箱体零件加工工艺分析
- 格式:ppt
- 大小:2.18 MB
- 文档页数:42
箱体零件的机械加工工艺及夹具设计摘要:在对箱体类零件进行制造的过程中,对于位置精度以及尺寸、规格具有着更高的要求。
机械加工工艺难度相对较大,在加工过程中需要对基准进行有效的确定,更加合理的对机械加工工艺方法进行有效的选择,更为科学的对于加工工具进行有效的组合,由此确保箱体类零件在实际加工过程当中,其合格率得到大幅度的提升,使箱体零件加工的综合质量得到增加,使效率有所提升,对于施工成本进行有效的控制。
在箱体零件机械加工过程中,夹具是极为重要的工具。
夹具设计需要与整体箱体类零件机械加工的实际特点进行有效的结合,对于其设计要点进行综合,把握更加合理的对各类设计参数进行有效的确定,文章对箱体零件机械加工工艺及夹具设计进行详细的分析。
关键词:箱体类零件;机械加工;夹具设计引言为了使箱体类产品质量有所提升,进一步使资源浪费得以减少更加有效的对加工成本进行控制,有关单位需要进行深入性的研究。
箱体零件加工工作开展过程中需要对生产类型以及毛坯加工模式予以有效的确定,更加合理的对于定位基准进行选择,促使加工工序更为科学,更加准确的对于加工余量等各种类型的工艺参数进行计算,由此使箱体零件加工的精准度有所提升。
夹具质量与实际的性能对于整体箱体零件其加工而言会产生较为突出的影响,与精度及效率相关。
由此,需要根据箱体零件具体的要求,对于夹具进行有效的设计,在设计夹具的过程中,需要对相关设计规范以及设计标准予以遵循,根据设计的实际特征,更加合理的对相关参数进行有效的确定,对于设计方案进行优化,确保夹具设计的实用性得到大幅度的提升。
1对箱体类零件机械加工工艺进行分析箱体类零件在实际加工过程中,对于各种类型的机械加工工艺具有着更高的要求。
具体而言,需要进一步的对相应的加工工艺进行详细的分析,相应的工艺可从以下几个角度进行探究。
1.1对箱体类零件生产类型进行分析箱体类零件在实际加工过程中,需要依照其实际的生产进度、产量等诸多情况,对于平均废品率以及备品率进行有效的分析,合理对箱体零件其生产类型进行有效的确定。
箱体加工工艺Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-学习情境4:箱体类零件机械加工工艺文件的制订一、零件的工艺分析汽车变速箱箱体,它是汽车的基础零件之一,它把变速箱中的轴和齿轮等零件和机构联结为一个整体,使这些零件和机构保持正确的相对位置,以便使其上的各个机构和零件能正确,协调一致的工作。
变速箱箱体的加工质量直接影响变速器的装配质量,进而影响汽车的使用性能和寿命。
本零件生产类型为中批生产。
下面对该零件进行精度分析。
对于形状和尺寸(包括形状公差、位置公差)较复杂的零件,一般采取化整体为部分的分析方法,即把一个零件看作由若干组表面及相应的若干组尺寸组成的,然后分别分析每组表面的结构及其尺寸、精度要求,最后再分析这几组表面之间的位置关系。
由零件图样,具体技术要求分析如下:平面的加工:①上盖结合面的加工:其表面粗糙度为μm,平面度为0.15mm;②前后端面的加工:其表面粗糙度为μm,前端面T1对O1轴线的端面全跳动为0.08mm。
后端面T2对O1轴线的端面圆跳动为0.1mm,前后端面尺寸为371±0.02mm;③两侧窗口面及凸台面的加工:取力窗口面粗糙度为μm,对O2轴的平行度为0.08mm,其公差等级为IT7~IT9,平面度为0.1mm。
