南京工业大学实验之流体流动阻力测定实验
- 格式:doc
- 大小:109.00 KB
- 文档页数:4
一:实验目的:1).掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。
2).测定直管摩擦系数λ与雷诺准数Re的关系,将所得的λ~Re方程与经验公式比较。
3).测定流体流经阀门时的局部阻力系数ξ。
4).学会倒U形差压计、1151差压传感器、Pt100温度传感器和转子流量计的使用方法。
5).观察组成管路的各种管件、阀门,并了解其作用。
6).掌握化工原理实验软件库(组态软件MCGS和VB实验数据处理软件系统)的使用。
二:基本原理:流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。
1)沿程阻力流体在水平等径圆管中稳定流动时,阻力损失表现为压力降低。
即影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。
根据因次分析,影响阻力损失的因素有,(1)流体性质:密度ρ、粘度μ;(2)管路的几何尺寸:管径d、管长l、管壁粗糙度ε;(3)流动条件:流速μ。
可表示为:组合成如下的无因次式:(1—3)令则式(1—1)变为:式中,λ称为摩擦系数。
层流(滞流)时,λ=64/Re;湍流时λ是雷诺准数Re和相对粗糙度的函数,须由实验确定。
2)局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
(1)当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le表示。
这样,就可以用直管阻力的公式来计算局部阻力损失,而且在管路计算时.可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,如管路中直管长度为l,各种局部阻力的当量长度之和为,则流体在管路中流动时的总阻力损失为为(1—6)(2)阻力系数法流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法。
实验一 流体流动阻力测定实验1.实验目的(1) 辨别组成管路的各种管件、阀门,并了解其作用。
(2)测定流体在圆形直管内流动时摩擦系数λ与雷诺数Re 的关系。
(3)测定流体流经闸阀时的局部阻力系数ξ。
2.基本原理(1)直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2221u d l p p p h ff λρρ=-=∆=则直管阻力摩擦系数可写成:22lu p d fρλ∆=雷诺准数Re 的定义是:μρdu =Re层流时:Re 64=λ湍流时:λ是雷诺准数Re 和相对粗糙度(ε/d )的函数。
完全湍流时:λ只是相对粗糙度(ε/d )的函数。
上式中d :直管内径,m ;f p ∆:流体在l 米直管内流动时由于流动阻力而产生的压降,Pa ;f h :单位质量流体流经l 米直管时产生的流动阻力,J/kg ; ρ :流体密度,kg/m 3; l :直管长度,m ;u :流体在管内流动的平均流速,m/s ;μ :流体粘度,P a ·s 。
其中l 、d 为装置参数,ρ、μ通过测定流体温度,再查有关手册而得,u 通过测定流体流量,再由管径计算得到。
本装置采用涡轮流量计测流量V (m 3/h ),则2900d Vu π=f p ∆采用倒置U 型管液柱压差计和差压变送器测量。
(2)局部阻力系数ξ的测定根据阻力系数法,流体通过某一管件或阀门时的机械能损失可表示为流体在管内流动时平均动能的某一倍数,即:22u p h ff ξρ='∆='故22u p fρξ'∆=式中ξ:局部阻力系数,无因次;f p '∆:局部阻力引起的压降,Pa (本装置中,所测得的压降应扣除两测压口间直管段的压降后才是闸阀局部阻力引起的压降,直管段的压降由直管阻力实验结果求取)。
3.实验装置与流程实验装置流程(本装置为流体流动阻力与离心泵性能综合实验装置,做流动阻力实验时将仪控柜上“实验选择”转到“管阻力”)如图2-1所示,实验仪控柜面板如图2-2所示。
流体流动阻力的测定实验一、实验内容1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ, 并确定λ和Re 之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1. 解测定流体流动阻力摩擦系数的工程定义, 掌握测定流体阻力的实验组织方法。
2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力, 确定直管阻力摩擦系数与雷诺数之间的关系。
