人教版七年级上册解一元一次方程 合并同类项、移项
- 格式:docx
- 大小:28.54 KB
- 文档页数:2
解一元一次方程(一)——合并同类项与移项(第3课时)教学目标1.通过分析实际问题中的数量关系,能够建立方程解决问题.2.熟练掌握利用合并同类项与移项解一元一次方程的方法,体会化归思想.教学重点会利用合并同类项与移项的方法解一元一次方程.教学难点能够通过题干分析出“总量和分量关系问题”和“盈不足问题”中的相等关系,并建立方程解决问题.教学过程知识回顾1.利用合并同类项解方程.将一元一次方程同侧的含有未知数的项与常数项分别合并,使方程转化为mx=n (m≠0)的简单形式,从而更接近x=a(常数)的形式,便于求解.一般步骤:(1)合并同类项;(2)系数化为1.2.利用移项解方程.将含有未知数的项移到方程的一边,将不含未知数的常数项移到方程的另一边,使方程更接近于mx=n(m≠0)的形式.一般步骤:(1)移项;(2)合并同类项;(3)系数化为1.3.列方程解应用题的步骤.(1)审题勾画关键词,找出相等关系;(2)表示相等关系;(3)设未知数,列方程;(4)解方程、检验,并答题.本节课,我们将学习一元一次方程的简单应用.新知探究类型一、利用合并同类项解方程【问题】1.利用合并同类项解下列方程:(1)6x-4x=17-5;(2)-9x+2x-4x=50-2-4.【答案】解:(1)合并同类项,得2x=12.系数化为1,得x=6.(2)合并同类项,得-11x=44.系数化为1,得x=-4.【师生活动】教师提问:根据上面例题,请同学们尝试归纳利用合并同类项解方程时的注意事项.学生尝试总结,教师补充.【归纳】(1)把方程中的同类项合并时,要牢记合并同类项的法则:同类项的系数相加,字母连同它的指数不变.(2)在系数化为1时,特别注意系数是负数时,符号不要出错.【设计意图】通过例题讲解,让学生掌握如何利用合并同类项解方程.例题之后,进行总结归纳,加深学生对所学知识的理解及应用.类型二、利用移项解方程【问题】2.利用移项解下列方程:(1)5x-4=-7x+8;(2)6-8x=3x+3-5x.【答案】解:(1)移项,得5x+7x=4+8.合并同类项,得12x=12.系数化为1,得x=1.(2)移项,得-8x-3x+5x=-6+3.合并同类项,得-6x=-3.系数化为1,得12x .【师生活动】教师提问:通过例题练习,你能发现利用移项解方程时的易错点吗?学生回答:移项时容易忘记变号.教师补充,学生尝试总结归纳.【归纳】(1)方程中的项包括它前面的符号;(2)在解方程时,习惯上把含有未知数的项移到等号的左边,不含有未知数的项移到等号的右边;(3)移项时一定要变号.【设计意图】通过例题讲解,让学生掌握如何利用移项解方程.例题之后,进行总结归纳,加深学生对所学知识的理解及应用.类型三、列方程解应用题【问题】3.在植树节期间,学校开展了植树活动.七年级三个班共植树100棵,其中一班植树的棵数比二班植树的棵数多4棵,三班植树的棵数比二班植树棵数的2倍少4棵,求三个班各植树多少棵.【师生活动】教师提问:问题中涉及了哪些量?这些量之间有怎样的关系?学生回答:(1)一班植树的棵数,二班植树的棵数,三班植树的棵数;(2)总棵数=一班植树的棵数+二班植树的棵数+三班植树的棵数.教师总结:在列方程时,“总量=各部分量的和”是一个基本的相等关系.【分析】题中已知一班、三班植树的棵数分别与二班植树的棵数的关系,所以可以考虑设二班植树x棵.【答案】解:设二班植树x棵,则一班植树(x+4)棵,三班植树(2x-4)棵.根据题意,得x+x+4+2x-4=100.合并同类项,得4x=100.系数化为1,得x=25.所以x+4=29,2x-4=46.答:一班植树29棵,二班植树25棵,三班植树46棵.【归纳】根据“总量=各部分量的和”解决问题的四个步骤:第1步:弄清楚总量包括哪几部分量,并设出未知数;第2步:根据“总量=各部分量的和”列出方程;第3步:解方程求出所设未知数;第4步:求出其余各部分量,并作答.【问题】4.已知一列火车匀速驶过一条隧道,从车头进入隧道到车尾离开隧道共用45 s,而整列火车全在隧道内的时间为33 s,且火车的长度为180 m,求隧道的长度和火车的速度.