icepak-03-geometry
- 格式:ppt
- 大小:460.50 KB
- 文档页数:22
目录什么是Icepak? (2)程序结构 (2)软件功能 (3)练习一翅片散热器 (8)练习二辐射的块和板 (43)练习三瞬态分析练习四笔记本电脑练习五改进的笔记本电脑练习六 IGES模型的输入练习七非连续网格练习八 Zoom-in 建模1.1 什么是Icepak?Icepak是强大的 CAE 仿真软件工具,它能够对电子产品的传热,流动进行模拟,从而提高产品的质量,大量缩短产品的上市时间。
Icepak能够计算部件级,板级和系统级的问题。
它能够帮助工程师完成用试验不可能实现的情况,能够监控到无法测量的位置的数据。
Icepak采用的是FLUENT计算流体动力学 (CFD) 求解引擎。
该求解器能够完成灵活的网格划分,能够利用非结构化网格求解复杂几何问题。
多点离散求解算法能够加速求解时间。
Icepak提供了其它商用热分析软件不具备的特点,这些特点包括:∙非矩形设备的精确模拟∙接触热阻模拟∙各向异性导热率∙非线性风扇曲线∙集中参数散热器∙外部热交换器∙辐射角系数的自动计算1.2 程序结构Icepak软件包包含如下内容:∙Icepak, 建模,网格和后处理工具∙FLUENT, 求解器图 1.2.1:软件架构Icepak本身拥有强大的建模功能。
你也可以从其它 CAD 和 CAE 软件包输入模型. Icepak 然后为你的模型做网格, 网格通过后就是进行CFD求解。
计算结果可以在Icepak中显示, 如图 1.2.1所示.1.3 软件功能所有的功能均在Icepak界面下完成。
1.3.1 总述鼠标控制的用户界面o鼠标就能控制模型的位置,移动及改变大小o误差检查∙灵活的量纲定义∙几何输入IGES, STEP, IDF, 和 DXF格式∙库功能∙在线帮助和文档o完全的超文本在线帮助 (包括理论和练习册) ∙支持平台o UNIX 工作站o Windows NT 4.0/2000/XP 的PC机1.3.2 建模∙基于对象的建模o cabinets 机柜o networks 网络模型o heat exchangers 热交换器o wires 线o openings 开孔o grilles 过滤网o sources 热源o printed circuit boards (PCBs) PCB板o enclosures 腔体o plates 板o walls 壁o blocks 块o fans (with hubs) 风扇o blowers 离心风机o resistances 阻尼o heat sinks 散热器o packages 封装∙macros 宏o JEDEC test chambers JEDEC试验室o printed circuit board (PCB)o ducts 管道o compact models for heat sinks 简化的散热器∙2D object shapes 2D模型o rectangular 矩形o circular 圆形o inclined 斜板o polygon 多边形板∙complex 3D object shapes 3D模型o prisms 四面体o cylinders 圆柱o ellipsoids 椭圆柱o elliptical and concentric cylinders 椭圆柱o prisms of polygonal and varying cross-section 多面体o ducts of arbitrary cross-section 任意形状的管道1.3.3 网格∙自动非结构化网格生成o六面体,四面体,五面体及混合网格∙网格控制o粗网格生成o细网格生成o网格检查o非连续网格1.3.4 材料∙综合的材料物性数据库∙各向异性材料∙属性随温度变化的材料1.3.5 物理模型∙层流/湍流模型∙稳态/瞬态分析∙强迫对流/自然对流/混合对流∙传导∙流固耦合∙辐射∙体积阻力∙混合长度方程(0-方程), 双方程(标准- 方程), RNG - , 增强双方程 (标准- 带有增强壁面处理), 或Spalart-Allmaras 湍流模型∙接触阻尼∙体积阻力模型∙非线性风扇曲线∙集中参数的fans, resistances, and grilles1.3.6 边界条件∙壁和表面边界条件:热流密度, 温度, 传热系数, 辐射,和对称边界条件∙开孔和过滤网∙风扇∙热交换器∙时间相关和温度相关的热源∙随时间变化的环境温度1.3.7求解引擎对于求解器FLUENT,是采用的有限体积算法。
