1)sin(A+B)=sin C.(2)cos(A+B)=-cos C.(3)sin +B=cos.(4)cos=sin. 42.三角形中的射影定理在△ABC中,a=bcos C+ccos B;b=acos C+ccos A;c=bcos A+acos B.。
高中数学常用结论
一、根据相似三角形的等腰定理
(1)两腰的比等于对角的比;
(2)三边比例相等的三角形称相似;
(3)等腰三角形的面积等于其高度乘以两边中短边的一半;
二、根据勾股定理
(1)直角三角形的斜边的平方等于两条直角边的平方和;
(2)圆的周长等于1/4圆的圆周弧度乘以圆的半径;
(4)圆形的面积乘以其半径的平方等于圆的圆周长乘以其半径的一半。
三、根据贝塞尔定理
(1)二次曲线的曲率(即曲线弯曲度)与其对称轴对应点(对称中心)到纵轴之比等;
(2)二次曲线的弧长与其轴对称点所在位置的斜率成反比;
(3)二次曲线夹角随斜率增大而增大,随斜率减小而减小;
(4)弦长到圆心的比例等于圆曲线上对应点的切线与曲线的曲率的比值。
四、根据椭圆的定义
(1)椭圆的轴向等于其长轴乘以其短轴;
(2)椭圆的中心距等于其长轴的一半;
五、其他常用结论
(1)二元一次方程有无穷多个解;
(2)直线上垂线方程为y=mx+b;
(3)两圆的位置关系有位置外,内两个圆,一个圆在另一个圆的内部,内切外离三种;
(4)多重解的方程有至少重根两个解;
(5)当两条抛物线的焦点不相同时,它们有两种位置关系,分别为相交和不相交;
(6)方程求两个解时,一定存在最佳解,即有最大零点和最小零点;(7)多项式方程的根个数等于方程的次数减一;
(8)等比数列和等差数列有特定公式求和;
(9)三角形内角之和为180度。
高中数学33条神级结论1. 根据角平分线定理,一个角的平分线会把对角线分成两个相等的部分。
2. 根据同位角对应定理,若两条直线被一条横截线相交,同位角对应相等。
3. 两个互补角的度数相加等于90度。
4. 两个补角的度数相加等于180度。
5. 三角形内角和为180度。
6. 三角形外角等于其对立内角之和。
7. 两个平行线被一条横截线相交,对应角相等。
8. 两个平行线被一条横截线相交,同位角相等。
9. 两个垂直角相等。
10. 在一个弦上的两个圆心角相等。
11. 同弦等圆的圆心角相等。
12. 圆周角等于其对应的圆心角的一半。
13. 位于一个弧上的两个弦的圆心角相等。
14. 在直角三角形中,三角形的两腰相等时,三角形是等腰三角形。
15. 等腰三角形的底角相等。
16. 在等腰三角形中,底边中线等于顶点到底边的距离。
17. 在等边三角形中,三角形的三个角和是180度。
18. 等边三角形的任意两个角都相等。
19. 等边三角形内角等于60度。
20. 一个正多边形的内角和为180度。
21. 一个正五边形的内角等于108度。
22. 一个正六边形的内角等于120度。
23. 一个正七边形的内角等于128.57度。
24. 一个正八边形的内角等于135度。
25. 一个正十边形的内角等于144度。
26. 一个正十二边形的内角等于150度。
27. 对角相等的四边形是平行四边形。
28. 平行四边形的对角线相等。
29. 一个长方形的对角线相等且垂直。
30. 一个正方形的对角线相等且互相垂直。
31. 一个菱形的对角线相互垂直且对角线相等。
32. 在一个梯形中,底边的平行线段长度相等。
33. 一个平行四边形的对角线平分。
以上是高中数学中33条神级结论,掌握好这些结论,将对你的数学学习有着重要的帮助。
祝愿你在数学的道路上一帆风顺!。
完整版)高中数学常用二级结论大全高中数学常用二级结论大全一、基础常用结论在数学研究中,基础常用结论是我们必须要掌握的。
以下是几个常用的基础结论:1.两个不等式相加,其左边的和大于右边的和。
2.两个不等式相乘,其左边的积大于右边的积。
3.两个相等的式子同时加上或减去一个相同的式子,仍然相等。
二、圆锥曲线相关结论圆锥曲线是高中数学中的重要内容,以下是一些常用的结论:1.椭圆的离心率小于1,双曲线的离心率大于1,抛物线的离心率等于1.2.椭圆的长轴在x轴上,短轴在y轴上;双曲线的长轴在x轴上,短轴在y轴上;抛物线的对称轴在x轴上或y轴上。
3.椭圆的焦点到中心的距离为c,半轴长为a和b,满足c²=a²-b²;双曲线的焦点到中心的距离为c,半轴长为a和b,满足c²=a²+b²;抛物线的焦点到顶点的距离为p,满足p=1/4a。
三、与角相关结论角是数学中的重要概念,以下是一些与角相关的结论:1.两条互相垂直的直线的斜率之积为-1.2.一条直线与过原点的直线的夹角等于该直线的斜率。
3.余弦函数的定义域为实数集,值域为[-1,1];正弦函数和余切函数的定义域为实数集,值域为[-1,1];正切函数的定义域为实数集,值域为R。
四、数列相关结论数列是数学中的重要内容,以下是一些常用的数列结论:1.等差数列的通项公式为an=a1+(n-1)d;等比数列的通项公式为an=a1q^(n-1)。
2.等差数列的前n项和公式为Sn=n/2(a1+an);等比数列的前n项和公式为Sn=a1(1-q^n)/(1-q)。
3.斐波那契数列的通项公式为an=1/√5[((1+√5)/2)^n-((1-√5)/2)^n]。
五、三角形与三角函数相关结论三角形和三角函数是高中数学中的重要内容,以下是一些常用的结论:1.三角形的内角和为180°。
2.正弦定理:a/sin A=b/sin B=c/sin C;余弦定理:a²=b²+c²-2bc cos A。
一、常用结论1. A ∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A ∩C U B=∅⇔C U A ∪B=U2、含n 个元素的集合的子集个数为2n ,真子集个数为2n-1;3、如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+,那么函数()x f y =的图象关于直线a x =对称⇔()y f x a =+是偶函数;若都有()()x b f x a f +=-,那么函数()x f y =的图象关于直线2ba x +=对称 4、f(x)是偶函数⇔f(-x)=f(x)=f(|x|),定义域含零的奇函数过原点(f(0)=0)5、函数()0,0>>+=b a xb ax y 函数在]a ab -∞-,(或),[+∞aab上单调递增;在)0,[aab -或]0a ab,(上单调递减6、二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.7、(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. 8、如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.9、若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.10、对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).11、设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.12、若()y f x =图像有两条对称轴,()x a x b a b ==≠,则()y f x =必是周期函数,且一周期为2||T a b =-;若()y f x =图像有两个对称中心(,0),(,0)()A a B b a b ≠,则()y f x =是周期函数,且一周期为2||T a b =-;如果函数()y f x =的图像有一个对称中心(,0)A a 和一条对称轴()x b a b =≠,则函数()y f x =必是周期函数,且一周期为 4||T a b =-;13、反比例函数:)0x (xc y ≠=平移⇒b x ca y -+=(中心为(b,a))14、关于对称的结论(1)函数()x f y =关于原点的对称曲线方程()x f y --=;(2)曲线(,)0f x y =关于直线y x a =±+的对称曲线的方程为((),)0f y a x a ±-±+=。
