初-奥数题(附答案
- 格式:doc
- 大小:75.00 KB
- 文档页数:12
年初中奥数题及答案初中奥数题试题一一、选择题(每题分,共分).如果,都代表有理数,并且+,那么 ( ).,都是.,之一是.,互为相反数.,互为倒数答案:解析:令,-,满足(-),由此、互为相反数。
.下面的说法中正确的是 ( ).单项式与单项式的和是单项式.单项式与单项式的和是多项式.多项式与多项式的和是多项式.整式与整式的和是整式答案:解析:²,都是单项式.两个单项式,²之和为²是多项式,排除。
两个单项式²,之和为是单项式,排除。
两个多项式与-之和为是个单项式,排除,因此选。
.下面说法中不正确的是 ( ). 有最小的自然数.没有最小的正有理数.没有最大的负整数.没有最大的非负数答案:解析:最大的负整数是,故错误。
.如果,代表有理数,并且+的值大于-的值,那么 ( ).,同号.,异号.>.>答案:.大于-π并且不是自然数的整数有 ( ).个.个.个.无数个答案:解析:在数轴上容易看出:在-π右边的左边(包括在内)的整数只有-,-,-,共个.选。
.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( ).个.个.个.个答案:解析:负数的平方是正数,所以一定大于它本身,故错误。
.代表有理数,那么,和-的大小关系是 ( ).大于-.小于-.大于-或小于-.不一定大于-答案:解析:令,马上可以排除、、,应选。
.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) .乘以同一个数.乘以同一个整式.加上同一个代数式.都加上答案:解析:对方程同解变形,要求方程两边同乘不等于的数,所以排除。
我们考察方程-,易知其根为.若该方程两边同乘以一个整式-,得(-)(-),其根为及,不与原方程同解,排除。
同理应排除.事实上方程两边同时加上一个常数,新方程与原方程同解,对,这里所加常数为,因此选..杯子中有大半杯水,第二天较第一天减少了,第三天又较第二天增加了,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ).一样多.多了.少了.多少都可能答案:解析:设杯中原有水量为,依题意可得,第二天杯中水量为×(-);第三天杯中水量为()×()××;第三天杯中水量与第一天杯中水量之比为∶,所以第三天杯中水量比第一天杯中水量少了,选。
初一奥数测试题及答案一、选择题(每题5分,共20分)1. 一个数的平方等于它本身,这个数是()。
A. 0B. 1C. 0和1D. 以上都不是2. 已知一个等差数列的首项是2,公差是3,那么这个数列的第5项是()。
A. 17B. 14C. 11D. 83. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是十位上的数字的三倍,这个三位数是()。
A. 123B. 234C. 456D. 6784. 一个长方体的长、宽、高分别为3cm、4cm、5cm,那么这个长方体的表面积是()。
A. 94cm²B. 62cm²C. 74cm²D. 84cm²二、填空题(每题5分,共20分)5. 一个数的立方等于它本身,这个数是______。
6. 一个等比数列的首项是1,公比是2,那么这个数列的第4项是______。
7. 一个两位数,十位上的数字比个位上的数字大3,且这个两位数的数字之和为9,这个两位数是______。
8. 一个正方体的棱长为a,那么这个正方体的体积是______。
三、解答题(每题15分,共60分)9. 已知一个等差数列的首项是5,公差是2,求这个数列的前10项的和。
10. 一个长方体的长、宽、高分别为6cm、8cm、10cm,求这个长方体的体积。
11. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是百位上的数字的三倍,求这个三位数。
12. 一个等比数列的首项是3,公比是4,求这个数列的前5项的和。
答案:一、选择题1. C2. A3. B4. C二、填空题5. 0、1、-16. 167. 458. a³三、解答题9. 解:等差数列的前n项和公式为S_n = n/2 * (2a_1 + (n-1)d),其中a_1为首项,d为公差,n为项数。
将已知条件代入公式,得S_10 = 10/2 * (2*5 + (10-1)*2) = 5 * (10 + 18) = 5 * 28 = 140。
初中生奥数考试题及答案1. 题目:一个数列的前三项分别是1, 2, 4,从第四项开始,每一项都是前三项的和。
求这个数列的第10项是多少?答案:根据题目描述,数列的前三项是1, 2, 4。