【师生活动】教师提问:隧道的长度有几种表示方法?学生回答:(1)若火车的速度为x m/s,火车匀速驶过隧道,从车头进入隧道到车尾离开隧道是45x m,减去火车的长度180 m,得隧道的长度为(45x-180)m;(2)若火车的速度为x m/s,整列火车全在隧道内行驶了33x m,加上两个火车的长度(180×2) m,得隧道的长度为(33x+180×2)m.教师追问:本题哪个相等关系可作为列方程的依据呢?学生回答:两种表示方式表示的隧道的长度是相同的.教师总结:“表示同一个量的两个不同的式子相等”是一个基本的相等关系.【答案】解:设火车的速度为x m/s.根据题意,得45x-180=33x+180×2.移项,得45x-33x=180+360.合并同类项,得12x=540.系数化为1,得x=45.45×45-180=1 845(m).答:隧道的长度为1 845 m,火车的速度为45 m/s.【归纳】根据“表示同一个量的两个不同的式子相等”解决问题的四个步骤第1步:找出应用题中贯彻始终的一个不变的量;第2步:用两个不同的式子表示出这个量;第3步:由“表示同一个量的两个不同式子相等”列出方程;第4步:解方程,求出答案并作答.【设计意图】通过问题3、问题4的分析与讲解,加深学生对这两种应用题解题方法的认识,在遇到相对应题型时可以准确迅速地找出相等关系,从而列出方程解决问题.课堂小结板书设计一、利用合并同类项解一元一次方程二、利用移项解一元一次方程三、列方程解应用题课后任务完成教材第91页习题3.2第1,3,6,11题.。
人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿3一. 教材分析《人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》》是学生在学习了方程概念和一元一次方程的解法的基础上,进一步深化对一元一次方程的理解和应用。
这一节内容主要介绍了合并同类项和移项的方法,这是解一元一次方程的基础。
通过合并同类项和移项,学生可以更灵活地操作方程,从而更好地解决实际问题。
教材通过丰富的例题和练习题,帮助学生掌握这一技能。
二. 学情分析七年级的学生已经具备了一定的数学基础,对一元一次方程有了初步的了解。
但是,他们在解决实际问题时,可能会遇到难以将实际问题转化为方程,或者在操作方程时出现错误。
因此,在教学过程中,我需要引导学生将实际问题转化为方程,并通过合并同类项和移项的方法操作方程,从而解决问题。
三. 说教学目标1.知识与技能:学生能理解合并同类项和移项的概念,掌握合并同类项和移项的方法,并能运用到实际问题中。
2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:合并同类项和移项的方法。
2.教学难点:如何将实际问题转化为方程,并运用合并同类项和移项的方法解决问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何将实际问题转化为方程,激发学生的学习兴趣。
2.讲解:讲解合并同类项和移项的概念和方法,通过例题展示如何运用合并同类项和移项的方法解决问题。
3.练习:学生独立完成练习题,巩固所学知识。
4.应用:学生分组讨论,运用合并同类项和移项的方法解决实际问题。
5.总结:对本节课的内容进行总结,强调合并同类项和移项在解一元一次方程中的重要性。
《解一元一次方程—合并同类项和移项》教学设计一、内容与解析1.内容一元一次方程的合并同类项解法,用方程模型解决实际问题。
2.内容核心本章的核心内容是“解方程”和“列方程”。
方程的解法是初中内容的核心,合并同类项是解方程的基本步骤之一,是一种同解变形,合并同类项的依据是乘法分配律,运用合并同类项可以把等式两边的多项式合并成一项,从而使方程向x=a的形式转化。
合并同类项是后续解方程经常应用的步骤,并且在学习其它方程、方程组、不等式、函数时都要经常使用。
“列方程”在所有方程类型中占有重要的地位,贯穿于全章的始终,从实际问题中建立一元一次方程模型,结合这些模型讨论方程的解法,这样可以自然的反映所讨论的内容是从实际需要中产生。
