北师大版-数学-八年级上册-勾股定理 教材分析 第1课时
- 格式:doc
- 大小:31.00 KB
- 文档页数:1
第一章勾股定理1. 探索勾股定理(第1课时)一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A 的面积 (单位面积)B 的面积 (单位面积)C 的面积 (单位面积)左图 右图(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.(4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论 2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议内容:(1)你能用直角三角形的边长,b ,c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程) 练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):弦股勾225100x172.生活中的应用:小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c分别表示直角三角形的两直角边和斜边,那么222c b a =+.2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.五、教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.第一章勾股定理1. 探索勾股定理(第2课时)一、学生起点分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.二、教学任务分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.为此本节课的教学目标是:1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.三、教学过程本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升(四)例题讲解,初步应用;(五)追溯历史,激发情感;;(六)回顾反思,提炼升华;(七)布置作业,课堂延伸.第一环节:复习设疑,激趣引入内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:小组活动,拼图验证.内容: 活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到)从而利用图1验证了勾股定理. 活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二) 意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重图1点内容之一,并突破了本节课的难点.第三环节延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c22.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。
1. 1研究勾股定理第 1 课时认识勾股定理1.研究勾股定理,进一步发展学生的推理能力;2.理解并掌握直角三角形三边之间的数目关系. ( 要点、难点 )一、情境导入如下图的图形像一棵枝叶旺盛、姿态优美的树,这就是有名的毕达哥拉斯树,它由若干个图形构成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说此中的神秘吗?二、合作研究研究点一:勾股定理的初步认识【种类一】直接利用勾股定理求长度如图,已知在△ABC 中,∠ACB=90°, AB=5cm, BC= 3cm, CD⊥ AB 于点D,求 CD的长.分析:先运用勾股定理求出AC 的长,11再依据 S△ABC=2AB·CD=2AC·BC,求出 CD的长.解:∵△ ABC 是直角三角形,∠ACB=90°, AB= 5cm, BC=3cm,∴由勾股定理得222222AC = AB - BC= 5 - 3 = 4 ,∴ AC= 4cm. 