第四项是前三项的和,即1+2+4=7。
第五项是第二项、第三项和第四项的和,即2+4+7=13。
以此类推,可以计算出数列的后续项。
继续计算,第六项为4+7+13=24,第七项为7+13+24=44,第八项为13+24+44=81,第九项为24+44+81=149,第十项为44+81+149=274。
因此,数列的第10项是274。
2. 题目:一个圆的半径是5厘米,求这个圆的面积是多少平方厘米?答案:圆的面积公式是A=πr²,其中A是面积,r是半径。
根据题目,半径r=5厘米。
将半径代入公式,得到A=π×5²=π×25。
圆周率π约等于3.14,所以面积A≈3.14×25=78.5平方厘米。
因此,这个圆的面积约为78.5平方厘米。
3. 题目:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积是多少立方厘米?答案:长方体的体积公式是V=lwh,其中V是体积,l是长,w是宽,h 是高。
根据题目,长l=10厘米,宽w=8厘米,高h=6厘米。
将这些值代入公式,得到V=10×8×6=480立方厘米。
因此,这个长方体的体积是480立方厘米。
4. 题目:一个等差数列的首项是3,公差是2,求这个数列的第20项是多少?答案:等差数列的第n项公式是an=a1+(n-1)d,其中an是第n项,a1是首项,d是公差,n是项数。
根据题目,首项a1=3,公差d=2,项数n=20。
将这些值代入公式,得到a20=3+(20-1)×2=3+38=41。
因此,这个等差数列的第20项是41。
5. 题目:一个三角形的三个内角分别是45度、60度和75度,求这个三角形的面积,已知底边长为10厘米。
一、选择题(每题5分,共20分)1. 下列数中,哪个数是质数?A. 28B. 29C. 30D. 312. 若一个数的平方等于25,则这个数可能是:A. 2B. 3C. 5D. 63. 在直角坐标系中,点A(2,3)关于原点的对称点是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)4. 一个长方形的长是12cm,宽是5cm,它的周长是:A. 25cmB. 30cmC. 35cmD. 40cm5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共20分)6. 若a² = 16,则a的值为______。
7. 若一个等腰三角形的底边长为8cm,腰长为10cm,则其高为______cm。
8. 若直角三角形的两个锐角分别为30°和60°,则其斜边与直角边的比值为______。
9. 一个数的十分位上是7,百分位上是2,这个数写作______。
10. 若一个数的千分位上是4,百分位上是8,这个数写作______。
三、解答题(每题10分,共30分)11. (10分)已知一元二次方程x² - 5x + 6 = 0,求方程的两个根。
12. (10分)一个梯形的上底长为10cm,下底长为20cm,高为15cm,求梯形的面积。
13. (10分)在直角坐标系中,点P的坐标为(4, -3),点Q在x轴上,且PQ=5,求点Q的坐标。
四、附加题(20分)14. (10分)已知正方形的边长为a,求正方形对角线的长度。
15. (10分)一个圆锥的底面半径为r,高为h,求圆锥的体积。
答案:一、选择题1. B2. C3. C4. B5. C二、填空题6. ±47. 108. 2:19. 7.210. 0.48三、解答题11. x₁ = 2,x₂ = 312. 梯形面积 = (上底 + 下底) × 高÷ 2 = (10 + 20) × 15 ÷ 2 = 150cm²13. 点Q的坐标为(4, 2)或(4, -8)四、附加题14. 正方形对角线长度 = 边长× √2 = a√215. 圆锥体积= 1/3 × π × r² × h。
初三奥数题及答案题目一:几何问题已知一个圆的半径为5厘米,圆内接一个等腰三角形,三角形的底边恰好是圆的直径。
求三角形的高。
解答:设等腰三角形的底边为AB,高为CD,其中A、B是圆上的两点,C是三角形的顶点。
由于AB是圆的直径,所以AB=10厘米。
设圆心为O,根据勾股定理,我们可以计算出OC的长度。
由于三角形AOC是直角三角形(因为OC是高,且AO是半径),我们有:\[ OC^2 + AC^2 = AO^2 \]\[ OC^2 + (5)^2 = (5\sqrt{2})^2 \]\[ OC^2 + 25 = 50 \]\[ OC^2 = 25 \]\[ OC = 5 \]由于三角形ABC是等腰三角形,所以AC=BC,我们可以设AC=BC=x厘米。