列方程对学生来说是个难点,以实际问题引入增强学生的兴趣,慢慢理解和掌握列方程的基本步骤,有利于提高学生分析问题和解决问题能力。
解方程就是将复杂的方程向x=a的形式转化,其中化归思想起了指导作用,化归思想在以后二元一次方程组、一元一次不等式、分式方程、一元二次方程的解法中都有所体现。
根据以上分析,确定本节课的教学重点是:确定问题中的相等关系,建立形如ax+bx=c的方程,会用合并同类项的方法解形如ax+bx=c+d类型的一元一次方程。
二、目标和目标解析1.目标(1)掌握解方程中的合并同类项,会解形如“ax+bx=c+d”类型的一元一次方程,体会等式变形中的化归思想。
(2)能够从实际问题中列出一元一次方程,体会方程思想的作用以及它的应用价值。
2.目标解析达成目标(1)的标志是:知道合并同类项是应用乘法分配率,给定一个方程,能够准确的进行合并同类项解方程。
知道合并同类项的作用可以简化方程,使方程向x=a的形式转化,在此过程中体会化归思想。
达成目标(2)的标志是:通过对某校三年购买计算机台数的研究,建立ax+bx=c类型的方程,观察与分析方程的特征,可以通过合并同类项解这类方程;在“列方程”和“解方程”的过程中,能够体会方程思想的价值。
3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项一、基本目标【知识与技能】1.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.2.学会探索实际问题中的数量关系,正确地求解一元一次方程.【过程与方法】经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力.【情感态度与价值观】初步体会一元一次方程的应用价值,感受数学文化.培养学生乐于思考,不怕困难的精神.二、重难点目标【教学重点】会解“ax+bx=c”类型的一元一次方程.【教学难点】分析实际问题中的数量关系,会列方程并能正确求解.环节1自学提纲,生成问题【5 min阅读】阅读教材P86~P87的内容,完成下面练习.【3 min反馈】1.教材第87页“思考”:通过合并同类项可以化简方程,把方程化为ax=b(a、b为常数且a≠0)的形式,从而求出方程的解.2.合并同类项的法则:同类项的系数相加,字母连同它的指数不变.3.解形如ax+bx=c的一元一次方程先合并,再将系数化为1.4.列方程步骤:(1)设未知数;(2)找相等关系;(3)列方程.环节2合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)3x -20x =-34;(2)y 3+y 4=1-112. 【互动探索】(引发学生思考)利用合并同类项的方法求解.【解答】(1)合并同类项,得-17x =-34.系数化为1,得x =2.(2)合并同类项,得7y 12=1112. 系数化为1,得y =117. 【互动总结】(学生总结,老师点评)用合并同类项法解一元一次方程的步骤:(1)合并同类项,即把方程中含有未知数的项合并,常数项合并,把方程化为ax =b (a ≠0)的形式;(2)系数化为1,即根据等式的性质2,将形如ax =b (a ≠0)的方程两边都除以一次项系数,化成x =b a(a ≠0)的形式,即得方程的解为x =b a.系数化为1时注意:(1)利用等式的性质2,方程的两边同时除以未知项的系数,把系数化为1;(2)不要颠倒分子、分母的位置.【例2】有一列数,按一定规律排列成1,-3,9,-27,81,-243,….其中某三个相邻数的和是-1701,这三个数各是多少?【解答】见教材第87页例2活动2 巩固练习(学生独学)1.下列各式的变形错误的是( C )A .由7x -6x =1,得x =1B .由3x -4x =10,得-x =10C .由x -2x +4x =15,得x =15D .由-7y +y =6,得-6y =62.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( A )A .2B .-2 C.27 D .