复变函数第五章(1)
- 格式:ppt
- 大小:1.08 MB
- 文档页数:37
第五章 解析函数的洛朗展式与孤立奇点§1 解析函数的洛朗展式教学目的与要求: 了解双边幂级数,了解洛朗级数与泰勒级数的关系,掌握解析函数在孤立奇点邻域内的洛朗展式的求法.重点: 解析函数的洛朗展式;解析函数在孤立奇点邻域内的洛朗展式的求法. 难点:解析函数的洛朗展式的证明. 课时:2学时定义5.1 级数101()()()n n n nn C C C z a C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+++-+⋅⋅⋅--∑(5.1) 称洛朗()Laurent 级数,n C 称为(4.22)的系数.对于点z ,如果级数01()()()nn nn n C z a C C z a C z a +∞=-∞-=+-+⋅⋅⋅+-+⋅⋅⋅∑ (5.2)收敛于1()f x ,且级数1()()n n n n n C C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+--∑ (5.3) 收敛于2()f x ,则称级数(4.22)在点z 收敛,其和函数为1()f x +2()f x 当0n C -=(1,2,)n =⋅⋅⋅时,(5.1)即变为幂级数.类似于幂级数,我们有定理5.1 设()f z 在圆环12:D R z a R <-<12(0)R R ≤<<+∞内解析,则在D 内()()nn n f z C z a +∞=-∞=-∑(5.4)其中11()2()n n f z C dz i z a π+Γ=-⎰ (0,1,)n =±⋅⋅⋅ (5.5) :z a ρΓ-=,且12R R ρ<<,系数n C 被()f z 及D 唯一确定.(5.4)称为()f z 的洛朗展式.证明:对:z H ∀∈作1:1z a ρΓ-=,2:2z a ρΓ-=,(其中12r R ρρ<<<) 且使z D ∈:12z a ρρ<-<,(如图5.1)由柯西积分公式,有()()2112f f z d i z ξξπξ-Γ+Γ==-⎰()212f d i z ξξπξΓ-⎰+()112f d i z ξξπξΓ-⎰图5.1对于第一个积分,只要照抄泰勒定理证明中的相应部分,即得:()212f d i z ξξπξΓ-⎰=()0nn n C z a ∞=-∑ 其中()()1212n n f C d i a ξξπξ+Γ=-⎰()!n f a n = 对于第二个积分()112f d i z ξξπξΓ-⎰: ()()()()()()1f f f z z a a z a z a a ξξξξξξ==----⎛⎫---⎪-⎝⎭当1ξ∈Γ时11az az aρξ-=<--1111n n a a z a z aξξ-∞=-⎛⎫∴=⎪--⎝⎭--∑ (右边级数对于1ξ∈Γ是一致收敛)上式两边乘上()f z a ξ-得:()f z ξξ=-()11n n f a z a z a ξξ-∞=-⎛⎫ ⎪--⎝⎭∑=()()()111n n n f z a a ξξ∞-+=--∑ 右边级数对1ξ∈Γ 仍一致收敛,沿1Γ逐项积分,可得()112f d i z ξξπξΓ-⎰=()11n n z a ∞=-∑()()1112n f d i a ξξπξ+Γ-⎰ 其中n C =()()1112n f d i a ξξπξ-+Γ-⎰113. 3.10P Th ()()112n f d i a ξξπξ-+Γ-⎰ 于是:()()nn n f z C z a +∞=-∞=-∑, 其中n C =()()112n f d i a ξξπξ+Γ-⎰ (n=0,1,± ) 下面证明展式唯一,若在H 内()f z 另有展开式()()'nnn f z C z a +∞=-∞=-∑右边级数在Γ上一致收敛,两边乘上()11m z a +-得:()()1m f z z a +-=()'1nm n n C z a ∞-+=-∞-∑,右边级数在Γ上仍一致收敛,沿Γ逐项积分,可得:()()112m f d i a ξξπξ+Γ-⎰=()'1112n m n n C d i a ξπξ+∞-+Γ=-∞-∑⎰ ∴'n C =n C 即展式是唯一的.注:1)定理中的展式称为洛朗展开式,级数称为洛朗级数. n C 称为洛朗系数.2)泰勒展式是洛朗展式的特例. 例1.求()()()112f z z z =--在(1)1,(2)12,(3)2(4)011z z z z <<<<<∞<-<中的洛朗展开式. 