根据勾股定理,我们有:\[ x^2 = 5^2 + (10/2 - x)^2 \]\[ x^2 = 25 + (5 - x)^2 \]\[ x^2 = 25 + 25 - 10x + x^2 \]\[ 10x = 50 \]\[ x = 5 \]所以,三角形的高CD等于OC,即5厘米。
题目二:数列问题一个数列的前三项为1, 1, 2,从第四项开始,每一项都是其前三项的和。
求这个数列的前10项。
解答:已知数列的前三项为a_1=1, a_2=1, a_3=2。
根据题意,我们可以计算出后续项:- 第四项:a_4 = a_1 + a_2 + a_3 = 1 + 1 + 2 = 4- 第五项:a_5 = a_2 + a_3 + a_4 = 1 + 2 + 4 = 7- 第六项:a_6 = a_3 + a_4 + a_5 = 2 + 4 + 7 = 13- 以此类推,我们可以继续计算出后续项。
数列的前10项为:1, 1, 2, 4, 7, 13, 24, 44, 81, 149。
题目三:组合问题有5个不同的球和3个不同的盒子,每个盒子至少放一个球,求所有可能的放球方式。
数学初一奥数题及答案题目一:数列问题题目描述:有一个数列:2, 4, 7, 11, ... 这个数列的第10项是多少?解题思路:观察数列可以发现,每一项与前一项的差值依次为2, 3, 4, 5, ... 这是一个等差数列,差值的公差为1。
因此,第n项与第1项的差值是1+2+3+...+(n-1)。
答案:首先计算第10项与第1项的差值,即1+2+3+...+9,这是一个等差数列求和问题,公式为\( S = \frac{n(n+1)}{2} \),代入n=9得到\( S = \frac{9 \times 10}{2} = 45 \)。
所以第10项是2 + 45 = 47。
题目二:几何问题题目描述:在一个直角三角形ABC中,∠C是直角,AC=6,BC=8,求斜边AB的长度。
解题思路:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
答案:根据勾股定理,\( AB^2 = AC^2 + BC^2 \),代入AC=6,BC=8,得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以AB = √100 = 10。
题目三:逻辑推理问题题目描述:有5个盒子,每个盒子里装有不同数量的球,分别是1, 2, 3, 4, 5个。
现在将这5个盒子重新排列,使得每个盒子里的球数都比前一个盒子多1个。
问:重新排列后的盒子里球的数量分别是多少?解题思路:由于每个盒子里的球数都比前一个盒子多1个,我们可以从最小的数开始排列,即5, 4, 3, 2, 1。
答案:重新排列后的盒子里球的数量分别是5, 4, 3, 2, 1。
题目四:组合问题题目描述:有红、黄、蓝三种颜色的球各10个,现在要从中选出5个球,求有多少种不同的选法?解题思路:这是一个组合问题,可以使用组合公式\( C(n, k) =\frac{n!}{k!(n-k)!} \)来计算,其中n是总数,k是选出的数量。
答案:首先考虑不考虑颜色的情况下,从30个球中选出5个球的组合数为\( C(30, 5) \)。
初中奥数题目及答案(3篇)初中奥数题目及答案 1时钟问题解法与算法公式解题关键:时钟问题属于行程问题中的追及问题。
钟面上按“时”分为12大格,按“分”分为60小格。
每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。
1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。
而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。
解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。
初中奥数题目及答案 2一只挂钟,每小时慢5分钟,标准时间中午12点时,把钟与标准时间对准。
现在是标准时间下午5点30分,问,再经过多长时间,该挂钟才能走到5点30分?分析:1、这钟每小时慢5分钟,也就是当标准钟走60分时,这挂钟只能走60-5=55(分),即速度是标准钟速度的=2、因每小时慢5分,标准钟从中午12点走到下午5点30分时,此挂钟共慢了5×(17-12)=27(分),也就是此挂钟要差27分才到5点30分。
3、此挂钟走到5点30分,按标准时间还要走27分,因它的速度是标准时钟速度的,实际走完这27分所要时间应是27÷。
解:5×(17-12) =27 (分) 27÷=30(分)答:再经过30分钟,该挂钟才能走到5点30分。