高中数学常用结论集锦数学是科学中最基本的一部分,它是世界上最伟大的思想体系之一,在高中学习数学可以培养学生对抽象思维的能力。
高中数学中的一些常用结论如下:一、元素概念:元素的概念指的是确定性的大小,如平面、直线、以及其他几何体的形状和组合而成的集合。
例如:正方形是由四条直线组成,这四条直线就是正方形的元素。
二、互斥原理:如果两个事件不存在同时发生的可能性,那么它们称为互斥事件。
例如:交叉相乘,也就是交叉乘法,它具有互斥性,即一个事件发生,另一个则不会发生。
三、等比例原理:如果两个直线平分得到的两部分等比例,则两个直线等比例,并且它们共线。
例如:如果AB//CD,那么AB/AC=E/ED.五、证明原理:数学证明是传统意义上的数学推理技术,它按照一系列推理过程,对数学结论进行证明判定。
例如:如果要证明函数f(x)的导数为2x,则可以使用定义导数的证明方法,通过应用极限理论来证明。
六、定义律原理:定义律是数学作为一门实践性学科中常用的一种工具语言,它是构建数学体系的基础。
例如:平行线定义:两条线段在平面上至少有两个点都在同一条直线上,则称这两条线段是平行的。
七、函数原理:函数是把定义域的每个元素映射为唯一的一个定义域成员的一种联系,它是数学中最重要的概念和工具,也是数学经典描述形式。
例如: y = ax+b 是一元函数,a和b分别为函数的系数。
八、应用结论:应用结论指的是应用某一原理,以解决某一实际问题的结果。
例如:应用勾股定理求三角形的斜边,若一个三角形的两条边分别为a和b,他们的和大于第三条边的长度c,那么斜边的长度就是根号下a2+b2-c2的结果。
38个常用结论内容提要一些常用的结论,整理成到一起, 形成了这本常用结论小册子.把结论分成了两类:一类是重要结论, 这是必须掌握的;另一类是二级结论, 可以选择性地掌握.目录函数重要结论3:函数图象的对称轴和对称中心结论重要结论4:双对称的周期结论重要结论5:经典切线放缩不等式二级结论27:常用泰勒公式平面向量重要结论6:向量中线定理重要结论7:三点共线向量系数和结论重要结论8:投影向量计算公式重要结论9:重心坐标二级结论29:极化恒等式三角函数、解三角形重要结论10:角平分线性质定理重要结论11:三角形的内切圆半径公式二级结论28:万能公式数列重要结论12:等差、等比数列的片段和性质立体几何重要结论13:三垂线定理二级结论31:正四面体外接球、内切球半径解析几何重要结论14:椭圆通径公式重要结论15:双曲线通径公式重要结论17:弦长公式重要结论18:双曲线的焦点到渐近线距离结论重要结论19:切线、切点弦统一结论重要结论20:椭圆的中点弦斜率积结论重要结论21:双曲线的中点弦斜率积结论二级结论32:角版焦半径、焦点弦公式, 焦原三角形面积公式二级结论33:原点三角形面积公式二级结论34:椭圆的第三定义斜率积结论二级结论35:双曲线第三定义斜率积结论二级结论36:抛物线的垂直定点结论二级结论37:以抛物线的焦点弦为直径的圆与准线相切二级结论38:点乘双根法概率统计重要结论22:平均数、方差的性质重要结论23:期望、方差的性质重要结论24:超几何分布期望公式不等式二级结论25:糖水不等式二级结论26:三元均值不等式其它重要结论1:子集个数结论重要结论2:等比性质重要结论16:韦达定理推论二级结论30:重心等分面积结论38个常用结论重要结论1:(子集个数结论)设集合A有n n∈N*个元素,则A的子集有2n个, 非空子集有2n-1个,真子集有2n-1个,非空真子集有2n-2个.证明:设A的元素分别为x1,x2,⋯,x n,集合B是集合A的子集,则要分析集合B有几种情况,可分步考虑A中的每个元素是否在B中,因为x1,x2,⋯,x n均可能在或不在B中,所以每个元素都有2种情况,由分步乘法计数原理,集合B有2×2×⋯×2=2n种情况,故A的子集有2n个,去掉空集, A的非空子集有2n-1个,去掉A本身, A的真子集有2n-1个,去掉空集和A本身, A的非空真子集有2n-2个.重要结论2:(等比性质)设ab=cd,且b+d≠0,则ab=cd=a+cb+d .证明:设ab=cd=k,则a=bk,c=dk ,所以a+cb+d=bk+dkb+d=k b+db+d=k,故ab=cd=a+cb+d .重要结论3:(函数图象的对称轴和对称中心结论)(1)若f x 满足f a+x=f b-x,则f x 的图象关于直线x=a+b2对称.(2)若f x 满足f a+x+f b-x=c,则f x 的图象关于点a+b2,c2对称.(3)若将上述(1)(2)中的x全部换成2x(或3x等等),结论依然成立.例如,若f a+2x=f b-2x,则仍可得到f x 关于直线x=a+b2对称.证明:(1)设P x,f x是函数f x 图象上任意一点,则P关于直线x=a+b2的对称点为Pa+b-x,f x,如图1,要证结论成立,只需证P 也在f x 的图象上,即证f x =f a+b-x,在f a+x=f b-x中将x换成x-a可得f a+x-a=f b-x-a,所以f x =f a+b-x,故f x 的图象关于直线x=a+b2对称;(2)设P x,f x是函数f x 图象上任意一点,则P关于a+b2,c2的对称点为P a+b-x,c-f x,如图2,要证结论成立,只需证P 也在f x 的图象上,即证c -f x =f a +b -x ,也即证f x +f a +b -x =c ,在f a +x +f b -x =c 中将x 换成x -a 可得f a +x -a +f b -x -a =c ,所以f x +f a +b -x =c ,故f x 的图象关于a +b 2,c 2对称.(3)以f a +2x =f b -2x 为例,此式对任意的实数x 都成立,则将x 换成x 2可得f a +x =f b -x ,所以f x 的图象关于直线x =a +b 2对称.图1图2重要结论4:(双对称的周期结论, 可借助三角函数辅助理解)(1)若函数f x 有两条对称轴,则f x 一定是周期函数,周期为对称轴距离的2倍.(2)若函数f x 有一条对称轴,一个对称中心,则f x 一定是周期函数,周期为对称中心与对称轴之间距离的4倍.(3)若函数f x 有在同一水平线上的两个对称中心,则f x 一定是周期函数,周期为对称中心之间距离的2倍.证明:(1)设函数f x 的两条对称轴分别为x =a ,x =b ,不妨假设b >a ,则f 2a +x =f -x f 2b +x =f -x ,所以f 2a +x =f 2b +x ,在上式中将x 换成x -2a 可得f x =f x +2b -2a ,所以f x 一定是周期函数,周期T =2b -2a ,周期为对称轴之间距离的2倍.(2)设函数f x 的对称轴为x =a ,对称中心为b ,c ,则f 2a +x -f -x =0f 2b +x +f -x =2c所以f2a+x+f2b+x=2c,将x换成x-2a可得f x +f x+2b-2a=2c ,所以f x+2b-2a=-f x +2c(i),在式(i)中将x换成x+2b-2a可得f x+2b-2a+2b-2a=-f x+2b-2a+2c ,结合式(i)可得f x+4b-4a=--f x +2c+2c=f x ,所以函数f x 一定是周期函数,周期T=4b-4a ,周期为对称轴与对称中心之间距离的4倍.