又11AC·BC∵S ABC=AB·CD=AC·BC,∴CD=△22AB4×3 12(cm) ,故 CD的长是12==cm.555方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【种类二】勾股定理与其余几何知识的综合运用如图,已知 AD是△ ABC的中线.求2222证: AB +AC= 2(AD + CD) .分析:结论中波及线段的平方,所以可以考虑作AE⊥ BC于点 E,在△ ABC中结构直角三角形,利用勾股定理进行证明.证明:如图,过点 A 作 AE⊥BC 于点 E.在 Rt △ACE、 Rt△ ABE和 Rt△ ADE中, AB2=22222222AE + BE,AC= AE+ CE,AE= AD- ED,∴2222222 AB + AC= (AE + BE) + (AE + CE) = 2(AD- ED2) + (DB - DE)2+ (DC+ DE)2= 2AD2-22222ED+ DB-2DB·DE+ DE+ DC+2DC·DE+2222DE= 2AD+DB+ DC+ 2DE(DC- DB).又∵ AD22是△ ABC 的中线,∴ BD= CD,∴ AB + AC=22222AD+ 2DC= 2(AD + CD) .方法总结:结构直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,波及线段之间的平方关系问题时,往常沿着这个思路去剖析问题.【种类三】分类议论思想在勾股定理中的应用在△ ABC中, AB= 20,AC= 15,AD 为 BC边上的高,且 AD= 12,求△ ABC 的周长.分析:应试虑高AD在△ABC内和△ABC外的两种情况.解:当高 AD在△ ABC内部时,如图①.在 Rt △ ABD中,由勾股定理,得22 BD= AB-222=162,∴ BD= 16;在 Rt △ ACDAD=20 -12中,由勾股定理,得2222-CD= AC- AD= 15122= 81,∴ CD=9. ∴BC= BD+ CD= 25,∴△ABC的周长为25+20+ 15= 60.当高 AD在△ ABC外面时,如图② . 同理可得 BD= 16,CD=9. ∴BC= BD-CD= 7,∴△ABC的周长为 7+20+ 15= 42. 综上所述,△ABC的周长为 42 或 60.方法总结:题中未给出图形,作高结构直角三角形时,易遗漏钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情况,忽略高AD在△ ABC外的情况.研究点二:利用勾股定理求面积如图,以Rt△ ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中△ ABE 的面积为 ________,暗影部分的面积为 ________.1分析:由于 AE= BE,所以 S△ABE=2AE·BE 122222= AE. 又由于AE+ BE = AB,所以 2AE =2212129AB ,所以 S△=4AB=4× 3=4;同理可得ABES△AHC+121222 S△BCF=4A C+4BC. 又由于AC+BC=212121 AB ,所以暗影部分的面积为4AB +AB =24212999AB=×3=2.故填、.242方法总结:求解与直角三角形三边相关的图形面积时,要联合图形想方法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.三、板书设计勾股定理:直角三角形两直角边的平方和等于斜边的平方.假如用 a,b,c 分别表示直角三角形的两直角边和斜边,那么a2+b2= c2.让学生领会数形联合和由特别到一般的思想方法,进一步发展学生的说理和简单推理的意识及能力;进一步领会数学与现实生活的密切联系.在研究勾股定理的过程中,体验获取成功的快乐;经过介绍勾股定理在中国古代的研究,激发学生热爱祖国的悠长文化历史,激励学生奋发学习.。
北师大版八年级上第一章第1节探索勾股定理(1)教案教学目标:(一)教学知识点1. 经历用计算和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
.2.掌握勾股定理的内容,能应用勾股定理解决简单的实际问题.(二)能力训练要求通过探索直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
(三)情感与价值观通过自主学习的发展体验获取数学知识的感受;了解勾股勾股定理的历史,体会它的重大意义和文化价值教学重点:了解勾股定理的由来并能用它解决一些简单问题。