初中奥数题目及答案 31、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。
还要运几次才能完?还要运x次才能完29.5-3x4=2.5x17.5=2.5xx=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米x(7+11)=90x218x=180x=10它的高是10米3、某车间计划四月份生产零件5480个。
初级奥数题及答案解析题目一:数字问题小明有5个苹果,如果他每天吃掉2个,那么他需要几天才能吃完所有的苹果?解析:这是一个简单的除法问题。
小明有5个苹果,每天吃2个,所以我们用5除以2,结果是2余1。
这意味着小明在第2天吃完4个苹果后,还剩下1个苹果。
所以,他需要3天才能吃完所有的苹果。
答案:3天。
题目二:逻辑推理有5个盒子,编号为1到5。
每个盒子里都装有不同数量的球,分别是1个、2个、3个、4个和5个球。
现在告诉你,编号为2的盒子里的球数是奇数,编号为3的盒子里的球数是偶数。
根据这些信息,我们可以推断出编号为2和3的盒子里各有多少个球吗?解析:首先,我们知道1到5的数字中,奇数有1、3、5,偶数有2、4。
由于编号为2的盒子里的球数是奇数,那么它只能是1、3或5。
但因为编号为3的盒子里的球数是偶数,所以编号为2的盒子里的球数只能是1或5。
由于编号为3的盒子里的球数是偶数,它只能是2或4。
如果编号为2的盒子里有1个球,那么编号为3的盒子里只能是4个球,因为5个球已经被编号为5的盒子占用了。
如果编号为2的盒子里有5个球,那么编号为3的盒子里只能是2个球。
答案:编号为2的盒子里有1个或5个球,编号为3的盒子里有4个或2个球。
题目三:组合问题一个班级有20名学生,现在要从这20名学生中选出5名代表。
问有多少种不同的选法?解析:这是一个组合问题,可以使用组合公式来解决。
组合公式为:C(n, k) = n! / [k! * (n-k)!],其中n是总数,k是要选择的数量,"!"表示阶乘。
在这个问题中,n=20,k=5。
答案:C(20, 5) = 20! / [5! * (20-5)!] = 15504种不同的选法。
题目四:几何问题一个正方形的面积是64平方厘米,求这个正方形的周长。
解析:正方形的面积是边长的平方。
已知面积是64平方厘米,我们可以通过开平方根来找到边长。
64的平方根是8,所以正方形的边长是8厘米。
50道经典初中奥数题及答案详细解析现在很多孩子都在补习奥数,奥数在小升初有着重要作用,以下是无忧考网分享的50道经典奥数题及答案详细解析,快来猜猜你和孩子的水平吧。
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
初一奥数考试题型及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 32. 如果一个数的立方等于它本身,那么这个数是:A. 0B. 1C. -1D. 以上都是3. 一个数的相反数是它自身的数是:A. 0B. 1C. -1D. 以上都是4. 一个数的绝对值是它自身的数是:A. 正数B. 负数C. 0D. 正数和05. 一个数的平方是它自身的数是:A. 0C. -1D. 以上都是6. 一个数的立方是它自身的数是:A. 0B. 1C. -1D. 以上都是7. 如果a + b = 10,那么a - b的可能值是:A. 0B. 2C. 10D. 208. 一个数的倒数是它自身的数是:A. 0B. 1C. -1D. 以上都不是9. 一个数的平方根是它自身的数是:A. 0B. 1C. -1D. 以上都是10. 一个数的立方根是它自身的数是:A. 0B. 1D. 以上都是二、填空题(每题4分,共40分)1. 一个数的平方等于它本身,这个数是______。
2. 一个数的立方等于它本身,这个数是______。
3. 一个数的相反数是它自身,这个数是______。
4. 一个数的绝对值是它自身,这个数是______。
5. 如果a + b = 10,那么a - b的可能值是______。
6. 一个数的倒数是它自身,这个数是______。
7. 一个数的平方根是它自身,这个数是______。
8. 一个数的立方根是它自身,这个数是______。
9. 一个数的平方等于它的立方,这个数是______。
10. 一个数的平方等于它的立方根,这个数是______。
三、解答题(每题10分,共30分)1. 证明:对于任意正整数n,n的平方和n的立方之间存在一个正整数。
2. 找出所有满足条件的整数a和b,使得a + b = 10且a - b = 2。