右侧窗口面的粗糙度值为μm,平面度为0.15mm对O2轴的平行度为150:;④倒档轴孔内端面的加工:其表面粗糙度值为μm,保证尺寸为102.5mm,20mm。
其中上盖结合面,前后端面,两侧窗口面为主要加工表面。
上盖结合面作为后面工序的主要定位面,最后还要用于装配箱盖;前面T1为变速箱的安装基面;后端面T2为安装轴承端盖用;两侧窗口面用于安装窗口盖。
孔的加工:①小孔:⑴上盖结合面:8个M10-6H的螺纹孔:分布于上盖接合面上,两侧中间两组螺纹孔中心线的距离为180mm,另外两组中心线距离为204± ,两侧相邻螺纹孔中心线距离为170mm。
高职部毕业设计(论文)作者:学号:专业:班级:题目:指导者:(姓名) (专业技术职务)(姓名) (专业技术职务)年月日摘要本文从工艺路线的拟定,定位基准的选择,主要表面的加工三方面重点分析了箱体类零件的加工工艺,提出了三种先进的孔精加工工艺方案:精镗--浮动镗:金刚镗--珩磨:金刚镗--滚压,并指出:箱体类零件的重要孔(如主轴孔),孔系的加工精度成为箱体类零件的加工工艺关键。
通过对C6150 主轴箱体零件图的分析及结构形式的了解,从而对主轴箱体进行工艺分析、工艺说明及加工过程的技术要求和精度分析。
通过此次设计,使我们基本掌握了零件的加工过程分析、工艺文件的编制等。
学会了查相关手册、选择使用工艺装备等等。
关键词:工艺路线拟定;定位基准选择;箱体平面加工;主轴支承孔加工;孔系加工;加工工艺;分析目录第一章绪论第二章工艺路线的拟定2.1先面后孔的加工顺序2.2粗,精加工阶段要分开2.3工序集中或分散的决定2.4安排适当的热处理工序第三章定位基准的选择3.1粗基准的选择3.2精基准的选择第四章主要表面的加工4.1箱体的平面加工4.2主轴支承孔的加工4.3孔系加工4.3.1 单件小批量生产4.3.2 成批大量加工4.3.3 注意点第五章 C6450主轴箱体加工工艺规程设计5.1方案论证5.2确定方案5.3具体方案设计5.3.1零件的分析5.3.2编写工艺路线5.3.3机械加工工艺分析5.3.4确定切削用量及基本工时(机动时间)结论参考文献致谢箱体类零件的加工工艺分析第一章绪论箱体类零件是机械零件中的典型零件,是机器的基础零件之一。
它将机器及部件中的轴,轴承,套和齿轮等零件装配成一个整体。
使其保持正确的相互位置,并按照一定的传动关系协调地运动,组装后的箱体部件,用箱体的基准平面安装在机器上。
因此箱体的加工质量不仅影响其装配精度及运动精度,而且对机器的工作精度,使用性能和寿命有着决定性的影响。
第二章工艺路线的拟定车床床头箱要求加工的表面很多,在这些加工表面中,平面加工精度比孔的加工精度容易保证,所以箱体中主轴孔(主要孔)的加工精度,孔系加工精度就成为工艺关键问题,因此,在工艺路线的安排中应注意几点。
箱体零件的加⼯⼯艺箱体零件的加⼯⼯艺⼀、概述1箱体零件的功⽤与结构特点箱体是机器的基础零件,它将机器中有关部件的轴、套、齿轮等相关零件连接成⼀个整体,并使之保持正确的相互位置,以传递转矩或改变转速来完成规定的运动。
故箱体的加⼯质量,直接影响到机器的性能、精度和寿命。
箱体类零件的结构复杂,壁薄且不均匀,加⼯部位多,加⼯难度⼤。
据统计资料表明,⼀般中型机床制造⼚花在箱体类零件的机械加⼯⼯时约占整个产品加⼯⼯时的l5%~20%。
2箱体零件的主要技术要求箱体类零件中,机床主轴箱的精度要求较⾼,可归纳为以下五项精度要求:⑴孔径精度:孔径的尺⼨误差和⼏何形状误差会造成轴承与孔的配合不良。
