光的偏振态
- 格式:ppt
- 大小:1.33 MB
- 文档页数:39
光的五种偏振态
单纯的使用偏振无法完全区分,应该再加上一个1/4玻片,具体如下:在光源与光屏之间加一块偏振片,
将偏振片旋转一周进行观察,
1.若光强随偏振片的转动没有变化,这束光是自然光或圆偏振光.这时在偏振片之前放1/4玻片,再转动偏振片.如果强度仍然没有变化是自然光;如果出现两次消光,则是圆偏振光,因为1/4玻片能把圆偏振光变为线偏振光
2.如果用偏振片进行观察时,光强随偏振片的转动有变化但没有消光,则这束光是部分偏振光或椭圆偏振光.这时可将偏振片停留在透射光强度最大的位置,在偏振片前插入1/4玻片,使玻片的光轴与偏振片的投射方向平行,再次转动偏振片会若出现两次消光,即为椭圆偏振光,即椭圆偏振片变为线偏振光;若还是不出现消光,则为部分偏振光
3.如果随偏振片的转动出现两次消光,则这束光是线偏振光。
光的偏振实验报告一、实验目的1、观察光的偏振现象,加深对光的偏振特性的理解。
2、掌握偏振片的起偏和检偏原理,学会用马吕斯定律测量偏振光的强度。
3、了解反射光和折射光的偏振特性,以及布鲁斯特角的概念。
二、实验原理1、光的偏振态光是一种电磁波,其电场矢量和磁场矢量相互垂直且都垂直于光的传播方向。
一般情况下,光的电场矢量在垂直于光传播方向的平面内是各个方向都有的,这种光称为自然光。
如果光的电场矢量只在某一固定方向上振动,则称为线偏振光。
还有部分偏振光和椭圆偏振光等偏振态。
2、偏振片偏振片是一种只允许某一方向振动的光通过的光学元件。
当自然光通过偏振片时,只有与偏振片透振方向相同的光振动能够通过,从而变成线偏振光,这个过程称为起偏。
当线偏振光通过偏振片时,透过光的强度取决于线偏振光的振动方向与偏振片透振方向之间的夹角,这个过程称为检偏。
3、马吕斯定律当一束强度为 I₀的线偏振光通过检偏器后,其强度 I 随检偏器透振方向与线偏振光振动方向夹角θ 的余弦平方成正比,即 I = I₀cos²θ,这就是马吕斯定律。
4、反射光和折射光的偏振当自然光在两种介质的分界面上反射和折射时,反射光和折射光一般都是部分偏振光。
当入射角等于布鲁斯特角时,反射光成为完全偏振光,其振动方向垂直于入射面,折射光仍为部分偏振光。
三、实验仪器偏振片、激光光源、光功率计、玻璃砖、旋转台等。
四、实验步骤1、观察激光通过偏振片的现象打开激光光源,让激光束垂直照射在偏振片上,旋转偏振片,观察透过偏振片的光强变化。
可以看到,当偏振片的透振方向与激光的振动方向平行时,光强最强;当两者垂直时,光强最弱,几乎为零。
2、验证马吕斯定律将两个偏振片分别安装在旋转台上,使激光依次通过两个偏振片。
固定第一个偏振片的透振方向,旋转第二个偏振片,每隔 10°测量一次透过第二个偏振片的光功率,并记录数据。
根据测量数据,计算光强 I 与cos²θ 的关系,验证马吕斯定律。
光的偏振实验报告一、实验目的1、观察光的偏振现象,加深对偏振概念的理解。
2、了解偏振片的特性,掌握产生和检验偏振光的方法。
3、测量布儒斯特角,验证布儒斯特定律。
二、实验原理1、光的偏振态光是一种电磁波,其电场矢量和磁场矢量相互垂直且都垂直于光的传播方向。
一般情况下,光的电场矢量在垂直于光传播方向的平面内的取向是随机的,这种光称为自然光。
如果光的电场矢量在垂直于光传播方向的平面内只沿某一固定方向振动,则称其为线偏振光。
还有部分偏振光和椭圆偏振光等偏振态。
2、偏振片偏振片是一种只允许某一方向的光振动通过的光学元件。
其透振方向就是允许光振动通过的方向。
当自然光通过偏振片时,只有与透振方向平行的光振动分量能够通过,从而得到线偏振光。
3、布儒斯特定律当自然光在两种介质的分界面上反射和折射时,反射光和折射光都将成为部分偏振光。
当入射角满足一定条件时,反射光将成为完全偏振光,其振动方向垂直于入射面,这个入射角称为布儒斯特角,用θB表示。
布儒斯特定律为:tanθB = n2 / n1 ,其中 n1 和 n2 分别为两种介质的折射率。
三、实验仪器光源(钠光灯)、起偏器(偏振片)、检偏器(偏振片)、光具座、玻璃片、刻度盘等。