3. 证明:对于任意实数x,x的平方和x的立方之间不存在一个固定的正整数。
初三数学奥数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的立方等于它本身,那么这个数可以是:A. 1B. -1C. 0D. A、B、C都正确3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,那么它的表面积是多少平方厘米?A. 236B. 236.8C. 236.08D. 236.64. 一个数除以真分数的商一定大于这个数,除了哪种情况?A. 分数等于1B. 分数小于1C. 分数大于1D. 分数等于05. 一个数的1/3加上这个数的1/4,和是多少?B. 1C. 3/4D. 1 1/126. 下列哪个数是无理数?A. 3.14B. √2C. 1/3D. 2.718287. 一个数的2/3加上它的1/2,和是多少?A. 7/6B. 5/6C. 1D. 11/68. 一个数的平方根是3,那么这个数的立方根是多少?A. 3B. 27C. 9D. √279. 如果一个等差数列的首项是3,公差是2,那么第10项是多少?A. 23B. 21C. 19D. 1710. 下列哪个数是质数?A. 2C. 15D. 21二、填空题(每题4分,共20分)11. 一个数的3/4加上它的1/2,和是______。
12. 如果一个数的5倍加上3等于这个数的7倍减去2,那么这个数是______。
13. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是______厘米。
14. 一个数的倒数是1/4,那么这个数是______。
15. 如果一个等比数列的首项是2,公比是3,那么第5项是______。
三、解答题(共50分)16. (10分)证明勾股定理。
17. (15分)解方程组:\[\begin{cases}x + y = 9 \\2x - y = 1\end{cases}\]18. (15分)一个长方体的长、宽、高分别是15cm、12cm和8cm,求它的外接球的体积。
完整版)初一奥数题集(带答案) 奥数1、求(-1)^2002的值。
答案:12、如果a是有理数,那么a+2000的值不能是多少?答案:03、计算2007-[2006-{2007-(2006-2007)}]的值。
答案:20094、计算(-1)+(-1)-(-1)×(-1)÷(-1)的结果。
答案:-15、计算(-1)^2006+(-1)^2007÷-1^2008的结果。
答案:06、计算-2÷(-2)^2+(-2)的结果。
答案:07、计算3.825×-1.825+0.25×3.825+3.825×0.的结果。
答案:-2.58、计算2002-2001+2000-1999+…+2-1的值。
答案:10019、计算-1÷2.5×(-0.75)^(-1)÷(-1)×(-1)的结果。
答案:0.610、计算-5×+6×的结果。
答案:11、计算2-2+2-3+2-4+…+2-9+2^10的值。
答案:102212、计算(1/3)+(2/4)+(3/6)+…+(n/n+1)的值。
答案:n/(n+1)13、计算1×2×3+2×4×6+7×14×21/2的结果。
答案:10514、求x+1+x-2的最小值及取最小值时x的取值范围。
答案:最小值为-1,x的取值范围为[2,∞)。
已知实数$a,b,c$满足$-1c>a$,求$c-1+a-c-a-b$的值。
解题思路:将$c-1+a-c-a-b$化简,得到$a-2c-b-1$,然后根据题目中的不等式关系,将$a,b,c$表示成$c$的形式,代入化简后的式子中,即可得到答案。
具体步骤如下:由题意得:$c-1c>a$,即$b-a>a-c$,$b-c>c-a$。
将$c-1+a-c-a-b$化简,得到$a-2c-b-1$。
初中奥数试题精选及答案
1. 题目:一个数列的前三项分别是1,2,3,从第四项开始,每一项都是前三项的和。
求数列的第10项是多少?
答案:数列的第10项是144。
2. 题目:一个长方体的长、宽、高分别是2cm、3cm、4cm,求其所有棱的总和。
答案:长方体的棱总和是48cm。
3. 题目:一个自然数,它加上100后是一个完全平方数,它加上168后也是一个完全平方数,求这个自然数。
答案:这个自然数是196。
4. 题目:一个圆的直径是10cm,求其面积。
答案:圆的面积是78.5平方厘米。
5. 题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
答案:数列的第10项是27。
6. 题目:一个三角形的三个内角的度数之和是多少?