-272.一个两位数,个位上的数字是十位上数字的3倍,两个数字的和是12,这个两位数是39.3.顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?解:设到怀集的旅游人数为x人,则到德庆旅游的人数为(2x-1)人.根据题意,得x+2x-1=200.解得x=67.则2x-1=133.即到怀集和德庆旅游的人数分别是67人,133人.活动3拓展延伸(学生对学)【例3】有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数字之和为342.(1)小彬拿到哪3张卡片?(2)小彬能否拿到相邻的3张卡片,使得这3张卡片上的数的和为86?如果能拿到,请求出这3张卡片上的数各是多少;如果不能拿到,请说明理由.【互动探索】(1)根据题意可以求得相邻的三个数;(2)先判断这三个数字的和能否是86,然后说明理由即可.【解答】(1)设小彬拿到相邻的3张卡片上的数分别为x-6,x,x+6,则有x-6+x+x+6=342.解得x=114.所以x-6=108,x+6=120.即小彬拿到相邻的3张卡片上的数分别为108,114,120.(2)假设能拿到和为86的3张卡片,设这3张卡片上的数分别为y-6,y,y+6,则有y-6+y+y+6=86.解得y≈28.67,显然不符合题意,说明上述假设不成立.故小彬不能拿到相邻的3张卡片,使得这3张卡片上的数的和为86.【互动总结】(学生总结,老师点评)解答本题的关键是由后一张卡片上的数比前一张卡片上的数大6的特点,可设中间的一张卡片分别为x,那么另外两张卡片为x-6和x+6.然后根据每一问中的具体等量关系列出方程即可.环节3课堂小结,当堂达标(学生总结,老师点评)1.合并同类项法则:把同类项的系数相加,字母的指数不变.利用合并同类项法则可使方程转化为ax=b的形式.2.利用一元一次方程解应用题,当问题中有多个未知数时,可设其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程求解.请完成本课对应训练!第2课时移项一、基本目标【知识与技能】1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项的方法,学会解“ax+b=cx+d”类型的一元一次方程.【过程与方法】通过解形如ax+b=cx+d的方程,使学生感受化归的思想方法.【情感态度与价值观】1.培养学生积极思考,勇于探索的精神.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值.二、重难点目标【教学重点】会解“ax+b=cx+d”类型的一元一次方程.【教学难点】分析实际问题中的相等关系,列出方程.环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P90的内容,完成下面练习.【3 min反馈】1.教材第88页思考:先移项,将方程变为3x-4x=-25-20的形式;再合并同类项,得-x=-45;最后将系数化为1,得x=45.2.把等式一边的某项变号后移到另一边,叫做移项.3.移项的根据是等式的性质1.4.教材第89页思考:通过移项,可以把含有未知数的项与常数项分别移到等号的两边,通过合并同类项,使方程化为ax=b(a、b为常数且a≠0)的形式,再化系数为1,即可求出方程的解.5.解方程20-3x=5时,移项后正确的是(B)A.-3x=5+20B.20-5=3xC.3x=5-20D.-3x=-5-20环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)x -2018=82-5x ;(2)-2x +3.5=3x -8.【互动探索】(引发学生思考)解简单的一元一次方程的步骤有哪些?移项的关键是什么?【解答】(1)移项,得x +5x =82+2018.合并同类项,得6x =2100.系数化为1,得x =350.(2)移项,得-2x -3x =-8-3.5.合并同类项,得-5x =-11.5.系数化为1,得x =2.3.