解:()1121f z z z =--- (1)()00111122212nnn n z f z z z z ∞∞==⎛⎫=-=-=⎪-⎛⎫⎝⎭- ⎪⎝⎭∑∑12nn n n n z z ∞∞+==-∑∑=10112n n n z ∞+=⎛⎫- ⎪⎝⎭∑ (1z <).(2) ()1121f z z z =---1112112z z z =--⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭100112n n n n n z z z ∞∞+==⎛⎫=-- ⎪⎝⎭∑∑ 110012n n n n n z z∞∞++==⎛⎫=-- ⎪⎝⎭∑∑. (12z <<)(3) ()1121f z z z =-=--112111z z z z -⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()1000121121n n n n n n n n z z z z∞∞∞+===⎛⎫=-=- ⎪⎝⎭∑∑∑ . (2z <<∞) (4)()()()0111111211111nn f z z z z z z z ∞==-=-=---------∑. (011z <-<)此例子说明:同一个函数在不同的圆环内的洛朗展式可能不同. 例2 求2sin z z 及sin zz在0z <<+∞内的洛朗展式 解 2s i n z z 3211(1)3!5!(21)!n n z z z z n --=-++⋅⋅⋅++⋅⋅⋅+ sin z z 242(1)13!5!(21)!n nz z z n -=-++⋅⋅⋅++⋅⋅⋅+例3 1ze 在0z <<+∞内的洛朗展式为 解 1z e 211112!!n z z n z=+++⋅⋅⋅++⋅⋅⋅ 作业: 第217页 1 (1) (3), 2(1)(3)§2解析函数的孤立奇点教学目的与要求: 掌握洛朗定理及孤立奇点的分类及判断方法. 重点:孤立奇点的分类及判断方法. 难点:函数在本质奇点的邻域的性质. 课时:2学时 一 . 定义:1.设()f z 在点a 的某去心邻域内解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.0=z 为奇点,但不是孤立奇点,是支点.11sin z以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点;当主要部分为有限项时,设为(1)11(0)()()------+++≠--- m m m m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二.判定 1.可去奇点定理5.3 设a 为()f z 的孤立奇点,则下列条件等价(1)a 为f 的可去奇点 (2)lim ()()→=≠∞z af z b3()f 在a 的某去心邻域内有界证明:"(1)(2)"⇒设条件1()成立,则在a 的某一去心邻域内,有0()lim ()()∞→==∴=≠∞-∑nnz an f z f z z a c c"(2)(3)":⇒显然成立."(3)(1)"⇒设f 在a 的去心邻域{}:0-<-<k a z a R 内以M 为界考虑()f z 在点z 的主要部分:11()(1,2,): 02()ξξξρρπξ-+-Γ==Γ-=<<⎰- n n f d n a R i c a()112002πρρρπρ--+≤=→→n n n MC M 120--∴===∴ a c c 为可去奇点.例:说明0=z 是sin zz的可去奇点. 法一:324sin 1()1 03!3!5!=-+=-+<<∞ z z z z z z z z法二:0sin lim 1→=≠∞z zz2.极点定理5.4 设a 为()f z 的孤立奇点.则下列条件等价:1()a 为f 的m 级极点2()f 在a 的某去心邻域:{}:0-<-<k a z a R 内可表示为()()()λ=-mz f z z a 其中()λz 在k 内解析,且()0λ≠a1(3).()()=g z f z 从a 为m 级零点(可去奇点作为解析点看) 证明:"(1)(2)"⇒设条件(1)成立,即()f z 在a 的某去心邻域内有:101()()()--=++++-+-- m m c c f z c c z a z a z a(0)-≠m c1110()()()()---+-+-++-+-+=-m m m m mc c z a c z a c z a z a ()()记λ-mz z a(()λz 为幂级数的和函数,故解析)其中()λz 在a 的某邻域内解析,且从()0λ-=≠m a c"(2)(3)"⇒:设条件(2)成立,即f 在a 的某去心邻域{}:0-<-<k a z a R内有()()()λ=-mz f z z a ,其中()λz 满足已知的两个条件.