孔径过⼤,配合过松,使主轴回转轴线不稳定,并降低了⽀承刚度,易产⽣振动和噪声;孔径太⼩,会使配合偏紧,轴承将因外环变形,不能正常运转⽽缩短寿命。
装轴承的孔不圆,也会使轴承外环变形⽽引起主轴径向圆跳动。
从上⾯分析可知,对孔的精度要求是较⾼的。
主轴孔的尺⼨公差等级为IT6,其余孔为IT8~IT7。
孔的⼏何形状精度未作规定的,⼀般控制在尺⼨公差的1/2范围内即可。
⑵孔与孔的位置精度:同⼀轴线上各孔的同轴度误差和孔端⾯对轴线的垂直度误差,会使轴和轴承装配到箱体内出现歪斜,从⽽造成主轴径向圆跳动和轴向窜动,也加剧了轴承磨损。
孔系之间的平⾏度误差,会影响齿轮的啮合质量。
⼀般孔距允差为⼟0.025~⼟0.060mm,⽽同⼀中⼼线上的⽀承孔的同轴度约为最⼩孔尺⼨公差之半。
⑶孔和平⾯的位置精度:主要孔对主轴箱安装基⾯的平⾏度,决定了主轴与床⾝导轨的相互位置关系。
这项精度是在总装时通过刮研来达到的。
为了减少刮研⼯作量,⼀般规定在垂直和⽔平两个⽅向上,只允许主轴前端向上和向前偏。
⑷主要平⾯的精度:装配基⾯的平⾯度影响主轴箱与床⾝连接时的接触刚度,加⼯过程中作为定位基⾯则会影响主要孔的加⼯精度。
因此规定了底⾯和导向⾯必须平直,为了保证箱盖的密封性,防⽌⼯作时润滑油泄出,还规定了顶⾯的平⾯度要求,当⼤批量⽣产将其顶⾯⽤作定位基⾯时,对它的平⾯度要求还要提⾼。
箱体类零件的加工一、箱体零件概述箱体类零件通常作为箱体部件装配时的基准零件。
它将一些轴、套、轴承和齿轮等零件装配起来,使其保持正确的相互位置关系,以传递转矩或改变转速来完成规定的运动。
因此,箱体类零件的加工质量对机器的工作精度、使用性能和寿命都有直接的影响。
箱体零件结构特点:多为铸造件,结构复杂,壁薄且不均匀,加工部位多,加工难度大。
箱体零件的主要技术要求:轴颈支承孔孔径精度及相互之间的位置精度,定位销孔的精度与孔距精度;主要平面的精度;表面粗糙度等。
箱体零件材料及毛坯:箱体零件常选用灰铸铁,汽车、摩托车的曲轴箱选用铝合金作为曲轴箱的主体材料,其毛坯一般采用铸件,因曲轴箱是大批大量生产,且毛坯的形状复杂,故采用压铸毛坯,镶套与箱体在压铸时铸成一体。
压铸的毛坯精度高,加工余量小,有利于机械加工。
为减少毛坯铸造时产生的残余应力,箱体铸造后应安排人工时效。
二、箱体类零件工艺过程特点分析下面我们以某减速箱为例说明箱体类零件的加工。
1.箱体类零件特点一般减速箱为了制造与装配的方便,常做成可剖分的,如图6-6所示,这种箱体在矿山、冶金和起重运输机械中应用较多。
剖分式箱体也具有一般箱体结构特点,如壁薄、中空、形状复杂,加工表面多为平面和孔。
减速箱体的主要加工表面可归纳为以下三类:⑴主要平面箱盖的对合面和顶部方孔端面、底座的底面和对合面、轴承孔的端面等。
90H7)及孔内环槽等。
⌝150H7、⌝⑵主要孔轴承孔⑶其它加工部分联接孔、螺孔、销孔、斜油标孔以及孔的凸台面等。
2.工艺过程设计应考虑的问题根据减速箱体可剖分的结构特点和各加工表面的要求,在编制工艺过程时应注意以下问题:⑴加工过程的划分整个加工过程可分为两大阶段,即先对箱盖和底座分别进行加工,然后再对装合好的整个箱体进行加工——合件加工。
为保证效率和精度的兼顾,就孔和面的加工还需粗精分开;⑵箱体加工工艺的安排安排箱体的加工工艺,应遵循先面后孔的工艺原则,对剖分式减速箱体还应遵循组装后镗孔的原则。