(3)设f x 的两个对称中心分别为a,m,b,m,不妨假设b>a ,则f2a+x+f-x=2mf2b+x+f-x=2m,两式作差得:f2a+x-f2b+x=0 ,所以f2a+x=f2b+x,将x换成x-2a可得f2a+x-2a=f2b+x-2a,所以f x =f x+2b-2a,故f x 为周期函数,周期为T=2b-2a ,周期为两对称中心之间距离的2倍.重要结论5:(经典切线放缩不等式)(1)e x≥x+1,当且仅当x=0时取等号.(2)e x≥ex,当且仅当x=1时取等号.(3)1-1x≤ln x≤x-1,当且仅当x=1时取等号.(4)ln x≤xe,当且仅当x=e时取等号.上述不等式的图象特征如下面的两个图:证明:(1)设f x =e x-x-1,x∈R,则f x =e x-1,所以f x <0⇔x<0 ,f x >0⇔x>0,故f x 在-∞,0上↘,在0,+∞上↗ ,所以f x ≥f0 =0,从而e x-x-1≥0,故e x≥x+1,取等条件是x=0 . (2)设g x =e x-ex, x∈R,则g x =e x-e,所以g x <0⇔x<1 ,g x >0⇔x >1,故g x 在-∞,1 上↘,在1,+∞ 上↗ ,所以g x ≥g 1 =0,从而e x -ex ≥0,故e x ≥ex ,取等条件是x =1 .(3)设h x =ln x -x +1,x >0,则h x =1x -1=1-x x,所以h x >0⇔0<x <1 ,h x <0⇔x >1,故h x 在0,1 上↗,在1,+∞ 上↘ ,所以h x ≤h 1 =0,从而ln x -x +1≤0,故ln x ≤x -1,取等条件是x =1 ,在上式中将x 换成1x 可得ln 1x ≤1x -1,所以-ln x ≤1x -1,故ln x ≥1-1x ,取等条件是1x =1,即x =1 .(4)设r x =ln x -x e ,x >0,则r x =1x -1e =e -x ex,所以r x >0⇔0<x <e ,r x <0⇔x >e ,故r x 在0,e 上↗,在e ,+∞ 上↘ ,所以r x ≤r e =0,从而ln x -x e ≤0,故ln x ≤x e,取等条件是x =e .重要结论6:(向量中线定理)如图,设D 是BC 中点,则AD =12AB +12AC .证明:AD =AB +BD =AB +12BC =AB +12AC -AB =12AB +12AC .重要结论7:(三点共线向量系数和结论)如图,平面内A ,B ,C 三点不共线,点D 满足AD =λAB +μAC λ,μ∈R ,则B ,C ,D 三点共线的充要条件是λ+μ=1 .证明:先看充分性.当λ+μ=1时, μ=1-λ ,所以AD =λAB +μAC =λAB +1-λ AC =λAB -AC +AC =λCB +AC ,从而AD -AC =λCB ,故CD =λCB ,所以B ,C ,D 三点共线,充分性成立;再看必要性. 当B ,C ,D 三点共线时,可设BD =mBC ,所以AD =AB +BD =AB +mBC =AB +m AC -AB =1-m AB +mAC ,与AD =λAB +μAC 对比可得λ=1-m μ=m ,所以λ+μ=1-m +m =1,必要性成立;所以B ,C ,D 三点共线的充要条件是λ+μ=1 .重要结论8:(投影向量计算公式)向量b 在向量a 上的投影向量为a ⋅b a2a .证明:如图,设e 为与a 同向的单位向量,则b 在a 上的投影向量为b cos θ e ,由于e =a a ,所以b cos θ e =b cos θ a a =b cos θa a =a ⋅b cos θa 2a =a ⋅b a2a .重要结论9:(重心坐标)△ABC 的顶点分别为A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,则△ABC 的重心G 的坐标为x 1+x 2+x 33,y 1+y 2+y 33. 这一结论可推广到空间中.证明:如图,设G x ,y 为△ABC 的重心,则AG :GD =2:1 ,所以AG =23AD =23×12AB +AC =13AB +AC (i ),又AG =x -x 1,y -y 1 ,AB =x 2-x 1,y 2-y 1 ,AC =x 3-x 1,y 3-y 1 ,所以由式(i )可得x -x 1=13x 2-x 1+x 3-x 1 y -y 1=13y 2-y 1+y 3-y 1 ,整理得:x =x 1+x 2+x 33y =y 1+y 2+y 33 ,故重心G 的坐标为x 1+x 2+x 33,y 1+y 2+y 33.重要结论10:(角平分线性质定理)如图, △ABC 的内角A 的平分线与BC 交于点D ,则AB AC=BD CD .证明:设△ABC的BC边上的高为h,则S△ABDS△ACD=12BD⋅h12CD⋅h=BDCD(i),又AD是内角A的平分线,所以∠BAD=∠CAD ,故S△ABDS△ACD=12AB⋅AD⋅sin∠BAD12AC⋅AD⋅sin∠CAD=ABAC,结合式(i)可得ABAC=BDCD.重要结论11:(三角形的内切圆半径公式)设△ABC的面积为S,周长为L,内切圆半径为r,则r=2S L .证明:如图,设切点分别为D,E,F,则OD⊥AB,OE⊥BC,OF⊥AC ,所以S=S△OAB+S△OBC+S△OAC=12AB⋅OD+12BC⋅OE+12AC⋅OF=12AB⋅r+12BC⋅r+12AC⋅r=12AB+BC+ACr=12Lr,所以r=2SL .重要结论12:(等差、等比数列的片段和性质)(1)若a n是公差为d的等差数列,其前n项和为S n,则S m,S2m-S m,S3m-S2m,⋯也构成等差数列,公差为m2d .(2)若a n是公比为q的等比数列,其前n项和为S n,则当q≠-1或m为奇数时, S m,S2m-S m,S3m-S2m,⋯也构成等比数列,公比为q m .证明:(1)S m=a1+a2+⋯+a m, S2m-S m=a m+1+a m+2+⋯+a2m ,因为a m+1-a1=md, a m+2-a2=md, ⋯, a2m-a m=md ,所以S2m-S m-S m=a m+1+a m+2+⋯+a2m-a1+a2+⋯+a m=a m+1-a1+a m+2-a2+⋯+a2m-a m=md+md+⋯+md=m2d,同理, S3m-S2m-S2m-S m=a2m+1+a2m+2+⋯+a3m-a m+1+a m+2+⋯+a2m=a2m+1-a m+1+a2m+2-a m+2+⋯+a3m-a2m=md+md+⋯+md=m2d,以此类推, S m,S2m-S m,S3m-S2m,⋯构成公差为m2d的等差数列.(2)当q≠-1或m为奇数时, S m,S2m-S m,S3m-S2m,⋯均不为0,且S2m-S mS m=a m+1+a m+2+⋯+a2ma1+a2+⋯+a m=a1q m+a2q m+⋯+a m q ma1+a2+⋯+a m=q m , S3m-S2mS2m-S m=a2m+1+a2m+2+⋯+a3ma m+1+a m+2+⋯+a2m=a m+1q m+a m+2q m+⋯+a2m q ma m+1+a m+2+⋯+a2m=q m,以此类推, S m,S2m-S m,S3m-S2m,⋯构成公比为q m的等比数列.重要结论13:(三垂线定理)如图, a⊂α,l在α内的射影是b,若a⊥b,则a⊥l , 此结论反过来也成立,即当a⊥l时,也有a⊥b .证明:因为c⊥αa⊂α,所以a⊥c,故a⊥b⇔a⊥图中的三角形所在平面⇔a⊥l重要结论14:(椭圆通径公式)对于椭圆, 过其焦点且垂直于长轴的弦叫做通径, 通径的长为2b2a,其中a,b分别为椭圆的长半轴长、短半轴长.