四、实验步骤1、调节仪器将光源、起偏器、检偏器依次安装在光具座上,使其共轴。
调节起偏器和检偏器的透振方向,使其初始时平行。
2、观察偏振现象打开光源,旋转检偏器,观察透过检偏器的光强变化。
可以发现,当检偏器的透振方向与起偏器的透振方向平行时,光强最强;当两者透振方向垂直时,光强最弱,几乎为零。
这表明通过起偏器得到的线偏振光,其振动方向是固定的。
3、测量布儒斯特角在光具座上放置一块玻璃片,使自然光以一定角度入射到玻璃片表面。
旋转检偏器,使反射光消光(光强最弱),此时入射角即为布儒斯特角。
测量此时的入射角,并记录下来。
4、验证布儒斯特定律已知钠光灯发出的光在空气中的波长λ,以及玻璃片的折射率 n2,根据布儒斯特定律计算理论上的布儒斯特角。
偏振光是一种特殊类型的光,其电场振动方向在一个平面内进行振动的现象。
光波中的光子是电磁波,其电场分量的振动方向可以是任意方向,但当光波经过某些介质或特定的操作后,其中的一个或多个振动方向会被选择性地减弱或消除,从而使光变为偏振光。
偏振态是描述偏振光的状态或性质,通常用来表示光波电场振动方向的信息。
以下是一些关于偏振光和偏振态的重要概念:
线偏振光(Linearly Polarized Light):线偏振光是最常见的偏振光类型之一,其中电场振动方向沿着一条直线或直线的特定方向。
线偏振光可以是水平偏振(电场在水平方向振动)、垂直偏振(电场在垂直方向振动)或其他方向的线偏振。
圆偏振光(Circularly Polarized Light):圆偏振光是一种特殊的偏振光,其中电场振动以圆形轨迹旋转。
圆偏振光可以是顺时针旋转的右旋偏振光或逆时针旋转的左旋偏
振光。
偏振片(Polarizer):偏振片是一种光学器件,可以选择性地通过或阻挡特定方向的偏振光。
常见的偏振片可以将非偏振光转换为线偏振光,或将特定方向的线偏振光通
过,同时阻挡其他方向的光。
偏振态描述:偏振态通常用来描述偏振光的电场振动方向和性质。
例如,可以描述偏振光为"水平线偏振" 或"右旋圆偏振",以指示电场振动方向或轨迹的特性。
偏振光和偏振态在许多领域中都具有重要应用,包括光学、通信、显微镜、偏振成像、3D电影技术等。
它们帮助我们理解和利用光波的性质,以满足各种应用需求。
在与传播方向垂直的平面内光矢量E还可能有各式各样的振动状态,该平面内的具体振动方式称为光的偏振态完全偏振光非偏振光即自然光部分偏振光?完全偏振光:设光的传播方向Z,E位于XY平面,根据正交分解法,任何形式的光振动总可分解E X ,E Y 。
如果这两个分振动完全相关,即有完全确定的相位关系,则相应的光称为完全偏振光(偏振光)完全偏振光—线偏振光,圆偏振光、椭圆偏振光光的偏振状态MAXWELL:E ⊥K ,光波具有横波性(偏振性)椭圆偏振光可看作两个相互垂直、但振幅不相等、有固定相位差Δϕ的线偏振光的合成线偏振光和圆偏振光都可看作椭圆偏振光的特例线偏振光可看作两个相互垂直Δϕ=0,±π的线偏振光的合成对于两个垂直振动的合成,不论相位差Δϕ为何值,E X ⊥E Y ,总有I=I X +I Y ,即合振动的强度简单地等于两个垂直分振动的强度之和。
这对线偏振光、圆偏振光、椭圆偏振光都是适用的偏振片的起偏和检偏,马吕斯定律•起偏:从自然光获得偏振光要得到偏振光往往要通过光与物质的相互作用使自然光的偏振形态产生某种改变•起偏器:起偏的光学器件根据输出光的偏振形态:线起偏器、圆起偏器等•起偏的原理:利用某种光学的不对称性各种起偏器的作用过程都必须包含某种不对称性,它可以是介质在不同作用条件(例如不同的入射角)下的不同响应,更多的则是介质本身的各向异性反射和折射时光的偏振一、反射光的偏振:自然光反射时,可产生部分偏振光或完全偏振光晴朗的日子里,蔚蓝色天空所散射的日光多半是部分偏振光。
散射光与入射光的方向越接近垂直,散射光的偏振度越高。
阳光斜入射时,反射光具有明显的偏振性质S。
用适当的偏振眼镜可减少前方太阳光通过路面(或水面)反射所致的眩目;拍摄水上景物,镜头前加偏振片。
有反射光干扰的橱窗在照相机镜头前加偏振片消除了反射光的干扰i 0。