Icepak使⽤⼿册模型参数化28. 模型的参数化Icepak可以让你通过将模型参数化,来确定各个实体的⼤⼩以及其他的特性参数对计算结果的影响。
参数化的⽅法将在以下⼏个章节中说明:28.1 参数化概述28.2 在输⼊框中定义参数28.3 设置复选框28.4定义单选按钮参数(选项参数)28.5通过Parameters and optimization⾯板定义参数(设计变量)28.6 删除参数28.7 定义试验⽅案28.8 运⾏试验⽅案28.9 函数报告和函数图像28.1 参数化概述热设计的过程是通过预估各种可变参数的不同搭配的结果,从⽽确定⼀种最合适的⽅案,来满⾜设备的基本需要(例如, 最⼩的机柜规格,能使系统处以特定温度的最低风扇转速,最⼩的通风开⼝以及恰当的热沉类型和尺⼨)这就需要设计者通过计算不同参数组合下的结果来确定最优的⽅案。
通过研究这些组合的计算结果,你可以知道它们是如何影响系统性能的,从⽽优化模型的设计。
Icepak提供了⼀个便捷的研究环境,这使得设计者可以在同⼀个模型中研究在⼀个范围内变化的⼏何尺⼨、坐标、边界条件(例如:通风机的特性曲线和压⼒损失系数)和材料属性等参数对系统的影响。
之后Icepak就可以利⽤求解器来计算你选择的各种试验⽅案。
这就节省了分别建造或分析每个模型和依次计算参数连续变化的各种试验⽅案的时间。
Icepak中的参数是数字或者字符串常量,你可以⽤它们来取代实际的数字,这样就能轻松的改变它们的值来模拟不同的设计⽅案。
例如:如果你想将⼀个通风机的流量设为0.01,就可以定义⼀个名为flowrate的参数并将其值置为0.01。
你可以给⼀个参数指定多个值来对你的模型进⾏试验计算。
每个试验⽅案都是⼀系列参数的组合,这样便可以对模型进⾏多次计算。
此外,不同的设计⽅案还可以通过参数化的单选框和复选框进⾏参数检测。
⽐如,在设计时,将热沉类型由压铸型改为针翅热沉的效果,可通过打开和关闭合适的热沉进⾏两次试验来检测。
icepak培训教程Icepak是一种三维热流模拟软件,主要用于计算热流场、冷却效果和高温引起的结构变形等问题。
在很多工业领域,如航空、汽车等,Icepak都有着广泛的应用。
但对于初学者来说,如何运用Icepak又是一个难题。
因此,熟悉Icepak的Training教程就显得十分必要。
Part 1 - Icepak培训教程的主要内容Icepak培训教程主要分为四个部分:基本概念,建模和网格剖分,物理参数定义和求解,结果分析和可视化。
1.基本概念首先,培训教程介绍了Icepak软件的一些基本概念,如节点、单元、网格等。
同时,讲解了流体流动、热传导、辐射传热等物理模型,以及这些模型的计算方法。
2.建模和网格剖分其次,教程详细讲解了如何利用Icepak软件建立简单的几何模型,并对模型进行网格剖分,以便进行热流场计算。
3.物理参数定义和求解在模型建立完成后,需要对各种物理参数进行定义,包括材料属性、流体性质等。
这部分教程介绍了如何选择合适的材料参数,以及如何设定流体边界条件,并对热流场问题进行求解。
4.结果分析和可视化最后,教程介绍了如何对热流场问题进行结果分析和可视化,包括温度云图、热通量分布等。
此外,还讲解了如何对结果进行后处理和导出。
Part 2 - Icepak培训教程的适用范围Icepak培训教程适用于热流领域工程师和科研人员,其主要适用于以下两种情形。
1.产品设计和优化在产品设计和优化过程中,热流场计算是十分必要的。
利用Icepak软件进行热流场计算,可以有效预测产品在不同工况下的热特性,从而指导产品设计和优化。
2.故障分析和维修在产品故障分析和维修过程中,利用Icepak软件进行热流场计算,可以帮助工程师确定故障原因,指导修理方案。