证明:如图,不妨设椭圆的方程为x2a2+y2b2=1a>b>0,其焦点为±c,0,过其焦点且与长轴垂直的直线的方程为x=c或x=-c,以x=c为例,将x=c代入x2a2+y2b2=1可得c2a2+y2b2=1 ,解得:y=±b21-c2 a2=±b2⋅a2-c2a2=±b4a2=±b2a ,所以图中通径长AB=2b2a,由椭圆的对称性可知通径A B 的长也为2b2a .重要结论15:(双曲线通径公式)对于双曲线, 过其焦点且垂直于实轴的弦叫做通径,通径的长为2b 2a,其中a ,b 分别为双曲线的实半轴长、虚半轴长.证明:如图,不妨设双曲线的方程为x 2a 2-y 2b2=1a >0,b >0 ,其焦点为±c ,0 ,过其焦点且与实轴垂直的直线的方程为x =c 或x =-c ,以x =c 为例,将x =c 代入x 2a 2-y 2b 2=1可得c 2a 2-y 2b2=1 ,解得:y =±b 2c 2a 2-1=±b 2⋅c 2-a 2a 2=±b 4a 2=±b 2a ,所以图中通径长AB =2b 2a ,由双曲线的对称性可知通径A B 的长也为2b 2a .重要结论16:(韦达定理推论)设x 1,x 2是一元二次方程ax 2+bx +c =0a ≠0 的两根,则x 1-x 2 =Δa.证明:由韦达定理, x 1+x 2=-b a ,x 1x 2=c a,所以x 1-x 2 =x 1-x 2 2=x 1+x 2 2-4x 1x 2=-b a 2-4⋅c a =b 2a 2-4c a =b 2-4ac a 2=Δa.重要结论17:(弦长公式)设A x 1,y 1 ,B x 2,y 2 ,若A ,B 在直线y =kx +b 上,则AB =1+k 2⋅x 1-x 2 ;若A ,B 在直线x =my +t 上,则AB =1+m 2⋅y 1-y 2 .特别地,当A ,B 是直线与椭圆(或双曲线、抛物线)交点时,常联立直线与椭圆(或双曲线、抛物线)的方程,得到关于x 或y 的一元二次方程,则上述弦长公式中的x 1-x 2 ,y 1-y 2 可由韦达定理推论来算.以x 1-x 2 为例,假设联立直线与圆锥曲线得到的一元二次方程是ax 2+bx +c =0a ≠0 ,则x 1-x 2 =Δa,所以此时的弦长公式可写成AB =1+k 2⋅x 1-x 2 =1+k 2⋅Δa .证明:由两点间的距离公式, AB =x 1-x 2 2+y 1-y 2 2(i ),若A ,B 两点在直线y =kx +b 上,则y 1=kx 1+by 2=kx 2+b ,代入(i )得AB =x 1-x 22+kx 1+b -kx 2-b 2=x 1-x 22+k 2x 1-x 2 2=1+k 2x 1-x 2 2=1+k 2⋅x 1-x 2 ;若A ,B 两点在直线x =my +t 上,则x 1=my 1+tx 2=my 2+t ,代入(i )得AB =my 1+t -my 2-t 2+y 1-y 2 2=m 2y 1-y 2 2+y 1-y 2 2=m 2+1 y 1-y 2 2=1+m 2⋅y 1-y 2 .重要结论18:双曲线的焦点到其渐近线的距离等于虚半轴长b .证明:不妨设双曲线为x 2a 2-y 2b2=1a >0,b >0 ,则该双曲线的渐近线为y =±ba x , 即bx±ay =0,设双曲线的焦点为±c ,0 ,则焦点到渐近线的距离d =±cbb 2+±a 2=bc a 2+b 2=bcc =b .重要结论19:(切线、切点弦统一结论)设点P x 0,y 0 ,将圆的标准方程x -a 2+y -b 2=r 2变成x -a x 0-a +y -b y 0-b =r2,或在圆的一般式方程x 2+y 2+Dx +Ey +F =0中,用x 0x 替换x 2,用y 0y替换y 2,用x +x 02替换x ,用y +y 02替换y ,可以得到一个新方程,当P 在圆上时,如图1,该方程表示切线l ;当P 在圆外时,如图2,该方程表示切点弦AB 所在直线的方程. 本结论对椭圆、双曲线、抛物线也成立.图1图2证明:按圆、椭圆、双曲线、抛物线逐一论证上述统一结论较繁琐, 下面我们只证圆的切点弦方程.如下图,因为PA ,PB 是圆的切线,所以PA ⊥AC ,PB ⊥BC ,故P ,A ,C ,B 四点都在以PC 为直径的圆上, AB 即为该圆与圆C 的公共弦,由P x 0,y 0 ,C a ,b 可得PC 中点为x 0+a 2,y 0+b2,PC 2=x 0-a 2+y 0-b 2 ,故以PC 为直径的圆的方程为x -x 0+a 2 2+y -y 0+b 22=14x 0-a 2+y 0-b 2 ,展开整理得:x 2+y 2-x 0+a x -y 0+b y +ax 0+by 0=0(i ),圆C 的方程为x 2+y 2-2ax -2by+a 2+b 2=r 2(ii ),用方程(ii )减去方程(i )可得x 0-a x +y 0-b y -ax 0-by 0+a 2+b 2=r 2 ,整理得直线AB 的方程为x 0-a x -a +y 0-b y -b =r 2 .重要结论20:(椭圆的中点弦斜率积结论)如图, AB 是椭圆x 2a 2+y 2b 2=1a >b >0 的一条不与坐标轴垂直且不过原点的弦, M 为AB 中点,则k AB ⋅k OM =-b2a2 .注:对于焦点在y 轴上的椭圆y 2a 2+x 2b 2=1a >b >0 ,则上述斜率积为-a 2b2 .证明:设A x 1,y 1 ,B x 2,y 2 ,x 1≠x 2,y 1≠y 2 ,因为A ,B 都在椭圆上,所以x 21a 2+y 21b2=1x 22a 2+y 22b 2=1,两式作差得:x 21-x 22a 2+y 21-y 22b 2=0,整理得:y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=-b 2a2(i ),注意到y 1-y 2x 1-x 2=k AB ,y 1+y 2x 1+x 2=2y M 2x M =y M x M =k OM ,所以式(i )即为k AB ⋅k OM =-b 2a 2 ,对于焦点在y 轴上的情形,证法与上面相同,不再赘述.重要结论21:(双曲线的中点弦斜率积结论)如图, AB 是双曲线x 2a 2-y 2b2=1(a >0 ,b >0)的一条不与坐标轴垂直且不过原点的弦, M为AB 中点,则k AB ⋅k OM =b2a2 .注:对于焦点在y 轴上的双曲线y 2a 2-x 2b 2=1a >0,b >0 ,则上述斜率积为a 2b2 .证明:设A x 1,y 1 ,B x 2,y 2 ,x 1≠x 2,y 1≠y 2 ,因为A ,B 都在双曲线上,所以x 21a 2-y 21b2=1x 22a 2-y 22b 2=1,两式作差得:x 21-x 22a 2-y 21-y 22b 2=0,整理得:y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=b 2a2(i ),注意到y 1-y 2x 1-x 2=k AB ,y 1+y 2x 1+x 2=2y M 2x M =y M x M =k OM ,所以式(i )即为k AB ⋅k OM =b 2a2 ,对于焦点在y 轴上的情形,证法与上面相同,不再赘述.重要结论22:(平均数、方差的性质)设数据x 1,x 2,⋯,x n 的平均数为x,方差为s 2 , 标准差为s ,则数据ax 1+b ,ax 2+b ,⋯,ax n+b 的平均数为ax+b ,方差为a 2s 2,标准差为a s .