教学难点:勾股定理中数量关系的发现的发现课堂导入:我们生活的这个世界,蕴涵着无穷的秘密,人们不断去发现它,探索它,促使人类社会不断发展进步,可以说,人类不断发展的历史就是我们不断认识自然、发现自然规律的过程,其中有一些重要的发现对人类的历史进程产生了重大的影响。
我们今天所要研究的就是这样一个伟大的发现,无论是我国古代科技所代表的东方文明还是毕达哥拉斯学派所代表的西方文明,先后都发现了这个规律,有的科学家建议把这个规律作为地球人和外星文明交流的工具。
教学过程:1、知识准备谁能有办法得到下面几个格点图形的面积在网格图形中,简单的图形可以通过数格子的方法得到面积,复杂的图形总可以利用长方形和直角三角形的和或差得到面积。
1观察图1,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C 中有_______个小方格,即A 的面积为______个单位。
1、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:2、 图2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C 。
2、做一做出示投影提问:1、图3中,A,B,C 之间有什么关系?2、图4中,A,B,C 之间有什么关系?1、 从图1, 2, 3, 4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
义务教育课程标准实验教科书北师大版八年级上册第一章第一节探索勾股定理(第一课时)重庆市珊瑚初级中学校程小娟一、教学内容解析1. 内容探索勾股定理(第一课时)2. 内容解析勾股定理是学生在已经掌握了直角三角形有关角的性质基础上进行学习的,它从边的角度进一步揭示直角三角形三边之间存在的数量关系,是解决直角三角形问题的依据之一.在数学发展史上,东西方很早就展开了对勾股定理的研究,产生了各种各样证明勾股定理的方法,并由此导出了无理数的概念,引发了数学史上的第一次数学危机.因此,勾股定理具有丰富的文化内涵,学习勾股定理可以引发学生对数学文化、数学历史的思考.同时,勾股定理的发现、验证中,蕴含着发展学生探究能力不可多得的思维材料.本节课是义务教育课程标准实验教科书北师大版八年级上册第一章《勾股定理》第一节第一课时.教材在编写时重视对学生动手操作能力和观察分析问题能力的培养,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过练习比较、推理论证,表征方式的转换,理解勾股定理。
本节是已学习直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.二、教学目标与目标解析1.学习目标(1)经历用方格子计算面积的办法探索勾股定理以及利用图形面积验证勾股定理的过程,渗透“特殊到一般”、“数形结合”的数学思想,培养学生分析问题和解决问题的能力,提升学生几何直观的数学素养.(2)能准确利用文字语言、几何图形语言、字母符号语言表述勾股定理,会初步运用勾股定理进行简单的计算和解释生活中的简单现象.(3)利用古代中外勾股定理的发现故事,感受数学文化,热爱我国悠久文化的同时,学习多元文化,了解不同民族为人类的发展所做的贡献.2.目标解析勾股定理作为平面几何有关度量的最基本定理,既是对直角三角形的进一步探究,又是后续学习三角函数、四边形和圆,以及平面解析几何中两点间距离公式等的基础,它具有承上启下的作用.因此能准确地表述勾股定理,并能运用勾股定理进行简单的计算.本课是本章的第一课时,学习内容主要是探索勾股定理而不是证明,因此需要学生通过“观察——操作——猜想——验证”的过程,在此过程中自然发展发现问题、提出问题、分析问题、解决问题的能力.体会从特殊到一般、数形结合的思想,以及对勾股定理历史的认识.三、学生学情分析我任教的学校是重庆市首批示范初中,所教学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已经学习了一些几何图形面积的计算方法(包括割补法),但运用面积的割补法解决问题的意识和能力还有待提高.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.综合以上分析,确定了如下的教学重点和教学难点.教学重点:探索和验证勾股定理.教学难点:在方格纸上利用割补法计算面积探索勾股定理.