由例知存在:.()ρ'-<≤'⊂K z a R K K ,使得在'K 内()0λ≠z . 故在'K 内1()λz 解析,且1()0()ϕλ=≠a a .即a 为1()f z 的m 级零点. "(3)(1)"⇒设条件(3)成立,即1()(),()ϕ=-m z a z f z 其中()ϕz 在a 的某领域内解析,且()0ϕ≠a ,由33P 的例1.28知:,ρ∃'-<K z a 使在K 内1()0,()ϕϕ≠∴z z 在'K 内解析.由Taylor 定理, 在'K 内有011()()ϕ=+-+ b b z a z∴在{}'-K a 内有0111()()[()]()()ϕ==+-+-- m mf z z b b z a z a z a01()()=++-- m mb b z a z a 0(0)≠b作业: 第218-219页 4(1) (3) (5), 5(1) (3).§3解析函数在无穷远点的性质教学目的与要求:掌握解析函数在无穷远点的性质. 重点: 解析函数在无穷远点的性质. 难点:解析函数在无穷远点的性质. 课时:2学时1. 基本概念1.1 2 3 2.如证令数引理:设()f z 在K :z <1内解析,且(0)0,()f f z =<1则 a )()f z z ≤, b )(0)1f '≤, c )若(0)1f '=,或00z∃≠,使00()f z z =则()()i f z z R e αα=∈.证明:由已知得:12()f z z z c c =++ (1)z <令212(),(0)()(0)f z c c z z z z c z ϕ⎧=++≠⎪=⎨⎪=⎩则()z ϕ在:1K z <内解析.对0,z K ∀∈取r ,使01,z r <<由最大模原理有:0()1()max ()maxz rz rf z z z zrϕϕ==≤=≤. 令1r →得0()1z ϕ≤,特别地,1(0)(0)1f c ϕ'==≤即(b )成立,又若00z ≠,由0()1z ϕ≤,得00()1f z z ≤,即00().f z z ≤以及(0)0f =,故对z K ∀∈,有()f z z ≤,即(a )成立.几何意义:在引理条件下,z 的象都比z 本身,距坐标原点要近.若有00z ≠,0z 的象与0z 本身距原点的距离相等,则变换仅仅是一个旋转.作业: 第219页6, 7, 8 (1) (3).。
复变函数教案 5.1(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章 解析函数的罗朗展式与孤立奇点教学课题:第一节 解析函数的洛朗展式教学目的:1、了解双边幂级数在其收敛圆环内的性质;2、充分掌握洛朗级数与泰勒级数的关系;3、了解解析函数在孤立奇点和非孤立奇点的洛朗级数教学重点:掌握洛朗级数的展开方法 教学难点:掌握洛朗级数的展开方法 教学方法:启发式、讨论式 教学手段:多媒体与板书相结合教材分析:洛朗级数是推广了的幂级数,它既可以是函数在孤立奇点去心邻域内的级数展开,也可以作为工具研究解析函数在孤立奇点去心邻域内的性质。
教学过程: 1、双边幂级数在本节中,我们讲述解析函数的另一种重要的级数展式,即在圆环内解析函数的一种级数展式。
首先考虑级数...)(...)()(0202010+-++-+-+------nn n z z z z z z ββββ其中,...,...,,,100n z --βββ是复常数。
此级数可以看成变量1z z -的幂级数;设这幂级数的收敛半径是R 。
如果+∞<<R o ,那么不难看出,此级数在Rz z 1||0>-内绝对收敛并且内闭一致收敛,在Rz z 1||0<-内发散。
同样,如果+∞=R ,那么此级数在0||0>-z z 内绝对收敛并且内闭一致收敛;如果R=0,那么此级数在每一点发散。
在上列情形下,此级数在0z z =没有意义。
于是根据定理,按照不同情形,此级数分别在0||)0(1||010>-+∞<<=>-z z R R Rz z 及内收敛于一个解析函数。
2、解析函数的洛朗展式:更一般地,考虑级数,)(0∑+∞-∞=-n n nz z β这里,...)2,1,0(,0±±=n z n β是复常数。
当级数,)()(1000∑∑-∞-=+∞=--n n n n nnz z z z ββ及都收敛时,我们说原级数∑+∞-∞=-n n nz z )(0β收敛,并且它的和等于上式中两个级数的和函数相加。