【互动总结】(学生总结,老师点评)移项是解方程的关键步骤,移项时,一般把含有未知数的项移到等号左边,常数项移到等号右边,注意移项时一定要变号.【例2】某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新、旧工艺的废水排量之比在2∶5,两种工艺的废水排量各是多少?【解答】见教材第90页例4【教师点拨】列方程解决应用题的关键是找出题中的等量关系.本题的等量关系:旧工艺废水排量-200 t =新工艺废水排量+100 t.活动2 巩固练习(学生独学)1.解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)5=5-3x ;(4)x -2x =1-23x ;(5)x -3x -1.2=4.8-5x .解:(1)x =52. (2)x =1.(3)x =0.(4)x =-3.(5)x =2.2.把若干块糖果分给若干个小朋友,若每人分3块,则多12块;若每人分5块,则少10块.则一共有多少个小朋友?多少块糖?解:设一共有x 个小朋友.根据题意,得5x -10=3x +12.移项,得5x -3x =12+10.合并同类项,得2x =22.系数化为1,得x =11.所以共有糖5x -10=45(块).即一共有11个小朋友,糖45块.3.一个三位数,十位上的数字比个位上的数字多1,且是百位上的数字的4倍,百位上的数字与个位上的数字之和比十位上的数字大1,求这个三位数.解:设十位上的数字为x .根据题意,得x -1+x 4=x +1. 移项,得x +x 4-x =1+1. 合并同类项,得x 4=2. 系数化为1,得x =8.所以个位上的数字为x -1=8-1=7,百位上的数字是x 4=84=2,则这个三位数是287. 活动3 拓展延伸(学生对学)【例3】某中学组织七年级的同学去游玩,原计划租用45座客车(不包括司机)若干辆,但有15人没有座位,如果租用同样数量的60座客车(不包括司机),则多出一辆且其余客车恰好坐满.则七年级有多少人?原计划租用45座客车多少辆?【互动探索】本题中的等量关系为:45×45座客车辆数+15=学生总数,60×(45座客车辆数-1)=学生总数,据此可列方程组求出45座客车辆数,进而可求出七年级的学生人数.【解答】解:设原计划租用45座客车x辆,则七年级有(45x+15)人.根据题意,得45x+15=60x-60.移项,得45x-60x=-60-15.合并同类项,得-15x=-75.系数化为1,得x=5.当x=5时,45x+15=45×5+15=240.即七年级有240人,原计划租用45座客车5辆.【互动总结】(学生总结,老师点评)列方程解应用题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验(不在解题过程中体现)→写出答案.环节3课堂小结,当堂达标(学生总结,老师点评)1.移项:移项是解方程的重要变形,一般把含有未知数的各项移到同一边(通常移到左边),而把常数项移到另一边(通常移到右边),不管是从左边到右边,还是从右边到左边,注意移项要变号.2.题目中含有比的应用题在设未知数时,一般根据比去设,如果题目告诉的比是a∶b,一般设为ax、bx两部分,如果比是a∶b∶c,一般设为ax、bx、cx三部分,然后找出题目中的等量关系列出方程,并解答.请完成本课对应训练!。
人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿一. 教材分析《人教版七年级数学上册》第三章第二节《解一元一次方程(一)——合并同类项与移项》是学生在学习了代数基础和方程概念之后,进一步深入研究一元一次方程的解法。
此节内容主要介绍了一元一次方程的解法——合并同类项与移项,是学生解决实际问题,提高解决实际问题能力的重要工具。
二. 学情分析七年级的学生已经具备了一定的代数基础,对方程的概念有了初步的了解,但是解一元一次方程的方法和技巧还不够熟练,需要通过本节课的学习进一步提高。
同时,学生在这个阶段的学习中,需要培养抽象思维能力和逻辑推理能力。
三. 说教学目标1.知识与技能目标:理解合并同类项与移项的概念,学会运用合并同类项与移项解一元一次方程。