答案:三角形的三个内角的度数之和是180度。
7. 题目:一个数的平方是289,求这个数。
答案:这个数是±17。
8. 题目:一个等腰三角形的两个底角相等,如果其中一个底角是40度,求顶角的度数。
答案:顶角的度数是100度。
9. 题目:一个数列的前三项是1,2,3,从第四项开始,每一项都是
前三项的和。
求数列的前10项的和。
答案:数列的前10项的和是144。
10. 题目:一个长方体的长、宽、高分别是3cm、4cm、5cm,求其体积。
答案:长方体的体积是60立方厘米。
初中数学奥数考试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是质数?A. 4B. 9C. 23D. 26答案:C2. 如果一个数的平方根是正数,那么这个数是:A. 负数B. 零C. 正数D. 任意实数答案:C3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数的立方根是它本身,这个数可能是:A. 1B. -1C. 0D. 所有选项答案:D5. 一个数列的前三项是1, 1, 2,如果这个数列是等差数列,那么第四项是:A. 3B. 4C. 5D. 6答案:A二、填空题(每题3分,共15分)6. 一个数的绝对值是其本身,这个数是______。
答案:非负数7. 一个数的相反数是其本身,这个数是______。
答案:零8. 如果一个三角形的内角和为180°,那么一个四边形的内角和是______。
答案:360°9. 一个数的平方是16,这个数是______。
答案:±410. 如果一个数的平方根是4,那么这个数是______。
答案:16三、解答题(每题10分,共70分)11. 证明:对于任意正整数n,n的平方加1不能被n整除。
证明:假设存在一个正整数n,使得n^2 + 1能够被n整除。
设k为整数,使得n^2 + 1 = kn。
将等式两边同时除以n,得到n + (1/n) = k。
由于n是正整数,1/n是正有理数,所以k是正有理数。
然而,n + (1/n)总是大于等于2(当n=1时取等号),而k是整数,所以k不能等于2,这与我们的假设矛盾。
因此,对于任意正整数n,n的平方加1不能被n整除。
12. 解方程:x^2 - 5x + 6 = 0。
解:这是一个二次方程,我们可以通过因式分解来解它。
我们需要找到两个数,它们的乘积是6,它们的和是-5。
这两个数是-2和-3。
因此,我们可以将方程写成(x - 2)(x - 3) = 0。
初一奥数题及答案初一奥数题通常包含一些基础的数学概念和技巧,适合培养学生的逻辑思维和解决问题的能力。
以下是一些适合初一学生的奥数题目及答案:题目1:数字问题小明有5张卡片,每张卡片上分别写有数字1到5。
他随机抽取一张,问抽到数字3的概率是多少?答案:小明有5张卡片,每张卡片被抽到的机会是相等的。
只有一张卡片上写有数字3,所以抽到数字3的概率是1/5。
题目2:几何问题一个正方形的边长为4厘米,求正方形内切圆的面积。
答案:正方形内切圆的直径等于正方形的边长,所以内切圆的半径是4厘米的一半,即2厘米。
圆的面积公式是πr²,所以内切圆的面积是π*(2厘米)² = 4π平方厘米。
题目3:逻辑推理问题有5个盒子,分别标有数字1到5。
每个盒子里都装有一个球,球的颜色分别为红、黄、蓝、绿、紫。
已知:1. 红球不在1号盒。
2. 黄球不在2号盒也不在5号盒。
3. 蓝球在3号盒。
根据以上信息,哪个颜色的球在哪个盒子里?答案:根据条件3,蓝球在3号盒。
由于黄球不在2号盒也不在5号盒,所以黄球只能在1号或4号盒。
由于红球不在1号盒,所以黄球在1号盒,红球在4号盒。
剩下的绿球和紫球分别在2号盒和5号盒,但根据题目条件无法确定具体哪个颜色在哪个盒子。
题目4:数列问题一个数列的前几项是2, 4, 7, 11, ...。
这个数列的第6项是多少?答案:这个数列的每一项都比前一项多2, 3, 4, 5, ... 等依次增加的自然数。
第5项是11,所以第6项是11 + 6 = 17。
题目5:组合问题有8个不同的球,需要放入3个不同的盒子中,每个盒子至少有一个球。
问有多少种不同的放法?答案:这是一个组合问题,可以通过组合数学中的插板法来解决。
首先给每个盒子分配一个球,剩下5个球需要分配。
我们可以在5个球之间插入2个板子来分割成3组,每组至少有一个球。
这样,问题就变成了在4个位置(5个球和2个板子之间的空隙)中选择2个位置放置板子的组合数,即C(4,2) = 4! / (2! * (4-2)!) = 6种不同的放法。
初中奥数真题试题及答案一、选择题(每题3分,共30分)1. 已知一个数列的前三项分别为1,2,4,且每一项都是前一项的两倍,那么这个数列的第5项是多少?A. 8B. 16C. 32D. 64答案:C2. 一个长方体的长、宽、高分别为a、b、c,且满足a+b+c=12,a^2+b^2+c^2=144,求这个长方体的体积是多少?A. 48B. 96C. 192D. 288答案:B3. 一个圆的半径为r,圆心到圆上任意一点的距离都等于半径,那么这个圆的面积是多少?A. πr^2B. 2πr^2C. 4πr^2D. 8πr^2答案:A4. 一个等差数列的首项为3,公差为2,那么这个数列的第10项是多少?A. 23B. 25C. 27D. 29答案:A5. 如果一个三角形的三边长分别为3,4,5,那么这个三角形的面积是多少?A. 3B. 4C. 6D. 9答案:C6. 一个正五边形的内角和是多少度?A. 540B. 720C. 900D. 1080答案:B7. 如果一个数的平方等于它本身,那么这个数可能是多少?A. 0B. 1C. -1D. 以上都有可能答案:D8. 一个等比数列的首项为2,公比为3,那么这个数列的第5项是多少?A. 486B. 729C. 1458D. 2187答案:B9. 一个圆的周长为2πr,那么这个圆的直径是多少?A. 2rB. 4rC. 6rD. 8r答案:A10. 如果一个数列的前三项分别为2,4,8,且每一项都是前一项的两倍,那么这个数列的第4项是多少?A. 16B. 32C. 64D. 128答案:B二、填空题(每题4分,共20分)11. 一个等差数列的首项为5,公差为3,那么这个数列的第8项是________。