3. 熟悉压差计和流量计的使用方法。
4. 认识组成管路系统的各部件、阀门并了解其作用。
三、实验原理流体通过由直管和阀门组成的管路系统时, 由于粘性剪应力和涡流应力的存在, 要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力 流体流动过程是一个多参数过程, 。
由因次分析法, 从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示:⎥⎦⎤⎢⎣⎡ξμρ=ρ∆d ,du ,d l F u P 2 λ=Ψ(Re, ε/d ) 雷诺准数μρdue =R ;22u d l Ph f ⋅⋅=∆=λρ只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。
g P Hg )R(ρρ-=∆易知, 直管摩擦系数λ仅与Re 和 有关。
因此, 只要在实验室规模的装置上, 用水做实验物系, 进行试验, 确定λ与Re 和 的关系, 然后计算画图即可。
2.局部阻力局部阻力可以用当量长度法或局部阻力系数法来表示, 本实验用局部阻力系数法来表示, 即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示, 用公式表示:一般情况下, 由于管件和阀门的材料及加工精度不完全相同, 每一制造厂及每一批产品的阻力系数是不尽相同的。
四、实验设计由和知, 当实验装置确定后, 只要改变管路中流体流速u及流量V, 测定相应的直管阻力压差ΔP1和局部阻力压差ΔP2, 就能通过计算得到一系列的λ和ξ的值以及相应的Re的值,【原始数据】在实验中, 我们要测的原始数据有流量V, 用来计算直管阻力压差ΔP1和局部阻力压差ΔP2的U型压差计的左右两边水银柱高度, 流体的温度t(据此确定ρ和μ), 还有管路的直径d和直管长度l。
银纳米粒子制备及光谱和电化学性能表征- 1 -流体流动阻力的测定王晓鸽一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。
2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。
3. 测定流体流经管件、阀门时的局部阻力系数ξ。
4. 学会流量计和压差计的使用方法。
5. 识辨组成管路的各种管件、阀门,并了解其作用。
二、实验原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:h f =∆p f ρ=p 1−p 2ρ=λl d u 22即,λ=2d∆p fρlu 2式中:λ—直管阻力摩擦系数,无因次; d —直管内径,m ;∆p f —流体流经l 米直管的压力降,Pa ;h f —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。
层流流时,λ=64 Re湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
欲测定λ,需确定l、d,测定∆p f、u、ρ、μ等参数。
l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。
∆p f可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
求取Re和λ后,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
本实验采用阻力系数法。
流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。
一、实验目的1. 理解流动阻力的概念及其在流体力学中的重要性。
2. 掌握流动阻力测定的实验方法与步骤。
3. 通过实验数据,分析流动阻力与流体性质、管道结构等因素之间的关系。
4. 验证理论公式在工程实践中的应用。
二、实验原理流动阻力是指在流体流动过程中,流体与管道壁面之间产生的摩擦力。
流动阻力的大小与流体的性质、管道结构、流速等因素有关。
根据流动状态的不同,流动阻力可分为层流阻力与湍流阻力。
层流阻力:当流体以较低的流速在圆形管道中流动时,流动状态为层流。
此时,流动阻力主要由分子粘性力引起,可用牛顿粘性定律计算。
湍流阻力:当流体以较高的流速在圆形管道中流动时,流动状态为湍流。
此时,流动阻力主要由湍流涡流和粘性力共同作用引起,可用达西-魏斯巴赫公式计算。
三、实验装置与仪器1. 实验装置:圆形管道、阀门、流量计、压力表、计时器等。
2. 仪器:电子天平、秒表、游标卡尺、温度计、粘度计等。
四、实验步骤1. 准备实验装置,确保管道连接牢固,无泄漏。