光的偏振现象与解释在日常生活中,我们经常会遇到各种各样的光现象。
其中之一就是光的偏振现象。
光的偏振是指光波在传播过程中的振动方向与空间位置的关系。
本文将探讨光的偏振现象的原理及其解释。
一、光的偏振现象的原理光是一种电磁波,它的振动方向可以与其传播方向垂直,这种光波称为非偏振光。
而偏振光则是指光波在传播过程中,只在一个特定的方向上振动。
1.1 偏振光的产生当光波通过某些特定的材料或经过反射、折射等物理现象时,会发生偏振现象。
其中最常见的产生偏振光的方式有:a) 反射:当光波从一个介质射向另一个介质时,会发生反射现象。
反射光中的电场振动方向与入射角度有关,若入射角度等于一定的值,反射光中的振动方向只在一个平面上,这就是偏振光的产生。
b) 透过偏振器:偏振器是一种特殊的光学器件,它可以选择性地允许某个方向上的光波通过,而阻止其他方向上的光波通过。
通过偏振器透射的光波就是偏振光。
1.2 光的偏振方式根据光波振动方向与传播方向的关系,光的偏振可以分为三种方式:a) 线偏振:光波的振动方向沿着一条直线传播,可以进一步分为水平偏振和垂直偏振两种。
b) 圆偏振:光波的振动方向按着圆的路径传播,可以进一步分为正旋圆偏振光和反旋圆偏振光。
c) 椭圆偏振:光波的振动方向按着椭圆的路径传播,可以进一步分为长轴偏振和短轴偏振。
二、光的偏振现象的解释对于光的偏振现象,现有两种主要的解释方法:波动理论和量子理论。
2.1 波动理论的解释波动理论认为光是一种电磁波。
根据波动理论,光的偏振现象可以通过以下方式解释:a) 波动面解释:当光波通过偏振器时,偏振器会限制光波中振动方向只有一个平面上的分量通过,从而实现光的偏振。
b) 干涉解释:波动理论还可以解释产生偏振光的干涉现象。
当两束偏振方向不同的光波相干叠加时,它们之间会发生干涉,而干涉现象就是光的偏振现象的一种解释。
2.2 量子理论的解释量子理论认为光是由光子组成的粒子。
根据量子理论,光的偏振现象可以通过以下方式解释:a) 旋量解释:根据量子理论中的旋量概念,光子有特定的自旋方向。
改变光偏振态的几种方法光偏振态是指光的振动方向是否与光的传播方向正交,或者说是指光沿着光的传播方向的情况下的振动模式的性质。
光偏振态的大小决定了光的特性,对光的传播、分解、探测和控制具有重要意义,因此,如何改变光的偏振态受到越来越多的关注。
首先,可以使用涂层镜变换偏振态。
这种方法是在普通的镜子表面上覆盖一层薄膜,然后将普通的竖直偏振光照射到该表面,通过涂层膜的不同物理性质对其偏振态进行改变,从而实现偏振态的改变。
这种方法可以有效地控制光的偏振态,相比于其他的方法,它的制作成本非常低,因此得到了广泛的应用。
其次,可以使用偏振器来改变光的偏振态。
偏振器是一种着色物质,它可以改变光在空间方向上的振动方向,而不会对光的位置和波长产生影响。
偏振器可以实现对光偏振态的精确控制,常见的偏振器有的分液晶偏振器、瓷片偏振器、锗电极管偏振器等,且使用此类偏振器还可以得到高效的性能。
此外,也可以使用接口缝隙的方式改变光的偏振态。
早期的穆斯堡实验表明,光在具有一定接口缝隙的表面之间传播时,其偏振态会发生变化,这一理论被称为接口缝隙理论。
应用这一理论,可以通过改变接口缝隙的空间尺寸,可以有效地控制光的偏振态,并且这类方法的制作成本也较低,可以大大降低设备的成本。
最后,使用光学晶体来改变偏振态也是一种常用的方法。
光学晶体指的是一种能够反射或折射光的物质,具有特定的空间结构,在其中,光的传播方向和振动方向可能会发生变化,因此可以实现对光偏振态的控制。
目前,光学晶体在光控制、光检测等方面有着广泛的应用,如激光穹顶、光束偏向器等设备都是由光学晶体制成,可以实现对光偏振态的控制和分离。
总之,以上几种方法都可以有效地改变光的偏振态,在光的控制、检测等方面具有重要的意义。
它们之间的差异也在于成本、成效和准确性,因此,在实际应用中,需要根据具体情况选择合适的方法。
在这些方法中,应用偏振器变换偏振态是光学技术发展过程中实现对光偏振态控制的最早方法之一,它可以有效地控制光的偏振态,被广泛用于光学成像、光学传输等领域,但它的成本通常较高。