减速器箱体加工工艺一、零件的工艺分析1.要加工孔的孔轴配合度为H7,圆度为0.0175mm,表面粗糙度为小于1.6,垂直度为0.08mm,同轴度为0.02mm。
2.其它孔的表面粗糙度为小于12.5,锥销孔的表面粗糙度为小于1.6。
3.机盖上平面表面粗糙度为小于12.5,端面表面粗糙度为小于3.2,机盖机体的结合面的表面粗糙度为小于 3.2,结合处的缝隙不大于0.05mm。
二、确定毛坯的制造形式箱体一般采用灰铸铁铸造而成,因为铸铁的切削性能好,价格相对比较低,并且铸铁容易成型,耐磨性和抗振性也是比较好的,其牌号选HT200。
由于一般减速器年产量需要达到*****台,属于大批量生产,所以我们采用金属模机器造型,小批量一般采用手工造型。
从之前的工艺分析可知,该毛坯的精度较高,所以毛坯加工余量可以适量减少。
三、箱体零件的结构工艺性由于箱体加工的表面比较多,结构形状比较复杂,要求也比较高,所以机械加工的工作量大,结构工艺性有需要注意以下几点:1.可以将箱体加工的基本孔分为通孔和阶梯孔两种,其中通孔加工工艺性最好,而阶梯孔相对较差。
2.由于箱体的内端面加工相对比较困难,所以结构上应使内端面的尺寸小于刀具需穿过之孔加工前的直径,并且当内端面的尺寸过大时,应该需要采用专用径向进给装置。
3.要注意:箱体上的紧固孔的尺寸规格应该保持一致,这样做的理由是为了减少加工中的换刀次数,本箱体分别为直径11和13。
四、加工路线的拟定整个加工过程分为两个大的阶段,应该先把机盖和机体加工好,接着把已经装配好的箱体加工。
第一步:应该把平面,禁锢孔和定位孔加工好,这是为箱体的装配做好准备;第二步:把箱体装配好,加工其上面的轴承孔和端面。
在完成第二阶段之前,应该要把机盖和机体装配成一个完整的箱体,并要用二锥销进行定位,使机盖和机体保持正确的相对位置,这是为了保证轴承孔的加工精度和拆卸后装配的重复精度。
减速机箱体工艺制作是一个系统的过程不是仅仅有一个或单个的部分组成,它是一个需要具有团结合作精神的制作团队的一个工作,在这个工作团队里面任何一个环节的出错都不会使这一个制作完成。
箱体类零件的加工工艺分析首先,箱体类零件的加工工艺应该包括以下几个方面:1.零件设计:在进行箱体类零件的加工之前,首先需要对零件进行设计。
设计应考虑到零件的功能和形状,以及材料的选择。
设计的目的是使零件在使用过程中具有足够的强度和刚度,并且能够满足使用的要求。
2.材料准备:选择适当的材料是箱体类零件加工的重要一步。
常见的箱体类零件材料有铝合金、不锈钢和钢板等。
根据零件的功能和使用要求选择材料,并进行原材料的采购和切割。
一般来说,为了确保箱体类零件的精度和质量,要选择均匀性好、强度高的材料进行加工。
3.工艺规划:根据零件的形状和加工要求,制定合理的工艺路线和顺序。
包括车削、铣削、钻削、折弯、冲压、焊接等工艺。
对于复杂的零件,可以使用CAD/CAM辅助设计制造,提高加工的效率和质量。
在工艺规划中,还需要确定零件的夹持方案和加工刀具选择,以提高加工的精度和效率。
4.加工工艺:根据工艺规划,进行相应的加工工艺。
具体的加工工艺包括车削、铣削、钻削、折弯、冲压、焊接等。
在进行加工时,需要注意保持工艺参数的稳定性,并及时检查加工质量,保证零件的精度和表面质量。
5.表面处理:为了提高箱体类零件的外观和耐腐蚀性,通常需要进行表面处理。
常见的表面处理方法有喷涂、镀铬、阳极氧化等。
表面处理的选择应根据零件的材料和使用环境来确定,以保证零件的耐用性和外观要求。
以上是对箱体类零件加工工艺的分析。