答案:2912. 一个圆的面积为πr^2,如果这个圆的半径为5,那么这个圆的面积是________。
答案:25π13. 一个三角形的内角和为180度,如果一个三角形的两个内角分别为60度和80度,那么第三个内角是________。
三套初中奥数题及答案初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都是有理数,并且a+b=0,那么a,b互为相反数。
2.正确的说法是整式与整式的和是整式。
3.不正确的说法是没有最大的负整数。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么b>a。
5.大于-π并且不是自然数的整数有4个。
6.不正确的说法的个数是1个。
7.a和- a的大小关系是a不一定大于- a。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边都加上1.改写后的文章:以下是初中奥数试题一的选择题,每题1分,共10分。
1.如果a,b都是有理数,并且a+b=0,那么a,b互为相反数。
2.正确的说法是整式与整式的和是整式。
3.不正确的说法是没有最大的负整数。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么b>a。
5.大于-π并且不是自然数的整数有4个。
6.不正确的说法的个数是1个。
7.a和- a的大小关系是a不一定大于- a。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边都加上1.答案:约等于17.278解析:直接代入计算即可,注意小数点后保留四位。
计算过程为:3.1416×7.5944+3.1416×(-5.5944)≈22.7328+(-17.4544)≈17.278.4.已知a+b=5,ab=6,则a²+b²的值是( )A.1B.13C.19D.31答案:B解析:根据(a+b)²=a²+b²+2ab,可得a²+b²=(a+b)²-2ab=5²-2×6=13.故选B。
5.已知函数f(x)满足f(1)=3,f(x+1)=f(x)+2x+1,则f(5)的值是( )A.21B.23C.25D.27答案:D解析:根据题意,可得f(2)=f(1)+2×1+1=6,f(3)=f(2)+2×2+1=11,f(4)=f(3)+2×3+1=18,f(5)=f(4)+2×4+1=27.故选D。
初一奥数题(附答案)1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u =3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DO B的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且B D∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价1 0%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?甲:105 乙:45 32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?牙刷:1.4 牙膏:2.433.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;0.9+ 0.25x(2)求新合金中含第二种合金的重量范围;最大:1.035 最小:0.905(3)求新合金中含锰的重量范围.0.01~0.54参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+ m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖A D,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)= 75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8×7×6×5×4×3×2×1=40320种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640 种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即2.4x=2×1.68,所以x=1.4(元).若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.。