2. 根据实验要求,调整管道结构参数,如管道直径、长度、阀门开度等。
3. 在管道两端安装压力表,测量流体流动过程中的压力差。
4. 使用流量计测量流体流量,记录数据。
5. 记录实验温度和流体粘度。
6. 改变流体流速,重复步骤3、4、5,记录不同流速下的压力差、流量和温度。
7. 根据实验数据,计算流动阻力、摩擦系数、雷诺数等参数。
五、实验数据与分析1. 根据实验数据,绘制流动阻力与流速的关系曲线,分析流动阻力随流速变化的规律。
2. 根据实验数据,计算摩擦系数、雷诺数等参数,分析流动状态的变化。
3. 将实验结果与理论公式进行对比,验证理论公式的适用性。
六、实验结果与讨论1. 实验结果表明,随着流速的增加,流动阻力逐渐增大,符合理论公式预测。
2. 实验结果表明,在相同流速下,摩擦系数与雷诺数呈正相关关系,符合理论公式预测。
3. 实验结果表明,在相同流速下,管道直径、长度、阀门开度等因素对流动阻力有显著影响。
实验一 流体流动阻力的测定一、 实验目的和任务1.了解流体流过管路系统的阻力损失的测定方法;2.测定流体流过圆形直管的阻力,确定摩擦系数λ与流体Re 的关系;3.测定流体流过管件的阻力,局部阻力系数ξ;4.学会压差计和流量计的使用方法;5.识别管路中各个管件、阀门,并了解其作用;二、实验原理流体的流动性,即流体内部质点之间产生相对位移。
真实流体质点的相对运动表现出剪切力,又称内摩擦力,流体的粘性是流动产生阻力的内在原因。
流体与管壁面的摩擦亦产生摩擦阻力,统称为沿程阻力。
此外,流体在管内流动时,还要受到管件、阀门等局部阻碍而增加的流动阻力,称为局部阻力。
因此,研究流体流动阻力的大小是十分重要的。
2.1 直管摩擦系数λ测定 流体在管道内流动时,由于流体粘性作用和涡流的影响产生阻力。
阻力表现为流体的能量损失,其大小与管长、管径、流体流速等有关。
流体流过直管的阻力计算公式,常用以下各种形式表示:)2( 2gu d L H 2f λ=或 )3( 2L P P P 221f u d ρλ=-=-∆ 式中h f ——以能量损失表示的阻力,J /kg ; H f ——以压头损失表示的阻力,m 液柱;△P f ——以压降表示的阻力,N /m 2L ——管道长,md ——管道内径,m ; u ——流体平均流速,m/s ;P ——流体密度,kg /m 3; λ——摩擦系数,无因次;g ——重力加速度,g 一9.81m/s 2。
.λ为直管摩擦系数,由于流体流动类型不同,产生阻力的原因也不同。
层流时流体流动主要克服流体粘性作用的内摩擦力。
湍流时除流体的粘性作用外,还包括涡流及管壁粗糙度的影响,因此λ的计算式形式各不相同。
层流时,利用计算直管压降的哈根-泊谡叶公式: )4( duL 32P P P 221f μ=-=-∆ 和直管阻力计算公式(3),比较整理得到λ的理论计算式为 )5( Re64du 232==ρμλ⨯ 由此式可见,λ与管壁粗糙度ε无关,仅为雷诺数的函数。
正面视图背面视图待测直管接小流量计测压点测压点 水槽小转子流量计阀门10真空表倒置U 型管压力表离心泵大转子流量计正面左边 右上角倒U 型管AB1C1 C2B2压差变频器 开总电倒置U 型管关总电源流体流动阻力测定实验一、实验步骤(1)向储水槽内注蒸馏水,直到水满为止。
关闭倒置U型管B1、B2阀。
(2)先接通总电源,预热10~15分钟上,观察数字仪表的初始值并记录。
(3)打开阀门10,灌泵。
(4)关闭阀门10、关闭大转子流量计阀门、关闭小转子流量子阀门。
(5)按变频器上的Run/Stop健,开启离心泵。
(6)打开大转子流量计阀门,调节流量分别为100、200、……1000L/h(共10次),记录控制面板上压差读数。
(7)关闭大流量计阀门。
(8)检查导压系统内有无气泡存在。
A阀是与大气相通,B1、B2阀是接测压点,C1、C2阀是排水的。
当流量为0时打开B1、B2两阀门,若空气-水倒置U型管内两液柱的高度差不为0,则说明系统内有气泡存在,须赶净气泡方可测取数据。
排走倒U型管内空气后,再利用A、C1、C2阀,调节倒U型管两侧的液面相等并大致在中部位置。
关闭A、C1、C2阀,打开B1、B2阀。
(9)打开小转子流量计阀门,分别调节流量为10、20、……、50L/h(共5次),记录倒U型管的数据。
(10)关闭小流量计阀门,按变频器上的Run/Stop健,停泵。
(11)关闭总电源。
二、注意事项(1)利用压力传感器测大流量下ΔP时,应切断空气一水倒置U型管B1、B2 两阀门否则影响测量数值。
(2)在实验过程中每调节一个流量之后应待流量和直管压降的数据稳定以后方可记录数据。
(3)若较长时间内不做实验,放掉系统内及储水槽内的水。
流体流动阻力的测定实验报告一流体流动阻力的测定实验,听上去像是个高大上的课题,但其实跟我们日常生活的很多事儿都有关。