Part 3 - Icepak培训教程的优势Icepak培训教程具有以下优势。
1.步骤清晰Icepak培训教程将Icepak软件使用流程划分为四个部分,每个步骤都有详细的说明和操作截图,使初学者也能轻松上手。
icepak算例-回复以下是关于"icepak算例"的文章。
【介绍】icepak是一种用于热管理和流体分析的计算流体动力学(CFD)软件。
它被广泛应用于各行各业,特别是电子设备的热管理领域。
本文将以一个icepak算例为例,详细介绍如何使用icepak进行热分析。
【了解问题】首先,我们需要明确我们要解决的问题。
假设我们有一台高性能计算机,最近运行一段时间后频繁出现过热而自动关机的现象。
为了解决这个问题,我们决定使用icepak来分析计算机的热管理情况,找出问题的根源。
【建立几何模型】第一步是建立几何模型。
在icepak中,我们可以通过几何建模工具创建三维模型,该工具提供了各种几何图形的绘制和编辑功能。
对于我们的例子,我们需要绘制计算机主板、散热器以及其他相关组件的几何模型。
【导入材料属性】接下来,我们需要为每个几何模型分配合适的材料属性。
icepak提供了各种材料属性的数据库,我们可以从中选择合适的材料属性,并为每个几何模型分配对应的材料。
例如,我们可以选择铝作为散热器的材料,选择主板上各个元件的材料。
【设置边界条件】在进行热分析前,我们需要为问题设置合适的边界条件。
边界条件包括设置散热器的表面温度、计算机外壳的温度以及其他相关的热边界条件。
这些边界条件将直接影响计算机内部的热分布。
【设定数值参数】为了进行准确的热分析,我们还需要设定数值参数。
这些参数包括计算网格的密度,计算的时间步长等等。
通常情况下,网格密度越高,模拟结果越精确,但计算时间也会相应增加。
【执行热分析】一旦我们完成了几何模型的建立、材料属性的导入、边界条件的设置以及数值参数的设定,我们就可以执行热分析了。
icepak将根据我们提供的信息,计算出计算机内部的热分布,并给出相应的热流、温度分布图以及其他相关结果。
通过分析这些结果,我们可以找出导致过热的原因。
【分析结果】根据icepak提供的热分布图和结果,我们可以更好地了解计算机内部的热管理情况。
Icepak培训中文教程引言Icepak是一款功能强大的计算流体动力学(CFD)仿真软件,广泛应用于电子设备散热、热管理系统设计等领域。
本教程旨在为初学者提供系统的Icepak学习路径,帮助读者快速掌握软件的基本操作、模型搭建、求解器设置以及后处理分析等技能。
1.Icepak简介1.1软件特点易学易用:提供直观的图形用户界面,便于用户快速上手。
高效求解:内置多种求解器,支持并行计算,提高计算效率。
丰富模型库:提供多种电子元件、散热器等模型,方便用户搭建仿真模型。
强大后处理功能:支持多种可视化手段,便于分析仿真结果。
1.2应用领域电子设备散热:如PCB板、芯片、散热器等。
热管理系统设计:如数据中心、汽车电子、家用电器等。
能源利用:如太阳能电池板、风力发电机等。
2.Icepak安装与启动2.1系统要求操作系统:Windows、Linux或macOS处理器:64位内存:至少4GB硬盘空间:至少5GB2.2安装步骤1.Icepak安装包。
2.运行安装程序,按照提示完成安装。
3.安装完成后,启动Icepak。
3.Icepak基本操作3.1用户界面菜单栏:提供文件、编辑、视图等操作选项。
工具栏:提供常用操作的快捷按钮。
项目管理器:显示当前项目中的模型、求解器设置等。
属性管理器:显示当前选中对象的属性,如几何尺寸、材料属性等。
视图管理器:显示当前视图的缩放、旋转等设置。
3.2建立模型1.创建几何:通过绘图工具或导入CAD文件创建几何模型。
2.设置材料属性:为模型指定材料属性,如导热系数、密度等。
3.划分网格:对模型进行网格划分,以便进行数值求解。
3.3求解器设置1.物理模型:选择适当的物理模型,如自然对流、强迫对流等。
2.边界条件:设置模型边界条件,如温度、速度等。
3.求解控制:设置求解器的迭代次数、收敛标准等。
3.4后处理分析1.云图:显示温度、速度等物理量的分布情况。
2.矢量图:显示速度矢量的方向和大小。