在进行箱体类零件加工时,需要注意材料选择和设计合理性,确定合适的加工工艺和工艺参数,进行良好的加工控制和质量检查。
通过合理的加工工艺,可以保证箱体类零件的精度和质量,提高产品的竞争力和市场占有率。
第三节箱体类零件的工艺分析箱体类零件是指用于存放、固定或包装其他零件的箱体结构。
它通常由钣金加工而成,有着复杂的形状和结构,其制作难度相对较大。
因此,对箱体类零件的工艺分析是非常重要的。
首先,箱体类零件的加工主要涉及以下几个方面:1.材料选择:箱体类零件可以使用不同种类的材料进行制作,如冷轧钢板、不锈钢板等。
材料的选择应考虑到零件的使用环境和要求,以保证其强度、耐腐蚀性和可加工性等方面的要求。
2.形状设计:箱体类零件的形状设计决定了其外观和结构特点。
设计师需要考虑到零件的功能需求、装配要求以及结构强度等因素,以确定零件的整体形状和尺寸。
3.加工配套:箱体类零件的制作通常需要进行切割、弯曲、冲压、焊接、折边等工艺操作。
这些工艺操作需要通过合适的工具和设备进行,如剪板机、折边机、冲床、焊接机等。
在进行箱体类零件的工艺分析时,需要考虑到以下几个关键点:1.加工顺序:根据零件的结构特点和加工难度,确定合适的加工顺序。
一般来说,可以先进行切割和冲压,然后进行弯曲和折边,最后进行焊接和表面处理。
2.加工工艺:根据零件的形状和材料特性,选择合适的加工工艺。
例如,对于尺寸较小的零件,可以选择冲压工艺进行加工;对于尺寸较大的零件,可以选择剪板和焊接等工艺进行加工。
3.夹具设计:为了保证零件加工的准确性和稳定性,需要设计合适的夹具来固定工件。
夹具的设计要考虑到零件的形状、安装位置和加工难度等因素,以确保加工过程中的稳定性和精度。
4.焊接工艺:箱体类零件在制作过程中通常需要进行焊接操作。
选择合适的焊接方法(如点焊、氩弧焊等)和焊接电流、电压等参数,确保焊接质量和强度的要求。
总结起来,箱体类零件的工艺分析需要综合考虑材料选择、形状设计、加工配套等因素。
通过合理的加工顺序、工艺选择、夹具设计和焊接工艺,可以有效提高零件的加工精度和质量。
同时,工艺分析还可以帮助提前发现和解决零件制作过程中可能出现的问题,避免浪费人力、物力和时间资源。
项⽬5.3箱体类零件的加⼯⼯艺及⼯艺实施箱体类零件加⼯⼯艺分析及⼯艺实施⼀、填空题1.箱体上⼀系列有要求的孔称为孔系。
孔系⼀般可分为、和交叉孔系。
2.箱体是机器的,它将轴、套、、等传动件装在⼀起,保证其正确的关系,按⼀定的传动关系运动传递或运动。
3.箱体类零件的主要技术要求有:、孔与孔的、孔与平⾯的、主要平⾯的精度及。
4.主轴孔径过⼤,会使主轴回转轴线,降低,易产⽣和躁⾳;孔径圆度误差⼤会造成主轴。
其形状精度⼀般控制在内。
5.主要平⾯的平⾯度的检测可⽤来检查接触⾯积或单位⾯积上的。
6.常⽤的平⾯加⼯⽅法有、、等,其中磨常⽤于平⾯的,⽽刨和铣则常⽤于平⾯的粗加⼯和半精加⼯。
7.刨削加⼯是在刨床上进⾏。
常⽤的刨床有和,⽜头刨⽤来加⼯,龙门刨⽤于加⼯或同时加⼯多个中型零件。
8.⽜头刨其主运动为往复直线运动,⽽龙门刨则为的往复直线运动,⼆者均可以加⼯、斜⾯及。
9.铣削⽤量四要素为、、和。
10.切削刃分布在圆周表⾯的切削⽅式为,分布在端⾯上的为。
11.铣床主要⽤于加⼯、、螺旋⾯及分齿零件,其主运动为。
12.铣削时选择铣削⽤量⾸先应尽可能选择较⼤的,再选择较⼤的,最后根据选定的⼑具耐⽤度计算。
13.精磨时应选⽤磨料的砂轮,以减⼩已加⼯表⾯粗糙度。