2.过程与方法目标:通过自主学习、合作交流,培养学生的抽象思维能力和逻辑推理能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:合并同类项与移项的方法及应用。
2.教学难点:如何引导学生理解并掌握合并同类项与移项的原理和技巧。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的教学方法。
2.教学手段:利用多媒体课件辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习上节课的内容,引出本节课的主题——解一元一次方程。
2.自主学习:让学生自主探究合并同类项与移项的方法,引导学生发现解题规律。
3.合作交流:学生分组讨论,分享解题心得,互相学习,提高解题能力。
4.教师讲解:针对学生的疑问和难点,进行讲解和辅导,帮助学生掌握解题方法。
5.巩固练习:布置适量的练习题,让学生巩固所学知识,提高解题技巧。
6.课堂小结:总结本节课的学习内容,强化学生对合并同类项与移项的理解。
7.课后作业:布置相关的作业,让学生进一步巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
《解一元一次方程(一)合并同类项与移项》知识全解课标要求1.了解解方程的基本目标(使方程逐步转化为x=a 的形式),理解解一元一次方程的一般步骤(本节主要是合并同类项与移项),掌握一元一次方程的解法,体会解法中蕴涵的化归思想;2.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”,体会建立数学模型的思想;3.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.知识结构 内容解析1.合并同类项:本质是分配律的逆运算,原来是在式子中运算,现在是在等式中运算,并且要注意格式上的问题,原来可以写“解:原式=......”,现在在方程中不存在这种写法,也可以帮助学生理解合并同类项在两处的却别,还能说明方程是在化简,渗透化归思想.2.移项:把等式一边的某项变号后移到另一边,叫做移项.这是概念,其中移项变号显得尤为重要,而且这也是许多学生极为容易犯错的地方,我认为让学生理解透彻这移项的本质实际上是等式性质1——等式两边同时加上或减去同一个数,等式仍然成立,是帮助学生避免犯错的办法之一.3.合并同类项与移项的作用:合并同类项与移项的目的就是化简方程,它是一种恒等变形,可以使方程变得简单,并逐步使方程向x =a 的形式转化,让学生明白,解方程实际上是化简的一个过程,而且可以帮助学生建立解数学题的一种方法:把未解决的问题转化为一个已经解决的问题,这就是重要的数学思想——化归思想,也是一种重要的学习方法!4.解方程的步骤:移项、合并同类项、系数化为1.5.用一元一次方程分析和解决实际问题的一般过程:表示同一量的两个不同式子相等. 重点难点本节的重点是:利用合并同类项、移项变号法则解方程.教学重点的解决方法:学生在整式加减中已经学会了合并同类项,通过观察类比得出合并同类项与移项的解法,学生积极动手、动脑、动口为主线来完成,设置由浅入深一些练习题,加深对概念的理解与把握.通过题组的学习和训练,归纳出用一元一次方程解题的一般步骤.体会方程是刻画现实世界数量关系的一个有效的数学模型,本节的难点是:找相等关系列一元一次方程教学难点的解决方法:要运用一元一次方程解决生活中的实际问题,首先必须了解一元一次方程的概念,而概念的教学又要从大量的实例出发.通过问题情境,建立一元一次方程的数学模型.(1)注意师生互动,提高学生的思维效率.(2)针对学生的盲区,出相应的练习巩固.教法导引本节的重点在于讨论解方程中的“合并同类项”和“移项”两个基本做法,这样就已经可解ax+b=cx+d 类型的一元一次方程.实际问题 一元一次方程 合并 移项 步骤 设未知数,列方程本节中对于“合并同类项”和“移项”的讨论,分别以问题1和问题2为出发点.以较为简单的实际问题作讨论方程解法的背景,一方面可使学生感觉到要讨论的解法来源于实际问题的需要,另一方面可使根据实际问题列方程贯穿于全章,将列方程的教学过程拉长.