证明:由题意, x =x 1+x 2+⋯+x n n ,s 2=1nx 1-x 2+x 2-x 2+⋯+x n -x2 ,所以y =y 1+y 2+⋯+y nn =ax 1+b +ax 2+b +⋯+ax n +b n=a x 1+x 2+⋯+x n +nb n =a ⋅x 1+x 2+⋯+x n n+b =ax +b ,故新数据的方差s 21=1ny 1-y 2+y 2-y 2+⋯+y n -y 2=1nax 1+b -ax -b 2+ax 2+b -ax -b 2+⋯+ax n +b -ax -b 2=1na 2x 1-x 2+a 2x 2-x 2+⋯+a 2x n -x 2 =a 2⋅1nx 1-x 2+x 2-x 2+⋯+x n -x 2 =a 2s 2 ,标准差s 1=a 2s 2=a s .重要结论23:(期望、方差的性质)设随机变量X 的期望为E X ,方差为D X ,标准差为D X ,若Y =aX +b ,则Y 的期望E Y =aE X +b ,方差D Y =a 2D X ,标准差为a D X .证明:设X 的分布列为X x 1x 2...x n Pp 1p 2...p n则E X =x 1p 1+x 2p 2+⋯+x n p n (i ),D X =x 1-E X 2p 1+x 2-E X 2p 2+⋯+x n -E X 2p n (ii ),因为Y =aX +b ,所以Y 的分布列为Y ax 1+b ax 2+b ...ax n +b Pp 1p 2...p n故E Y =ax 1+b p 1+ax 2+b p 2+⋯+ax n +b p n =a x 1p 1+x 2p 2+⋯+x n p n +b p 1+p 2+⋯+p n (iii ),将式(i )和p 1+p 2+⋯+p n =1代入式(iii )可得E Y =aE X +b ,D Y =ax 1+b -E Y 2p 1+ax 2+b -E Y 2p 2+⋯+ax n +b -E Y 2p n =ax 1+b -aE X -b 2p 1+ax 2+b -aE X -b 2p 2+⋯+ax n +b -aE X -b 2p n =a 2x 1-E X 2p 1+a 2x 2-E X 2p 2+⋯+a 2x n -E X 2p n=a 2x 1-E X 2p 1+x 2-E X 2p 2+⋯+x n -E X 2p n =a 2D X ,随机变量Y 的标准差为D Y =a 2D X =a D X .重要结论24:(超几何分布期望公式)设随机变量X 服从超几何分布,三个参数分别为N ,n ,M ,则E X =n ⋅MN.二级结论25:(糖水不等式)设a >b >0,c >0,则b +c a +c >ba.证明:b +c a +c -ba =b +c a -a +c b a +c a =c a -b a +c a (i )因为a >b >0,c >0,所以a +c a >0,a -b >0 ,结合(i )可得b +c a +c -b a >0,故b +c a +c >ba.二级结论26:(三元均值不等式)设a ,b ,c 为正实数,则a +b +c3≥3abc ,当且仅当a =b =c 时取等号. 此不等式可变形成abc ≤a +b +c 33.二级结论27:(常用泰勒公式)(1)e x=1+x +x 22!+x 33!+⋯+x nn !+⋯;(2)ln 1+x =x -12x 2+13x 3-⋯+-1 n +1n x n +⋯;(3)1+x a =1+ax +a a -1 2!x 2+⋯+a a -1 a -2 ⋯a -n +1 n !x n+⋯;(4)sin x =x -x 33!+x 55!-⋯+-1 n -12n -1 !x 2n -1+⋯;(5)cos x =1-x 22!+x 44!-⋯+-1 n2n !x 2n +⋯ .二级结论28:(万能公式)设α≠2k π+π且α≠k π+π2,其中k ∈Z ,则(1)sin α=2tan α21+tan 2α2;(2)cos α=1-tan 2α21+tan 2α2;(3)tan α=2tan α21-tan 2α2 .证明:(1)sin α=2sinα2cos α2=2sin α2cos α2cos 2α2+sin 2α2=2tan α21+tan 2α2;(2)cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin 2α2=1-tan 2α21+tan 2α2;(3)tan α=tan 2×α2 =2tan α21-tan 2α2. 二级结论29:(极化恒等式)如图,设D 为BC 中点,则AB ⋅AC =AD 2-BD 2 .证明:AB ⋅AC =AD +DB ⋅AD +DC ,因为DC =-DB ,所以AB ⋅AC =AD +DB ⋅AD -DB =AD 2-BD 2 ,此结论虽然归为了二级结论, 但针对性较强(涉及中线或底边中点的数量积问题), 推荐掌握.二级结论30:(重心等分面积结论)设△ABC 的重心为G ,则S △GAB =S △GAC =S △GBC .证明:如图,因为G 是△ABC 的重心,所以D ,E ,F 分别为所在边的中点,且AG :GD =BG :GE =CG :GF =2:1,考虑△GAB 和△GBD 的面积,若都以B 为顶点,则它们的高相等,设为h ,则S △GAB S △GBD =12AG ⋅h 12GD ⋅h =AG GD =2 ,所以S △GAB =23S △ABD ,又D 为BC 中点,所以S △ABD =12S △ABC ,从而S △GAB =23×12S △ABC =13S △ABC ,同理, S △GAC =S △GBC =13S △ABC ,故结论成立.二级结论31:(正四面体外接球、内切球半径)设正四面体的棱长为a ,则其外接球半径R =64a ,内切球半径r =612a .证明:如图, 将正四面体放入正方体中, 二者有相同的外接球,由正四面体的棱长为a 可得正方体的棱长为22a ,所以正方体的外接球半径R =22a ×32=64a ,故正四面体的外接球半径R =64a ,内切球半径r 即为球心O 到正四面体的面的距离,如图,球心O 为正方体的中心,即CE 的中点,由图可知CE 在面AEBF 内的射影是EF ,因为AB ⊥EF ,所以由三垂线定理, AB ⊥CE ,又CE 在面BGDE 内的射影为EG ,且BD ⊥EG ,所以由三垂线定理, BD ⊥CE ,故CE ⊥平面ABD ,设OE 与平面ABD 交于点I ,则点O 到平面ABD 的距离OI =OE -IE =12CE -IE =32×22a -IE =64a -IE (i ),由三棱锥的等体积性, V E -ABD =V A -EBD ,所以13×12×a 2×32×IE =13×12×22a 2×22a ,解得:IE =66a ,代入(i )得OI =64a -66a =612a ,所以正四面体的内切球半径r =612a .二级结论32:(角版焦半径、焦点弦公式, 焦原三角形面积公式)设抛物线y 2=2px p >0 的焦点为F ,O 为原点.(1)焦半径公式:如图1,设A 为抛物线上任意一点,记∠AFO =α,则焦半径AF =p1+cos α.(2)焦点弦公式:如图2, AB 是抛物线的焦点弦,记∠AFO =α,则AB =2psin 2α.(3)焦原三角形面积公式:如图3,设AB 是抛物线的焦点弦,记∠AFO =α,则S △AOB =p 22sin α.图1图2图3证明:(1)作AM ⊥x 轴于M ,先考虑M 在F 右侧的情形,如图4,设A x 0,y 0 ,则FM =x 0-p2,又FM =AF cos ∠AFM =AF cos π-α =-AF cos α ,与上式比较可得:-AF cos α=x 0-p2,另一方面,由坐标版焦半径公式知AF =x 0+p2,与上式作差消去x 0整理得:AF =p1+cos α;同理可证当M 在F 左侧或恰好与F 重合时,都有AF =p1+cos α.