四、教学策略分析本节课中采用启发式教学方法,小组讨论式合作学习方法,合理地使用多媒体和教具分解学生学习的难度.学生遇到的第一个难点可能是在方格纸中,求利用一般直角三角形斜边构造的正方形的面积.解决这个难点的策略是设置问题台阶,先通过求等腰直角三角形斜边构造的正方形面积时,启发学生用多种方法:数格子和拼图;再通过小组合作研究“割”、“补”的方式;最后在交流展示时,利用喷绘纸描出“割”、“补”后的所求的正方形的面积,同时将面积的表示方法展示在黑板上帮助学生理解.第二个难点可能是在直角边是小数的情况下探究勾股定理.解决这个难点的策略是引导学生回忆画数轴时如何根据实际情况选取单位长度,学生选取合适单位长度,坐标纸中完成画图,能帮助学生有效完成探究.同时,利用板书和课件能生动、有效地帮助学生有条理开展探究活动和梳理本节课的主要学习内容,板书与课件随着学生的思维同步展开.五、教学过程设计(一)引入1.幻灯片展示2002年国际数学大会的会标:会标中四个直角三角形中的三边存在怎样的数量关系?《周髀算经》中谈到“勾三股四弦五”(画出图形),为什么两直角边分别是3和4,斜边一定是5?【设计意图】看到会标,部分学生会想到“勾三股四弦五”.这样以学生的认知为基础引入,激发学习兴趣的同时,自然向学生渗透与勾股定理有关的历史文化,增强民族自豪感.根据教材的介绍,此时,老师可直接告诉学生:事实上,古人发现,直角三角形三条边长度的平方存在一种特殊的关系.为活动1为什么要计算直角三角形的三边平方作铺垫.2.引出课题《探索勾股定理》——研究直角三角形三边关系.简单介绍本章内容:探索并证明勾股定理及其逆定理,并运用这两个定理去解决有关问题,以此加深对直角三角形的认识.【设计意图】本节是勾股定理的章起始课,应该让学生简单了解本章的学习内容和学习目标,明确探索和学习勾股定理的必要性.(二)探究活动1:(1)请在方格纸上任意画一个直角三角形;(2)用直尺测量....它们的三条边长度;(3)计算三边长度的平方;(4)探究三边长度的平方有什么数量关系.师生活动:学生先自己操作,然后老师展示几何画板度量,得到基本的猜想.问:通过计算,你画的直角三角形三边长度的平方有什么数量关系?【设计意图】有学生会猜想到直角三角形三边平方的关系.要验证猜想结果的正确性,需要我们动手操作验证.自然想到画一个直角三角形,通过度量、计算边长的平方,初步获得结论.(因为度量存在一定的误差)我再通过几何画板出示一组直角三角形,让学生进一步观察与猜想.再让学生回忆小学知识:正方形的面积等于边长的平方,因此直角三角形三边的平方结果可以借用正方形的面积来表示,利用几何直观,我们将计算边长的平方转化为计算正方形的面积.学生在方格纸中计算正方形的面积,是有一定基础的.这样既避免了由测量带来的误差,也拓展了计算面积的方法,自然引出活动2.活动2:(1)观察图1-1,正方形A中含有个小方格,即A的面积是个单位面积;正方形B的面积是个单位面积,正方形C的面积是个单位面积.师生活动:学生口答图1-1、图1-2的面积,发现A,B,C面积之间的关系,并回答C 的面积是如何计算得到的.问:A、B、C面积之间的关系能不能分别用中间那个直角三角形的边长表示?【设计意图】等腰直角三角形比较特殊,从“形”上来看,体现探究的过程是一个从特殊到一般的过程,自然引出下一个活动:一般直角三角形的探究.而C的面积,学生有多种算法,本例比较特殊,用凑整的方法较为简单.但学生用补成正方形或是分割成三角形的计算方法,应该要给予展示和鼓励,从而为图1-3和图1-4中C面积的计算方法做铺垫.此时,可介绍古希腊著名数学家毕达哥拉斯从用地砖铺成的地面中发现了等腰直角三角形的某种特性.在西方,勾股定理也称为毕达哥拉斯定理,为纪念毕达哥拉斯学派,1955年,希腊曾发行了一枚邮票.在探究中自然介绍与勾股定理有关的西方文化知识.(2)观察图1-3,图1-4,并填写下表:小组活动:4人小组,两人探究图1-3,两人探究图1-4,主要展示C 面积的算法方法总结:方法一(割):分割为四个直角三角形和一个小正方形.方法二(补):补成大正方形,用大正方形的面积减去四个直角三角形的面积.问:直角三角形周边的三个正方形的面积与中间那个直角三角形三边的关系.师生活动:本活动中,学生的难点是如何通过割补法求C 的面积.因此教学过程中安排了小组活动.课堂中,黑板上会贴上图1-3,图1-4这两个基本图形的喷绘纸,学生用记号笔标记如何用割补法求C 的面积.