第五章 解析函数的洛朗展开与孤立奇点(一)1.解:(1):1)10<<z ,∑∞=---=-⋅+=-+0222221111)1(1n n z z z z z z z z z2)111<⇒+∞<<z z , ∑∞=++=-⋅+=-+032321211111)1(1n n z z zz z z z z (2)222121121()1212112f z z z z z z -=-=--+-+ =20012()(1)22n n n n n z z ∞∞+==---∑∑ (3)()f z =2(1)z e z z +231......!nz z z z n z z+++++=+ =2151 (26)z z z +-- 2.解:(1)2222])2)()1([)(41)1(1n n n n i i z i z z ∑∞=----=+ )20()2))(1()1()(412<-<-+---=∑∞=i z i i z n i z nn n n(2))0(1)!2(1!102212+∞<<⋅+==∑∑∞=∞-=+-z zn z n e z n n n n z(3) 令1zξ=,则21(1...)112ze eeξξξξξ-+++--==234542(1...)(1...)23!4!5!2ξξξξξξξ=-+-+--+345(1...)(1...)(1) (2)3!4!ξξξ---=23451 (2)385114ξξξξξ--+--=234511111141...8235z z z z z --+--+3.证明:根据洛朗定理,可设)0()]1(sin[0+∞<<=+∑∞=z z c z z t n nn其中 ⎰=+±=+=11),1,0()]1(sin[21ξξξξξπ n d t i c n n这里 )20(,1πθξξθ≤≤==i e于是 θθπθππθθπθθθd ed ie e e e t i c in i n i i i n ⎰⎰+=+=+-2020)1()cos 2sin(21)](sin[21 4.解:(1)因为函数为有理函数,且分子,分母无公共零点,因此分母的零点就是函数的极点,令分母0)4(2=+z z ,得0=z 以及i 2±,分别是分母的一级和二级零点,从而分别是函数的一级和二级极点,又因0)4(12∞→+-z z z z ,所以∞=z 为可去奇点.(2)由定理5.4(3)知函数z z cos sin +的m 级零点,就是zz cos sin 1+的m 级极点,且分母零点的极限点必为函数的极限点,因为)4sin(2cos sin π+=+z z z则令0cos sin =+z z ,得),1,0(4 ±=-=k k z ππ且又因),1,0(0)1(2cos 2])4sin([4±=≠-=='+-=k k z z k k z ππππ故),1,0(4±=-=k k z ππ各为分母z z cos sin +的一级零点即为zz cos sin 1+的一级极点.又因∞→-=4ππk z ,即∞=z 是极点的极限点,即为函数的非孤立奇点.(3)因i k z π)12(+=时,分母01=+z e ,且 01)1()12(≠-='++=ik z z e π所以i k z π)12(+=是分母的一级零点,而此时分子0)1()12(≠-+=ik z z e π故i k z π)12(+=各为函数的一级极点,因分母,分子在平面解析,所以除此之外在平面上无其他奇点. (4)令分母为0,解得)i 1(22z -±=,即为所给函数的极点. 且因,0])i z [(,0])i z [()i 1(22z 32)i 1(22z 32≠'+='+-±=-±=故)i 1(22z -±=均为所给函数的三级极点. 又因0z )1z (132∞→+,所以∞=z 为可去奇点. (5)因为zzz 222cos sin t an =,分子分母均在z 平面解析且无公共零点,所以分母的零点即为z 2tan 的极点,令0cos 2=z ,解得 0)(cos ,222='+=+=ππππk z z k z),1,0(0)(cos 22 ±=≠''+=k z k z ππ所以2ππ+=k z 是z 2cos 的二级零点,从而是z 2tan 的二级极点.(6) ++-=+2)(!2111cosi z i z 所以i z -=为其本性奇点,又因 11coslim =+∞→iz z ,所以∞=z 为可去奇点. (7)因21)2(22sin lim cos 1lim 2202==-→∞→z z z z z z 故0=z 为可去奇点, ∞=z 为本性奇点.(8)因为当且仅当i k z π2=时,分母0)1(,012≠'-=-=i k z z z e e π,所以i k z π2=为分母的一级零点,而分子是常数1,因此i k z π2=为其一级奇点. 5.解:先判断各函数的奇点类型. (1) 0=z ,∞=z 为奇点.