(2)如图5, ∠BFO =π-α ,由(1)中的焦半径公式可得AF =p1+cos α,BF =p 1+cos π-α=p1-cos α ,所以AB =AF +BF =p 1+cos α+p1-cos α=p 1-cos α +p 1+cos α 1+cos α 1-cos α =2p 1-cos 2α=2p sin 2α.(3)如图6,作OD ⊥AB 于D ,则OD =OF sin ∠OFD=OF sin π-α =OF sin α=p2⋅sin α ,由(2)中的焦点弦公式可得AB =2psin 2α ,所以S △AOB =12AB ⋅OD =12⋅2p sin 2α⋅p 2⋅sin α=p 22sin α.图4图5图6二级结论33:(原点三角形面积公式)设O 为原点, A x 1,y 1 ,B x 2,y 2 ,则S △AOB =12x 1y 2-x 2y 1 .证明:如图,设∠AOB =θ,则cos θ=OA ⋅OBOA ⋅OB,所以S △AOB =12OA ⋅OB ⋅sin θ=12OA⋅OB ⋅1-cos 2θ=12OA⋅OB ⋅1-OA ⋅OBOA ⋅OB 2=12OA 2⋅OB 2-OA ⋅OB 2=12x 21+y 21 x 22+y 22 -x 1x 2+y 1y 2 2=12x 21x 22+x 21y 22+y 21x 22+y 21y 22-x 21x 22+y 21y 22+2x 1x 2y 1y 2=12x 21y 22+x 22y 21-2x 1x 2y 1y 2=12x 1y 2-x 2y 12=12x 1y 2-x 2y 1 .二级结论34:(椭圆的第三定义斜率积结论)如图1,设A ,B 分别是椭圆x 2a 2+y 2b2=1a >b >0 的左、右顶点, P 是椭圆上不与A ,B 重合的任意一点,则k PA ⋅k PB =-b 2a2.注:(1)上述结论中A ,B 是椭圆的左、右顶点,可将其推广为椭圆上关于原点对称的任意两点,如图2,只要直线PA ,PB 的斜率都存在,就仍然满足k PA ⋅k PB =-b 2a2 .(2)若是焦点在y 轴上的椭圆y 2a 2+x 2b 2=1a >b >0 ,则上述斜率积为-a 2b2 .图1图2证明:图1是图2的特殊情况, 故下面只证图2的一般性结论,设A x 1,y 1 ,P x 2,y 2 ,则B -x 1,-y 1 ,k PA ⋅k PB =y 2-y 1x 2-x 1⋅y 2+y 1x 2+x 1=y 22-y 21x 22-x 21(i ),因为点A 在椭圆上,所以x 21a 2+y 21b2=1 ,故y 21=b 21-x 21a 2=-b 2a2x 21-a 2 ,同理y 22=-b 2a2x 22-a 2 ,所以y 22-y 21=-b 2a 2x 22-a 2-x 21+a 2=-b 2a2x 22-x 21 ,代入(i )得:k PA ⋅k PB =-b 2a2;在上述条件中令A -a ,0 ,B a ,0 ,即得图1的特殊情况下的结论,对于焦点在y 轴上的情形,证法与上面相同,不再赘述.此结论虽然归为了二级结论,但针对性较强(涉及椭圆上的点P 与椭圆上关于原点对称的A ,B 两点的连线斜率积问题),推荐掌握.二级结论35:(双曲线第三定义斜率积结论)如图1,设A ,B 分别是双曲线x 2a 2-y 2b2=1a >0,b >0 的左、右顶点, P 是双曲线上不与A ,B 重合的任意一点,则k PA ⋅k PB =b 2a2 .注:(1)上述结论中A ,B 是双曲线的左、右顶点,可将其推广为双曲线上关于原点对称的任意两点,如图2,只要直线PA ,PB 的斜率都存在,就仍满足k PA ⋅k PB =b 2a2 .(2)若是焦点在y 轴上的双曲线,则上述斜率积为a2b2 .图1图2证明:图1是图2的特殊情况, 故下面只证图2的一般性结论,设A x 1,y 1 ,P x 2,y 2 ,则B -x 1,-y 1 ,k PA ⋅k PB =y 2-y 1x 2-x 1,y 2+y 1x 2+x 1=y 22-y 21x 22-x 21(i ),因为点A 在双曲线上,所以x 21a 2-y 21b2=1 ,故y 21=b 2x 21a 2-1=b 2a 2x 21-a 2 ,同理, y 22=b 2a 2x 22-a 2,所以y 22-y 21=b 2a 2x 22-a 2-x 21+a 2 =b 2a2x 22-x 21 ,代入(i )得:k PA ⋅k PB =b 2a2;在上述条件中令A -a ,0 ,B a ,0 ,即得图1的特殊情况下的结论,对于焦点在y 轴上的情形,证法与上面相同,不再赘述.此结论虽然归为了二级结论,但针对性较强(涉及双曲线上的点P 与双曲线上关于原点对称的A ,B 两点的连线斜率积问题),推荐掌握.二级结论36:(抛物线的垂直定点结论)设A ,B 为抛物线y 2=2px p >0 上两点,O 为原点,若OA ⊥OB ,则直线AB 过定点M 2p ,0 .证明:设直线AB 的方程为x =my +t ,设A x 1,y 1 ,B x 2,y 2 ,因为OA ⊥OB ,所以OA ⋅OB =x 1x 2+y 1y 2=0(i ),联立x =my +t y 2=2px 消去x 整理得:y 2-2pmy -2pt =0(ii ),由韦达定理, y 1y 2=-2pt ,所以x 1x 2=y 212p ⋅y 222p =y 1y 22p 2=t 2 ,代入(i )得t 2-2pt =0,所以t =0或2p ,当t =0时, A ,B 中有一个与原点重合,不合题意,所以t =2p ,经检验,满足方程(ii )的判别式Δ>0 ,从而直线AB 的方程为x =my +2p ,故直线AB 过定点M 2p ,0 .二级结论37:(以抛物线的焦点弦为直径的圆与准线相切)证明:设以AB 为直径的圆的圆心为AB 中点P ,半径为r ,则r =12AB , 如图,作AM ⊥准线l 于点M ,BN ⊥l 于点N ,PQ ⊥l 于点Q ,则由抛物线定义, AM =AF ,BN =BF ,所以PQ=12AM+BN=12AF+BF=12AB,这说明点P到准线的距离等于r ,故准线与以AB为直径的圆相切.二级结论38:(点乘双根法)若将直线与圆雉曲线方程联立,得到关于x的一元二次方程ax2+bx+c=0a≠0,设该方程的两根为x1,x2 ,现在要算x1-tx2-t, 将其展开为x1x2-t x1+x2+t2 ,结合韦达定理来算可行,但有时这样做计算量较大,更简单的方法是根据x1,x2是该方程的两根,将该方程左侧的ax2+bx+c化为两根式,得到ax2+bx+c=a x-x1x-x2,观察发现在两端同时令x=t ,即可得到at2+bt+c=a t-x1t-x2,从而x1-tx2-t=at2+bt+ca ,这样就快速求出了目标量x1-tx2-t,此法叫做“点乘双根法”.。
高中数学重要结论一.集合与简易逻辑1.摩根律:U(A∪B)= (U A)∩( U B);U(A∩B)=( U A)∪( U B).2.分配律:(A∩B)∪C=(A∪C)∩(B∪C);(A∪B)∩C=(A∩C)∪(B∩C).3.结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)4.吸收率:A∩(A∪B)=A;A∪(A∩B)=A.5.容斥原理:card(A∪B)= card A+ card B- card(A∩B);card(A∪B∪C)= card A+ card B+ card C-card(A∩B) - card(B∩C) - card(C∩A) + card(A∩B∩C)6.对于条件A和结论B若条件A能推出结论B,则条件A是结论B成立的充分条件;若结论B能推出条件A则条件A是结论B成立的必要条件。