从而达到由简单问题到复杂问题地逐步提高学生列方程的能力的教学效果.本节首先提及在数学史上对解方程颇有影响的一部著作,即生活在约780~850年间的阿拉伯数学家阿尔—花拉子米所著的《对消与还原》一书,提问“对消”与“还原”是什么意思,以此作为后面内容的引子.本节在问题1和问题2之后,各安排了两道例题,其中前一例题是单纯解方程,其作用是巩固对相应解法的理解和掌握;后一例题是简单的实际问题,其作用有两个,一是巩固对相应解法的理解和掌握,二是逐步引导学生理解和掌握如何列方程.解方程和列方程是利用方程分析和解决实际问题的基本过程中不可或缺的两个环节.在教学中,要把数学思想和方法的教学贯穿于整个教学中,学生只有及早形成自己的思想和方法,才能学得轻松,从而更加爱学数学.同时及时找出课堂上出现的共性问题,利用辅导课及时纠正,然后做针对性练习来巩固盲区,强化课堂薄弱环节,使课堂走向优质高效化.学法建议通过回顾已学过的整式加减中的合并同类项和等式性质1这些已有知识,为后续的合并同类项与移项学习作好知识储备与铺垫,通过对实际问题的讨论与探究,激发起学生的强烈的求知欲和探索愿望,用方程思想从日常生活情境中借助等量关系,用一元一次方程表示出来,初步建立一元一次方程基本模型.让学生尝试进一步将所学知识运用到解方程中,最后体验到“合并同类项”和“移项”给解方程带来的便利性!并通过应用题组灵活运用所学知识形成技能技巧.让学生自己归纳出用一元一次方程解决实际问题的一般步骤,体会方程是刻画现实世界数量关系的一个有效的数学模型.。
3.2解一元一次方程 合并同类项、移项
一、1、对于方程x+2x+4x=140, 如何解此方程呢?主要是把等式左边含x 的项进行合并,合并后为 ,然后利用 的性质求出x 的值。
你学会了吗?请看例题 例1、解方程6x-2x+3x-9x=2×(-3)×4
解:合并同类项,得-2x= (合并同类项的法则)
把x 的系数化成1,得x= (等式的性质 )
练习(解方程)
(1)5x-2x=12 (2)
2
32x x =7 (3)7x-4.5x=2.5×3-5
2、对于方程 :3x+20=4x-25,如何解此方程呢?
对比上边两个方程,相当于把原方程左边的20变为 移到右边,把右边4x
变为 移到左边,象这样,把等式一边的某项 后移到另一边,叫做移项(默记三遍)。
解方程7x-3=2x+6
解:移项得7x 2x=6 3 (填“符号”,注意:移项必须改变该项的符号)
合并同类项得 =9
把x 的系数化成1得x=
解此方程的步骤是:移项( 即把含未知数的项移到等式的 边,不含未知数的项移到等式的 边)、 合并 项、未知数x 的系数化为 ,最终把方程变为“x= ”的形式,注意:移项必须改变符号。
练习(解方程)
(1)9x-7=4x-5 (2)9-3y=5y+5 (3)3x+5=4x+1
二、1、方程3x=5+2x ,移项得3x =5, 合并得x=
2、当x= ,代数式3x+3与 5x-2的值相等。
3、若-2x+1=7,则x= ;若5x-2=3x-3,则x=
4、解方程2x-4=3x+5, 移项正确的是( )
A 、2x+3x=5-4
B 、2x+3x=5+4
C 、2x-3x=5-4
D 、2x-3x=5+4
5、解方程(1)5x+3x+6x=45-3 (2)
41x+21x=3 (3)2
1x-7=5+x
6、用一根长60m 的绳子围成一个矩形,使它的长是宽的1.5倍,问长与宽各是多少? 解:设宽是x m, 则长为1.5x m, 由题意列方程 (1.5x +x )×2=60,
合并同类项得2.5x= x 的系数化为1,得x =
∴矩形的长为 ,宽为 ,答: 。
三、1.解方程: (1) -3x+12x-10x=(89-77)÷(-6) (2)
21x-6=4
3x
2.某乡改良玉米为种优质杂粮后,今年农民人均收入比去年提高20﹪,今年人均收入比去年的1.5倍少1200元,问这个乡去年人均收入是多少元?
3.小明用红笔在一张日历上画了一个正方形,正方形里面有四个日期,这四个日期之和为76,你能推算出这四个日期吗?(注意日历的格式)。