第10讲—翼面结构(5)..
- 格式:ppt
- 大小:1.34 MB
- 文档页数:37
飞机机翼各部分图解及专业术语机翼各翼面的位置图图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。
机翼上各操纵面是左右对称分布,部分由于图片受限未标出机翼的基本概念机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。
是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。
另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。
相关名词解释:1 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型2 前缘:翼型最前面的一点。
3 后缘:翼型最后面的一点。
4 翼弦:前缘与后缘的连线。
5 弦长:前后缘的距离称为弦长。
如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长6 迎角(Angle of attack) :机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。
7 翼展:飞机机翼左右翼尖间的直线距离。
8 展弦比:机翼的翼展与弦长之比值。
用以表现机翼相对的展张程度。
9上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。
从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。
同理,向下垂时的角度就叫下反角。
10 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。
11 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。
上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。
中单翼因翼梁与机身难以协调,几乎只存在理论上;下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。
物理机翼知识点总结大全在航空航天领域,机翼是飞机的重要部件,它不仅能提供升力,还能影响飞机的稳定性和操控性能。
本文将对机翼的诸多知识点进行全面总结,包括机翼的结构、气动力学原理、机翼设计及影响因素等内容,以期为读者提供全面深入的了解。
一、机翼的结构1. 机翼的基本结构机翼是飞机上最重要的部件之一,其主要结构包括翼型、翼剖面、前缘后缘、翼梁、翼肋、翼壁等。
翼型是机翼的横截面形状,其设计影响着机翼的气动性能,通常采用NACA翼型。
前缘是机翼前部的边,通常是圆滑的弧形,以减小气流的阻力。
后缘是机翼后部的边,通常是锐利的切割,以减小气流的漩涡。
2. 机翼的组成部件机翼由翼梁、翼肋、翼翼壁、前后翼轮、边缘各种部件组成,翼梁是机翼的骨架,用于承受飞行中产生的各种荷载,翼肋则用于连接翼壁和翼梁,起到支撑和定位作用。
3. 机翼的操纵系统机翼的操纵系统包括副翼、襟翼、缝翼以及襟翼。
副翼用于控制飞机在横滚轴的转向,襟翼用于控制飞机在俯仰轴的转向,缝翼和襟翼用于增加机翼的升力。
二、气动力学原理1. 升力和阻力在飞行过程中,机翼产生的升力能够支持飞机的飞行,而阻力则是机翼在空气中运动时产生的摩擦力。
升力和阻力是机翼气动力学特性的重要指标,其大小与机翼的气动外形、攻角、翼面积等因素有关。
2. 机翼的气动性能机翼的气动性能由其空气动力学特性决定,包括升力系数、阻力系数和升力阻力比等参数。
升力系数和阻力系数是描述机翼升力和阻力大小的参量,升力阻力比是衡量机翼气动性能优劣的重要指标。
3. 攻角和失速攻角是指机翼载荷方向与机体坐标系的夹角,攻角的变化会直接影响机翼的升力和阻力。
失速是机翼在攻角过大时突然丧失升力的现象,会导致飞机失去升力支撑而坠机。
三、机翼设计及影响因素1. 翼型设计翼型设计是机翼设计的核心内容之一,通常采用数学模型对翼型进行优化设计,以实现最佳的气动性能。
NACA翼型是机翼设计中经常采用的标准翼型,其曲线的参数能够有效地描述翼型的气动特性。
飞机结构详细讲解机翼机翼是飞机的重要部件之一,安装在机身上。
其最主要作用是产生升力,同时也可以在机翼内布置弹药仓和油箱,在飞行中可以收藏起落架。
另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。
由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。
飞机的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不例外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼下,因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,同时也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。
机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。
其中接头的作用是将机翼上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根本就没有接头。
以下是典型的梁式机翼的结构。
一、纵向骨架机翼的纵向骨架由翼梁、纵樯和桁条等组成,所谓纵向是指沿翼展方向,它们都是沿翼展方向布置的。
* 翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。
翼梁一般由凸缘、腹板和支柱构成(如图所示)。
凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。
凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。
* 纵樯与翼梁十分相像,二者的区别在于纵樯的凸缘很弱并且不与机身相连,其长度有时仅为翼展的一部分。
纵樯通常布置在机翼的前后缘部分,与上下蒙皮相连,形成封闭盒段,承受扭矩。
靠后缘的纵樯还可以悬挂襟翼和副翼。
* 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。
二、横向骨架机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,横向是指垂直于翼展的方向,它们的安装方向一般都垂直于机翼前缘。
* 普通翼肋的作用是将纵向骨架和蒙皮连成一体,把由蒙皮和桁条传来的空气动力载荷传递给翼梁,并保持翼剖面的形状。