二.函数1.函数图像变换:①函数y=f(x)的图像与函数y=f(-x)的图像关于y轴对称;②函数y=f(x)的图像与函数y=-f(x)的图像关于x轴对称;③函数y=f(x)的图像与函数y=-f(-x)的图像关于原点对称;④函数y=f(x)的图像与函数y=f-1(x)的图像关于直线y=x对称;⑤函数y=f(x)的图象与函数y= -f -1(-x)的图象关于直线y= -x对称;⑥函数y=f(x)的图象与函数y=f(2a-x)的图象关于直线x=a对称;⑦函数f(x)的图象与函数y=2b-f(x)的图象关于直线y=b对称;⑧函数f(x)的图象与函数y=2b-f(2a-x)的图象关于点(a, b)对称;⑨函数y=f(|x|)的图像与函数y=f(x)的图像在y轴右方重合,然后将右方翻折倒左方(即左侧部分与其右侧部分关于y轴对称)。
事实上函数y=f(|x|)是偶函数;⑩函数y=|f(x)|的图像与函数y=f(x)的图像在x轴上方重合,然后将原先下方的部分翻折到x轴的上方去;⑪函数y=f(x+a)的图像是将函数y=f(x)的图像向左(a>0)或向右(a<0)平移|a|个单位;⑫函数y=f(ωx)的图像是将函数y=f(x)的图像上每个点的纵坐标不变横坐标压缩(ω>1)或伸长(0<ω<1)到原来的1ω倍;⑬函数y=f(ωx+a)的图像是将函数y=f(ωx)的图像向左(a>0)或向右(a<0)平移|aω|个单位(ω>0)。
2.奇函数和偶函数的特点:①奇函数和偶函数的定义域必关于原点对称;②奇函数若在x=0时有定义则必有f(0)=03.对称性及周期性:①若函数y=f(x)的图像关于直线x=a对称,则f(a+x)=f(a-x)⇔f(x)=f(2a-x) 恒成立;②若函数y=f(x)的图像关于点(a,0)对称,则f(a+x)=-f(a-x) ⇔f(x)=-f(2a-x)恒成立;③若函数y=f(x)的图像关于直线x=a和x=b对称,则2|a-b|是函数y=f(x)的一个周期;④若函数y=f(x)的图像关于点(a,0)和(b,0)对称,则2|a-b|是函数的一个周期;4.其他:①函数y=a x的图像当a>1时a越大图像越靠近y轴,当0<a<1时a越小图像越靠近y轴;②函数y=log a x的图像当a>1时a越大图像越靠近x轴,当0<a<1时a越小图像越靠近x轴;③ 对于log a x ,当a ,x 都∈(0,1)或都∈(1,+∞)时log a x>0,a 与x 一个∈(0,1)一个∈(1,+∞)时,log a x<0; ④ 对数换底公式:log a N =log log m m Na;推论:1°.log n m a b =log a mb n;②log a b 1·log b1b 2·log b2·b 3……log bn-2b n-1·log bn-1c=log a c ⑤ 对于函数y=ax+bx,当a>0,b<0时在(0)(0+)-∞∞,和,上递增;当a<0,b>0时在-0)∞(,和(0)+∞,上递减;当a>0,b>0时在(-∞,和)+∞上递增,在[)和(0上递减;(事实上当a>0,b>0时,增减性的分界点即bax x=时x 的值); ⑥ 如果函数y=f(x)对于区间(a ,b)上的任意x 1,x 2都有12()2x x f +≥12()()2f x f x +成立(即弦在图像下方),则称函数y=f(x)为区间(a ,b)上的上凸函数,若都有12()2x x f +≤12()()2f x f x +成立(即弦在图像上方),则称函数y=f(x)为区间(a ,b)上的下凸(或凹)函数;三.数列a) 数列{a n }的前n 项和为S n 则a n = 11n n S S S -⎧⎨-⎩12n n =≥2.等差数列的通项公式形式为a n =kn+b,其中k 为公差;前n 项和公式的形式为S n =An 2+Bn ,其中A 为公差的一半即2d 。
由此可得,点(n , S nn)必在同一直线y=Ax+B 上3.等比数列的前n 项和公式形式为S n =A -Aq n ,其中A=1a q-; 4.等差数列{a n }中,公差d=n ma a n m--;等比数列{a n }中,公比q 满足q n-m =n m a a ;5.等差数列{a n }中,若n 为偶数,则S S -偶奇=n2d , n2n 12a a S S +=奇偶;若n 为奇数,则S奇-S偶=a 1+12n -d=a 中,11S n S n +=-奇偶,S n =n n 12a +; 6.等差数列{a n }中,若a n =m ,a m =n ,则a m+n =0;若S n =m ,S m =n ,则S m+n =-(m+n);7.若数列{a n }是公差为d 的等差数列,则其依次k 项和还成等差数列,且公差为k 2d ; 8.若数列{a n }是公比为q (q ≠-1)的等比数列,则其依次k 项和还成等比数列,且公比为q k ; 9.若数列满足递推关系:a 1=m ,a n =Aa n-1+B (n ≥2),其中A, B 为非零常数且A ≠1,则只需等式两边同时加1B A -,即可构造等比数列{a n +1B A -},且公比为A ,首项为m+1BA -; 10.若数列{a n }满足递推关系:a 1=m, a n+1=A a n +B p n,A 、B 为非零常数,A ≠1且A ≠p ,则只需两边同加Bp A-p p n+1,即得等比数列{a n + Bp A-p p n },且公比为A ,首项为m + BpA-p p.注: ⑴ 当A=1时,利用累加的方法求通项;⑵ 当A=p 时,只需等式两边同除以p n+1即得等差数列{ a n pn } ,公差为 B p .11.数列求和公式:⑴ 1+2+3+…+n= n(n+1)2;⑵ 1+3+5…+(2n-1)=n 2;⑶ 12+22+32+…n 2= 16n(n+1)(2n+1); ⑷ 13+23+33+…+n 3= 14n 2(n+1)2四.三角函数1. 降幂公式:sin 2x=1cos 22α-;cos 2x=1cos 22α+; 2. 半角正切公式:tan 2α=1cos sin αα-=sin 1cos αα+;3. 万能置换公式:sin α=22tan21tan 2αα+;cos α=221tan 21tan 2αα-+;tan α=22tan21tan 2αα-;4. 2tan cot 2csc 2sin 2αααα+==,tan cot 2cot 2ααα-=-;5. 函数y=Asin(ωx+φ)+B 与y=Acos(ωx+φ)+B 的对称中心和对称轴:对称中心即使复合角的正弦或余弦等于零的点,对称轴即使复合角的正弦或余弦取得最大值或最小值的直线(即sin(ωx+φ)中的直线ωx+φ=k π+2π,k ∈Z ,cos(ωx+φ)中的直线ωx+φ=k π,k ∈Z );6. 函数y=Atan(ωx+φ)+B 的对称中心:y=Atan(ωx+φ)+B 的对称中心是使tan(ωx+φ)=0或不存在的点(即ωx+φ=2k π,k ∈Z 的点); 7. θ的终边越靠近y 轴|sin θ|和|tan θ|越大;θ的终边越靠近x 轴|cos θ|和|cot θ|越大; 8. 直线y=x 上方的点所对应的角θ满足sin θ>cos θ,直线y=x 下方的点所对应的角θ满足sin θ<cos θ;直线y= -x 上方的点所对应的角θ满足sin θ+cos θ>0,直线下方的点所对应的角θ满足sin θ+cos θ<0; 9. 三角形面积公式:S △ABC =12absinC=12bcsinA=12casinB S,其中s=12(a+b+c)。