此时,教师引导学生观察国际数学大会的会标就是方法1中的图,并进一步说明,此图是中国古代数学家赵爽首先绘制的,我们称此图为“勾股圆方图”,赵爽用数形结合的方法,给出了勾股定理的详细证明,比西方国家早了1000多年,下节课我们将来具体研究.【设计意图】对一般直角三角形的探究进一步说明结论的正确性,体现从特殊到一般的数学思想.从毕达哥拉斯发现勾股定理,到引出赵爽弦图,再一次让学生了解勾股定理悠久的历史文化,了解不同民族为人类的发展所做的贡献,渗透爱国主义教育,并为下一课时用“面积法”证明勾股定理奠定基础.活动3:如果直角三角形的两直角边分别为0.4个单位长度和0.6个单位长度,上面猜想的数量关系还成立吗?【设计意图】活动2中,直角三角形的直角边都是整数,为了进一步体现结论的一般性,本活动设计了直角边是小数的情况,从“数”验证结论的一般性.直角边是小数的情况,学生可能会比较困难,此时,引导学生回忆画数轴时如何根据实际情况选取单位长度,学生选取合适单位长度,并在方格纸中完成画图,能帮助学生有效完成探究.活动4:如图,请回答A,B,C面积之间的关系【设计意图】活动2和活动3中,直角三角形的直角边都是有理数,为了进一步体现结论的一般性,本活动设计了直角三角形三边都是无理数的情况.从教材的安排来看,实数是在勾股定理学习之后呈现的,因此在教学中学生对本图了解即可,这也是无理数发现的过程.再回到活动1中几何画板的展示,拖动直角三角形的顶点,进一步让学生了解在任意边长的情况下,直角边的平方和仍然等于斜边的平方.从等腰直角三角形到一般直角三角形,从直角边是整数到小数再到无理数,活动中体现了基于数学核心素养“直观想象”的教学理念.同时,在本活动中完善了探究方法:观察——操作——猜想——验证.通过活动2、3、4,得到如下结论:结论:S A +S B=S c222a b c += 隐去直角三角形周边的正方形,得到勾股定理:☆勾股定理:如果 的两直角边分别为a 和b ,斜边为c ,那么 . 几何语言:∵ ,∴ .归纳总结勾股定理过程: (1)结合探索过程,学生用自己的语言叙述,直角三角形的两条直角边与斜边的关系;(2)阅读教材,勾画关键词;(3)结合图形,用数学符号表示勾股定理.(三)应用跟踪练习:教材第3页随堂练习第1题(口答)【例1】(1)求下列直角三角形的边长.(2)在Rt △ABC 中,∠A =90°,AB =3,54BC AC =,求AC 的长.【设计意图】本例是勾股定理的简单运用.通过讲解,一是老师示范解答过程;二是让学生知道:在直角三角形中,如果知道两条边的长,可用勾股定理求出第三边长.【变式】在Rt △ABC 中,∠C =90°,BC =4,AB+AC =8,求AC 的长.B C A c ba 86B C A B C A B【设计意图】利用勾股定理建立方程求边长是常见的方法.【例2】理解“勾三股四弦五”老师展示肢体语言,同时让学生跟着一起做。
初中-数学-打印版
勾股定理教材分析第1课时
勾股定理把几何图形中直角三角形的形的特征转化成数量关系,为几何图形与数量关系之间搭建桥梁发挥了重要作用.由于直角图形的普遍性,勾股定理在实际应用中及其重要.
教科书安排了对勾股定理的观察、计算、猜想及证明过程,首先简略讲述了毕达哥拉斯从观察地面图案的面积关系发现勾股定理的传说,并让学生也去观察同样的图案,通过研究等腰直角三角形这种特殊直角三角形的面积关系,发现它的三边之间的数量关系,在进一步的探究中,又让学生对一般直角三角形进行计算,计算以直角三角形两直角边为边长的小正方形的面积和等于以斜边为边长的正方形的面积,进而得到这些直角三角形中两直角边的平方和等于斜边的平方,然后,对更一般的结论提出了猜想.并用赵爽证法加以证明,这是一个典型的从特殊到一般的思想方法,这样安排有利于学生认识结论研究的探究过程(观察、想象、计算、猜想、证明),激发学生对结论的探索兴趣和热情,培养学生发现问题、提出问题、分析问题和解决问题的能力和严密审慎的思考习惯.
历史上对勾股定理的证明的研究很多,得到了很多证明方法.教科书正文中介绍了3世纪三国时期中国数学家赵爽的证明方法.这是一种面积证法,依据是图形在经过适当切割后再另拼接成另个新图形,切割拼接前后图形的各部分的面积之和不变,即利用面积不变的关系和
对图形面积的不同算法得到等量关系.在教科书中,主要是将边长分别为、的两个正方形切割成四个直角三角形和一个小正方形,其中,直角三角形两直角边分别为、,面积都等于;小正方形的边长为,面积为.这样,由于
从而证明了勾股定理.
本节课的教学重点是勾股定理的探究和证明.
初中-数学-打印版。