想想我们喝水的感觉,水流在嘴里流淌,轻松自在。
如果把这水放到管子里流动,情况就复杂多了。
流体在管道中流动的时候,阻力的大小会影响它的速度和流量。
这个实验就是要揭开流体流动阻力的神秘面纱。
1.1 实验目的我们做这个实验,最主要的目的是了解流体流动时遇到的阻力。
通过测量不同流速下的压力差,看看流体的流动行为。
其实,搞懂这些,对工程设计、环保以及很多实际应用都有很大的帮助。
简单来说,我们要知道流体到底是怎么“行走”的,阻力又是怎么“绊倒”它的。
1.2 实验设备说到设备,这里用到的可不简单。
我们有水槽、流量计、压力传感器、管道等。
这些都是不可或缺的工具。
水槽用来存水,流量计用来测量流速,压力传感器则可以精准地捕捉到流体流动时的压力变化。
这些设备在一起,形成了一套完整的实验系统。
看着这些仪器,就像面对一个个期待着揭示秘密的“好奇宝宝”。
二2.1 实验步骤实验步骤分得很细,我们从准备工作开始。
首先要设置好实验装置。
确保水槽的水位适中,管道连接紧密,所有仪器正常工作。
然后,慢慢启动水泵,让水流动起来。
记住,流速一定要控制好,不能太快,否则会影响测量结果。
2.2 数据记录水流开始流动时,我们要用流量计记录下水流的速度。
接着,利用压力传感器测量不同流速下的压力差。
这个过程需要细心,不能马虎。
每次记录的时候,心里都得默念:一定要准确,一定要准确。
每一个数据都像一颗珍珠,串起来就是整个实验的成果。
2.3 数据分析有了数据,我们接下来就要进行分析。
通过绘制压力差和流速的关系图,观察它们之间的变化规律。
结果常常会让人感到惊喜。
你会发现,随着流速的增加,流体的阻力变化是有规律可循的。
这种规律不仅能帮助我们理解流体力学,还能对实际工程应用提供指导。
三3.1 结果讨论讨论实验结果的时候,心中总会涌起一种成就感。
通过数据,我们可以清晰地看到不同条件下流体流动的行为。
实验一 流体流动阻力的测定摘要: 通过实验测定流体在光滑管、粗糙管、层流管中流动时, 借助于伯努利方程计算摩擦阻力系数和雷诺数之间的关系, 并与理论值相比较。
同时以实验手段计算突然扩大处的局部阻力, 并对以上数据加以分析, 得出结论。
一、目的及任务1.掌握测定流体流动阻力的实验的一般实验方法。
2.测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
3.测定层流管的摩擦阻力。
4.验证湍流区内摩擦阻力系数λ与雷诺数Re 和相对粗糙度的函数。
5.将所得的光滑管的λ-Re 方程与Blasius 方程相比较。
二、基本原理1.直管摩擦阻力 不可压缩流体(如水), 在圆形直管中做稳定流动时, 由于黏性和涡流的作用产生摩擦阻力;流体在突然扩大、弯头等管件时, 由于流体运动速度和方向的突然变化, 产生局部阻力。
影响流体阻力的因素较多, 在工程上采用量纲分析方法简化实验, 得到在一定条件下具有普遍意义的结果, 其方法如下。
流体流动阻力与流体的性质, 流体流经处几何尺寸以及流动状态有光, 可表示为 p=f (d, l, u, , , ) 引入下列无量纲数群雷诺数Re=μρdu相对粗糙度d ε 管子的长径比dl从而得到),,du (p 2d ld u εμρρψ=∆令 = (Re, )2)(Re,2u d d l pερΦ=∆ 可得摩擦阻力系数与压头损失之间的关系, 这种关系可用实验方法直接测定。
22u d l ph f ⨯=∆=λρ式中 ——直管阻力, J/Kg ; l ——被测管长, m ; d ——被测管内径, m ; u ——平均流速, m/s ; λ——摩擦阻力系数。
当流体在一管径为d 的圆形管中流动时, 选取两个截面, 用U 形压差计测出这两个截面间的静压强差, 即为流体流过两截面间的流动阻力。
根据伯努利方程找出静压强差和摩擦阻力系数的关系式, 即可求出摩擦阻力系数。
改变流速可测出不同Re 下的摩擦阻力系数, 这样就可得出某一相对粗糙度下管子的 -Re 关系。
(2023)流体流动阻力测定实验报告(一)流体流动阻力测定实验报告实验对象该实验主要研究不同流速下流体流动时的阻力变化情况。
实验仪器与物料实验装置:流动管、差压计、调节阀、紫铜管等。
实验物料:水。
实验方法1.首先打开流动管并调节流速,将水流入流动管中。
2.同时启动差压计以测量流体在流动管中的压力变化情况。
3.分别记录不同流速下流体经过流动管所产生的压力差,并将数据记录在实验记录表中。
4.最后,通过拟合得出流体流动时的阻力变化规律,并进行实验结果分析。
实验结果分析通过实验数据分析我们得出以下结果:1、流速与流体阻力成正比。
2、流体流动时的阻力变化规律满足Darcy-Weisbach公式。