⽽粗磨时应选⽤的砂轮,以提⾼⽣产效率。
14.砂轮速度较⾼或砂轮与⼯件接触⾯积较⼤时应选⽤的砂轮,以避免引起⼯件。
15.磨削软⽽韧的⾦属时,⽤的砂轮,以避免砂轮堵塞;磨削硬⽽脆的⾦属应选⽤的砂轮。
16.⼯件材料硬时应选⽤砂轮,磨削有⾊⾦属等较软材料时,应选⽤砂轮;磨削⾯积较⼤或薄壁零件时,应选⽤砂轮。
17.粗磨时应选⽤砂轮,⽽精磨或成形磨时应选⽤砂轮。
18.⼲研磨时主要以为主,⽽湿研磨时主要以为主。
19.采⽤坐标法镗孔时,基准孔应选和表⾯粗糙度⼩的孔,便于加⼯中校验等四种规格。
21.⽴铣⼑⼀般由⼑齿,其圆柱⾯上为,⽽端⾯上为,⼯作时只能沿⼑具的进给。
22.成形铣⼑主要⽤来表⾯,其⼑齿廓形根据被加⼯⼯件的来确定。
箱体类零件加工工艺分析一、加工工艺分析的作用加工工艺分析是指对箱体类零件进行全面细致的分析,以确定适当的加工方法和工艺参数,保证加工质量,提高生产效率。
通过加工工艺分析,可以有效地避免加工中出现的问题和缺陷,提高产品的质量和竞争力。
二、加工工艺分析的流程1.材料选择:根据箱体类零件的要求和使用环境,选择合适的材料,以确保零件的强度和耐用度。
2.设计分析:对零件的设计进行分析,了解零件的几何形状,确定加工方法和顺序。
3.工艺规划:根据零件的特点和要求,制定详细的加工工艺路线图,确定加工的顺序和工艺流程。
4.工装设计:根据零件的几何形状和工艺要求,设计合适的工装夹具,以保证在加工过程中零件的稳定性和精度。
5.刀具选择:根据零件的材料和几何形状,选择合适的刀具,以确保加工效果和工艺质量。
6.工艺参数的确定:根据零件的要求和工艺规范,确定合适的工艺参数,如加工速度、进给量等,以保证加工质量。
7.加工试验:根据工艺规划,对零件进行加工试验,检验工艺的可行性和准确性。
8.加工过程监控:在加工过程中,通过合适的监控手段和方法,对加工过程中的各项参数进行实时监控,以及时发现并解决问题。
9.加工质量检验:对加工完成的零件进行质量检验,确保加工质量符合要求,并对不合格品进行返工或更换。
三、箱体类零件加工工艺分析的注意事项1.技术规范合理性:对加工工艺进行分析时,要确保所选取的技术规范符合零件的要求和使用环境。
2.刀具选择合理性:选择刀具时要考虑到零件的材料和几何形状,以便保证加工效果和工艺质量。
3.工艺参数的确定准确性:确定工艺参数时,要确保参数的准确性和可行性,以免影响加工质量和工艺稳定性。
4.工艺路线的合理性:制定工艺路线时,要考虑到零件的几何形状和结构要求,以保证加工的顺序和工艺流程的合理性。
5.工装夹具的可靠性:设计工装夹具时,要考虑到零件的几何形状和工艺要求,以保证工装夹具的可靠性和稳定性。
6.加工过程监控的及时性:加工过程中要及时监控加工参数和工艺过程,发现问题及时处理,以确保加工质量和工艺稳定性。
箱体零件的加工工艺一、概述1箱体零件的功用与结构特点箱体是机器的基础零件,它将机器中有关部件的轴、套、齿轮等相关零件连接成一个整体,并使之保持正确的相互位置,以传递转矩或改变转速来完成规定的运动。
故箱体的加工质量,直接影响到机器的性能、精度和寿命。
箱体类零件的结构复杂,壁薄且不均匀,加工部位多,加工难度大。
据统计资料表明,一般中型机床制造厂花在箱体类零件的机械加工工时约占整个产品加工工时的l5%~20%。
2箱体零件的主要技术要求箱体类零件中,机床主轴箱的精度要求较高,可归纳为以下五项精度要求:⑴孔径精度:孔径的尺寸误差和几何形状误差会造成轴承与孔的配合不良。