(2) 0=z ,∞=z 为奇点.(3) 0=z 不是孤立奇点,是极点的极限点.(4)分母的零点是πk z =,这是ctgz 的极点,且01)(sin ≠-='πk z所以πk z =是分母的一级零点,因此是ctgz 的一极点,而∞=z 不是孤立奇点,是极点的极限点.由三个函数均为单值函数,由洛朗定理,在孤立奇点的去心邻域内均能展开成洛朗级数,在非孤立奇点的邻域内则不能.6.解:(1)当m n ≠时,a 为()()f z g z +的max(,)m n 级极点,为,f g 的m n +级极点,为fg的m n -()m n >级极点与n m -()m n <级零点 (2)当m n =时,a 为f g +的至多m 级极点(此时各种情况均有可能产生) 例:11,()()()kk m mf zg z k N z a z a +-=+=+∈-- a 为,f g 的m n +级极点,为fg的可去奇点. 7.证明:因)(z f 不恒等于零,如果a z =为)(z f 的零点,a z =只能为)(z f 的孤立奇点.(反证)如果a z =不是)(/)(),()(),()(z f z z f z z f z ϕϕϕ⋅±的本性奇点,则由上题的结论知,)(z ϕ就以a z =为可去奇点或极点,矛盾.8.解:(1) 1()(1)zzz e f z z e +-=-,奇点为0z =为一级极点, 2(1,2,...)z k i k π==±±为一级极点,z =∞为非孤立奇点(2) 0z =为函数的本性奇点, z =∞为函数的本性奇点. (3) z =∞是可去奇点, 0z =为本性奇点.(4) 0z =,z =∞为本性奇点. (5) 1=z 为本性奇点, i k z π2=为一级极点, z =∞为非孤立奇点.9.证明:因)(z f 在z 平面上解析,则)(z f 必为整函数,而整函数只以z =∞点为孤立奇点,而)(z f 在z =∞点解析,故z =∞点只能是)(z f 的可去奇点,由定理5.10知, )(z f 为常数.10.证明:(反证)设)(z f w =为整函数且非常数,若值全含于一圆之外,即存在0,00>εw ,使得对任何z ,恒有00)(ε>-w z f ,则有非常数整函数)(1)(w z f z g -=,所以在z 平面上任何点z ,分母不等于0,从而)(z g 在z 平面上解析,即为整函数.又因)(z f 非常数,所以)(z g 非常数,其值全含于一圆1)(ε<z g 之内,与刘维尔定理矛盾.11.证明:由题意,)(z f 在0z 的去心邻域内的洛朗展开式可设为∑∞=--≠-+-=01001)0()()(n n n c z z c z z c z f令01)()(z z c z f z g --=-,因01),(z z cz f --在r z ≤上除去0z 外解析,所以)(z g 在r z ≤上除去0z 外解析.又可知∑∞=-=00)()(n n n z z c z g )(z f 在0z 的邻域内解析,故)(z g 在r z ≤上解析.函数)(z g 在r z <内的泰勒展开式为∑∑∞=∞=+-+=0111)(n n n n nn z z c z a z g而直接法又给出∑∑∞=∞===00)(!)0()(n n n n nn z b z n g z g从而][0110101001z c z b z c z b z a a n n nn n n-++-+--=因为∑∞==0)(n nn z b z g 在r z ≤上解析,所以当0z z =时,级数∑∞=00n nn z b 是收敛的,一般项)(00∞→→n z b nn ,故即知01limz a a n nn =+∞→.(二)1.解:(1)不能(2)能,指定点不是所给函数的支点 (3)不能 (4)不能(5)能,指定点不是所给函数的支点2.解:不正确。
第五章习题详解1. 下列函数有些什么奇点?如果是极点,指出它的级:1) ()2211+z z解:2)31z z sin3)1123+--z z z4)()z z lz 1+5)()()z e z z π++1126)11-z e7)()112+z e z 8) n nzz +12,n 为正整数9)21z sin2. 求证:如果0z 是()z f 的()1>m m 级零点,那么0z 是()z f'的1-m 级零点。
3. 验证:2i z π=是chz 的一级零点。