10.对于角α、β,若满足α+β= π4,则(tan α+1)(tan β+1)=2;若满足α+β= 3π4,则 (tan α-1)(tan β-1)=2五.平面向量1.对于平面上任意一点O 及点P ,A ,B ,且12OP OA OB λλ=+,则P ,A ,B 三点共线的充要条件是λ1+λ2=12.△ABC 的重心坐标是G(123123)33x x x y y y ++++,;(其中A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3) );3.向量a 在向量b 上的投影为|a |cos<a b ,>=||a bb ⋅; 4.与向量a 共线的单位向量为||a a ±; 5.设点A(x, y),B(x, y),O 为坐标原点,S △AOB = 12x 12y 22+x 22y 12-2x 1x 2y 1y 2 = 12|x 1y 2-x 2y 1|6. 设O ,A ,B ,C 为平面上四点,且λ1→OA +λ2→OB +λ3→OC =o ,则S △AOB :S △AOC :S △BOC =λ3:λ2:λ1 7. S △ABC =(|→AB ||→AC |)2-(→AB ·→AC )2 六.不等式1. 利用均值不等式求最值时需注意“一正”,“二定”,“三等”;2. ≥2a b +2ab a b +=211a b+;3. |f(x)|>g(x)⇔f(x)<-g(x)或f(x)>g(x) ;|f(x)|<g(x)⇔-g(x)<f(x)<g(x)。
4.[]2()0()0()()0()()g x g x g x f x f x g x ≥⎧<⎧⎪>⇔⎨⎨≥>⎩⎪⎩或[]2()0()()0()()f x g x g x f x g x ⎧≥⎪⎪<⇔>⎨⎪<⎪⎩七.直线和圆1. 设点P(x 0,y 0)关于直线Ax+By+C=0的对称点为 '('')P x y ,则 00022000222()'2()'A Ax By C x x A B B Ax By C y y A B++⎧=-⎪⎪+⎨++⎪=-⎪⎩+;2. 经过两直线l 1:A 1x+B 1y+C 1=0和l 2:A 2x+B 2y+C 2=0的交点的直线系为:A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2)=0 (不包括l 2) ;3. 经过两圆C 1:x 2+y 2+D 1x+E 1y+F 1=0和C 2:x 2+y 2+D 2x+E 2y+F 2=0的交点的圆系为:x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0 (不包括C 2),特别的两圆方程相减所得的直线方程即为两相交圆公共弦所在直线方程;4. 圆与直线的位置关系一般用圆心到直线的距离同半径的大小关系判定;两圆的位置关系用圆心距同半径的和与差的大小关系判定; 5. 圆的弦长一般用弦心距和半径求得;6. 圆上的点到定点P 的距离的最大值为点P 到圆心的距离加半径,最小值为点P 到圆心的距离与半径的差;7. 圆外一条直线l 与圆上的点的最大距离为圆心到直线l 的距离加半径,最小距离为圆心到直线l 的距离减半经;8. 若点P 0(x 0,y 0)在圆C :x 2+y 2=r 2上则方程x 0x+y 0y=r 2表示圆C 在P 0处的切线方程;若点P 0(x 0,y 0)在圆C 外则方程x 0x+y 0y=r 2表示过P 0的切线与圆C 的两切点之间的连线(即切点弦所在直线)方程;类似的若点P 0在圆C :(x -a)2+(y -b)2=r 2上则方程(x 0-a)(x -a)+(y 0-b)(y -b)=r 2表示圆C 在P 0处的切线方程;若点P 0(x 0,y 0)在圆C 外则方程(x 0-a)(x -a)+(y 0-b)(y -b)=r 2表示过P 0的切线与圆C 的两切点之间的连线方程; 9. 与直线Ax+By+C=0平行的直线系为Ax+By+C ’=0(C ’≠C );与直线Ax+By+C=0垂直的直线系为Bx-Ay+C ’=0;10.以A(x 1,y 1)、B(x 2,y 2)为直径的圆的方程为:(x -x 1) (x -x2)+(y-y 1)(y-y2)=0 11.当B>0时Ax+By+C>0表示直线Ax+By+C=0上方的区域,Ax+By+C<0表示直线Ax+By+C=0下方的区域;当B<0时Ax+By+C>0表示直线Ax+By+C=0下方的区域,Ax+By+C<0表示直线Ax+By+C=0上方的区域;八.圆锥曲线1. 弦长公式:设直线y=kx+b 与二次曲线交于两点A(x 1,y 1)和B(x 2,y 2),则12|x x -==12|y y -= 2. 焦半径公式:设F 1和F 2分别为中心在原点,对称轴为坐标轴的椭圆或双曲线的左、右两焦点,P(x 0,y 0)为椭圆或双曲线上任意一点,则|PF 1|=|a+ex 0|,|PF 2|=|a -ex 0|;若P(x 0,y 0)为焦点在x 轴上的抛物线y 2=kx ,(k ≠0)上任意一点,F 是其焦点,则|PF| =0||||4kx +(若是焦点在y 轴上的抛物线x 2=ky 则|PF|=|4k|+|y 0|);若F 为椭圆的左焦点、双曲线的右焦点及开口向右的抛物线的焦点,P 是圆锥曲线上的任意一点,θ为以FX 为始边FP 为终边的角,则|PF|=1cos epe θ-,其中e 为离心率,p 为焦点到准线的距离,特别地若是椭圆或双曲线则|PF|=2cos b a c θ-,若是抛物线则|PF|=1cos pθ-3. 通径:椭圆和双曲线的通径为22b a;抛物线的通径为2p ;4. 椭圆和双曲线的焦点到准线的距离为2b c;抛物线的焦点到准线的距离为p ;5. 设椭圆的左右两焦点分别为F 1,F 2,P 为椭圆上任意一点,∠F 1PF 2=ϕ,则12F PF S=b 2tan2ϕ且当P 为椭圆的短轴端点时∠F 1PF 2最大;若∠PF 1F 2=α,∠PF 2F 1=β,则椭圆离心率e=cos2cos2αβαβ+-; 6. 设双曲线的左右两焦点分别为F 1,F 2,P 为双曲线上任意一点,∠F 1PF 2=ϕ,则12F PF S=b 2cot2ϕ;若∠PF 1F 2=α,∠PF 2F 1=β,则双曲线的离心率e=sin2|sin |2αβαβ+-;7. 双曲线22(000)x y k m n k m n -=>>≠,,,的渐近线方程为:220x y m n-=(即让常数项为零的两直线);反之以直线0x ya b±=为渐近线的双曲线系为:2222,0)x y k a b -=≠(k ;(k>0时焦点在x 轴上,k<0时交点在y 轴上);8. 双曲线的焦点到渐近线的距离为b ,垂足恰为渐近线与相应准线的交点; 9. 椭圆中包含a ,b ,c 的直角三角形的三个顶点是原点、短轴端点及焦点;双曲线中包含a ,b ,c 的直角三角形三个顶点为原点、顶点及过顶点的切线与渐近线的交点,或实轴、虚轴端点及原点,或原点、焦点及过焦点向渐近线所引垂线的垂足;10.过抛物线y 2=2px 的焦点的直线与抛物线交于A(x 1,y 1)、B(x 2,y 2)两点,则y 1y 2= -p 2,x 1x 2=24p ;11.过抛物线y 2=2px 的焦点F 的直线与抛物线交于A 、B 两点,设A 、B 两点在抛物线的准线上的射影分别为A ’、B ’,则∠A ’FB ’=90°;12.设直线l 与抛物线y 2=2px 交于两点A 、B ,若∠AOB=90°则直线l 必过定点(2P ,0); 13.以过圆锥曲线焦点的弦为直径的圆,同相应准线的位置关系如下:若是椭圆则相离;若是双曲线则相交;若是抛物线则相切。