孔径过大,配合过松,使主轴回转轴线不稳定,并降低了支承刚度,易产生振动和噪声;孔径太小,会使配合偏紧,轴承将因外环变形,不能正常运转而缩短寿命。
装轴承的孔不圆,也会使轴承外环变形而引起主轴径向圆跳动。
从上面分析可知,对孔的精度要求是较高的。
主轴孔的尺寸公差等级为IT6,其余孔为IT8~IT7。
孔的几何形状精度未作规定的,一般控制在尺寸公差的1/2范围内即可。
⑵孔与孔的位置精度:同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,会使轴和轴承装配到箱体内出现歪斜,从而造成主轴径向圆跳动和轴向窜动,也加剧了轴承磨损。
孔系之间的平行度误差,会影响齿轮的啮合质量。
一般孔距允差为土0.025~土0.060mm,而同一中心线上的支承孔的同轴度约为最小孔尺寸公差之半。
⑶孔和平面的位置精度:主要孔对主轴箱安装基面的平行度,决定了主轴与床身导轨的相互位置关系。
这项精度是在总装时通过刮研来达到的。
为了减少刮研工作量,一般规定在垂直和水平两个方向上,只允许主轴前端向上和向前偏。
⑷主要平面的精度:装配基面的平面度影响主轴箱与床身连接时的接触刚度,加工过程中作为定位基面则会影响主要孔的加工精度。
因此规定了底面和导向面必须平直,为了保证箱盖的密封性,防止工作时润滑油泄出,还规定了顶面的平面度要求,当大批量生产将其顶面用作定位基面时,对它的平面度要求还要提高。
编制工艺规程指导书箱体类零件是机器及其部件的基础件,它将机器及其部件中的轴、轴承、套和齿轮等零件按一定的相互位置关系装配成一个整体,并按预定传动关系协调其运动。
箱体的加工质量不仅影响其装配精度及运动精度,而且影响到机器的工作精度、使用性能和寿命。
一、箱体类零件功用、结构特点和技术要求(一)箱体类零件的结构特点1.外形基本上是由六个或五个平面组成的封闭式多面体,又分成整体式和组合式两种;2.结构形状比较复杂。
内部常为空腔形,某些部位有“隔墙”,箱体壁薄且厚薄不均。
3.箱壁上通常都布置有平行孔系或垂直孔系;4.箱体上的加工面,主要是大量的平面,此外还有许多精度要求较高的轴承支承孔和精度要求较低的紧固用孔。
(二)箱体类零件的技术要求1.轴承支承孔的尺寸精度和、形状精度、表面粗糙度要求。
2.位置精度包括孔系轴线之间的距离尺寸精度和平行度,同一轴线上各孔的同轴度,以及孔端面对孔轴线的垂直度等。
3.此外,为满足箱体加工中的定位需要及箱体与机器总装要求,箱体的装配基准面与加工中的定位基准面应有一定的平面度和表面粗糙度要求;各支承孔与装配基准面之间应有一定距离尺寸精度的要求。
(三)箱体类零件的材料和毛坯箱体类零件的材料一般用灰口铸铁,常用的牌号有HT100〜HT400。
为了消除铸造时形成的内应力,减少变形,保证其加工精度的稳定性,毛坯铸造后要安排人工时效处理。
精度要求高或形状复杂的箱体还应在粗加工后多加一次人工时效处理,以消除粗加工造成的内应力,进一步提高加工精度的稳定性。
二、箱体零件加工工艺分析(一)工艺路线的划^箱体中主轴孔的加工精度、孔系加工精度就成为工艺关键问题。
因此,在工艺路线的安排中应注意三个问题:1.工件的时效处理箱体结构复杂壁厚不均匀,铸造内应力较大。
由于内应力会引起变形,因此铸造后应安排人工时效处理以消除内应力减少变形。
对于特别精密的箱体,在粗加工和精加工工序间还应安排一次人工时效,迅速充分地消除内应力,提高精度的稳定性。