4. 0=z 是函数()22--+z shz z sin 的几级极点?5. 如果()z f 和()z g 是以0z 为零点的两个不恒等于零的解析函数,那么()()()()z g z f z g z f z z z z ''lim lim 00→→=(或两端均为∞)6. 设函数()z ϕ与()z ψ分别以a z =为m 级与n 级极点(或零点),那么下列三个函数在a z =处各有什么性质:1) ()()z z ψϕ;2)()()z z ψϕ;3) ()()z z ψϕ+;7. 函数()()211-=z z z f 在1=z 处有一个二级极点;这个函数又有下列洛朗展开式:()()()()345211111111-+---+=-z z z z z ,11>-z ,所以“1=z 又是()z f 的本性奇点”;又其中不含()11--z 幂,因此()[]01=,Re z f s 。
这些说法对吗?8. 求下列各函数()z f 在有限奇点处的留数:1)zz z 212-+ 2) 421z e z-3)()32411++z z4)zz cos5) z -11cos6) z z 12sin7) z z sin 18) chz shz9. 计算下列各积分(利用留数;圆周均取正向)1) ⎰=23z dz z zsin2) ()⎰=-2221z zdz ze3) ⎰=-231z m dz z zcos , 其中m 为整数4)⎰=-12i z thzdz5) ⎰=3z zdz tg π6) ()()⎰=--11z n n dz b z a z (其中n 为正整数,且1≠a ,1≠b ,b a <)。
第五章 洛朗级数 第一节 洛朗展式双边幂级数设级数()()() +-++-+=-∑∞=n n n n n a z c a z c c a z c 100 (1*)它在收敛圆R a z <-)0(+∞≤<R 内绝对且内闭一致收敛到解析函数()z f 1;考虑函数项级数()() +-++-----n n a z c a z c 11 (2*) 作代换az -=1ξ 则(2*)即为 +++--n n c c ξξ1,它在收敛圆⎪⎭⎫⎝⎛+∞≤<<rr 101ξ内绝对且内闭一致收敛到解析函数()z f 2,从而(2*)在区域()+∞<≤>-r r a z 0内绝对且内闭一致收敛到解析函数()z f 2;当且仅当R r <时,(1*)(2*)有共同的收敛区域()+∞≤<≤<-<R r R a z r H 0:,此时,称()∑∞=-0n n n a z c 为双边幂级数。
关于双边幂级数的性质,见p185 定理1.5 定理1 (洛朗定理)设函数f (z )在圆环:)0(||:+∞≤<≤<-<R r R a z r H 内解析,那么在H 内,)()(∑+∞-∞=-=n n na z cz f其中,,...)2,1,0(,)()(211±±=-=⎰+τζζζπn d a f i c n n τ是圆ρρ,||=-a z 是一个满足R r <<ρ的任何数,并且展式是唯一的。
证明:H z ∈∀,作圆周11:ρτ=-a z 和22:ρτ=-a z 使z 含于圆环21':ρρ<-<a z H 内,于是()z f 在圆环'H 内解析。
由柯西积分公式()()ζζζπττd zf i z f ⎰-+-=1221 ()()nn n a z c d z f i -=-∑⎰+∞=0221ζζζπτ,其中()()ζζζπτd a f i c n n ⎰+-=2121 () ,1,1,0-=n 现考虑()()ζζζπζζζπττd z f i d z f i ⎰⎰-=--112121 ()()az aaz f z f ----=-ζζζζ11而沿1τ,1<--az a ζ,nn a z a az a ∑∞+=⎪⎭⎫⎝⎛--=---∴011ζζ(在1τ上一致收敛)由于函数()ζζ-z f 沿1τ有界,所以()()()()n nn a z a a z f z f ---=-∑∞+=ζζζζ0 ∴()()()()∑⎰⎰+∞=----=-01112121n nn d a f i a z d z f i ττζζζπζζζπ ()()()ζζζπτd a f i a z n n n∑⎰-∞-=+--=11121故当H z ∈:()()∑+∞-∞=-=n nn a z c z f ,其中()()ζζζπρτd a f i c n n ⎰+-=121() ,1,0±=n 展式的唯一性:设()()∑+∞-∞=-=n nn a z c z f '任意取某正整数m ,在ρτ上有界,()()()∑+∞-∞=--+-=-∴n m n n m a z c a z z f 1'1()()()∑⎰⎰+∞-∞=--+⋅=-=-n m m n nm c i dz a z c dz a z z f '1'12ρρττπ()()⎰+-=∴ρτπdz a z z f i c m m 1'21() ,1,0±=m ,故() ,1,0'±==n c c n n,展式唯一。