3、通过实验拟合得出的公式为:f =0.035Re⁰˙⁸⁴实验结论与启示本次实验证明了流体流动时存在着阻力,同时不同流速下流体流动时的阻力变化情况也不相同。
通过实验拟合得出的公式为我们提供了一定的理论依据,同时也为生产和科学研究提供了重要的实验数据。
有关流体流动阻力的研究不仅在工业领域有着重要的应用,更在气象、水文、海洋学等多个领域有着重要的意义。
实验注意事项1.实验操作时需要注意实验仪器的精度和准确度。
2.实验中应尽量保持实验物料的纯净和稳定性。
3.实验过程中禁止玩乐、嬉戏等行为,以免造成安全事故。
结语流体流动阻力测定实验是一项重要的实验,通过本次实验我们了解了不同流速下流体流动时的阻力变化规律,并从中得出了一些结论和启示。
在以后的实践中我们应该注重实验技能的培养,掌握相关知识,提高实验能力,将实验知识应用到工程实践中,为实现工业化进程的发展做出贡献。
流体流动阻力的测定实验一、实验内容(1)测定流体在特定材质和εd 的直管中流动时的阻力摩擦系数λ,并确定λ和Re 之间的关系。
(2)测定流体通过阀门或90°肘管时的局部阻力系数。
二、实验目的(1)了解测定流体流动阻力摩擦系数的工程定义,掌握采用量纲分析方法规划测定流体阻力实验的组织方法。
(2)测定流体流经直管的摩擦阻力和流经管件的局部阻力,确定直管阻力摩擦系数和雷诺数之间的关系。
(3)熟悉压差计和流量计的使用方法。
(4)认识组成管路系统的各部件、阀门并了解其作用。
三、实验基本原理流体管路是由直管、管件(如三通、直管、弯头)、阀门等部件组成。
流体在管路中流动时,由于黏性剪应力和涡流作用,不可避免地要消耗一定的机械能。
流体在直管中流动的机械能损失称为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。
在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。
(1)直管阻力 流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即ρρpp p h f ∆=-=21①由于流体分子在流动过程中运动机里十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。
为了减少实验工作量简化实验工作难度,并使实验结果具有普遍意义,可采用量纲分析方法来规划实验。
将所有影响流体阻力的工程因素按以下三类变量列出①流体性质:密度ρ、黏度μ②管路几何尺寸:管径d 、管长l 、管壁粗糙度ε ③流动条件:流速u可将阻力损失f h 与诸多变量之间的关系表示为),,,,,(εμρu l d f p =∆②根据量纲分析方法可将上述变量之间的关系转变为无量纲准数之间的关系)l,,(2dd du upεμρρψ=∆ ③其中μρdu =R e 称为雷诺准数,是表征流体流动形态影响的无量纲准数;dl 是表示相对长度的无量纲几何准数;dε称为管壁相对粗糙度。
流体流动阻力的测定实验报告一、实验目的1、掌握流体流动阻力的测定方法,了解摩擦系数与雷诺数之间的关系。
2、学会压差计和流量计的使用方法,能够准确测量流体流经管道时的压力差和流量。
3、观察流体流动的状态,分析直管阻力和局部阻力的产生原因及影响因素。
二、实验原理流体在管道中流动时,由于内摩擦力和涡流等因素的存在,会产生阻力损失。
阻力损失包括直管阻力损失和局部阻力损失。
1、直管阻力损失直管阻力损失通常采用范宁公式计算:$h_f =\lambda \frac{l}{d} \frac{u^2}{2}$其中,$h_f$为直管阻力损失(J/kg),$\lambda$为摩擦系数,$l$为直管长度(m),$d$为管道内径(m),$u$为流体流速(m/s)。
摩擦系数$\lambda$与雷诺数$Re$及相对粗糙度$\frac{\varepsilon}{d}$有关。
雷诺数$Re =\frac{du\rho}{\mu}$,其中$\rho$为流体密度(kg/m³),$\mu$为流体粘度(Pa·s)。
2、局部阻力损失局部阻力损失通常采用阻力系数法计算:$h_f' =\xi \frac{u^2}{2}$其中,$h_f'$为局部阻力损失(J/kg),$\xi$为局部阻力系数。
三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种局部阻力管件(如弯头、阀门等)、压差计、流量计等。
2、实验流程水箱中的水在离心泵的作用下,流经管道系统。
通过调节阀门改变流量,测量不同流量下直管和局部阻力管件前后的压差,以及对应的流量。
四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法和测量范围。
2、检查设备是否正常,关闭所有阀门,向水箱中注水至一定高度。
3、启动离心泵,缓慢打开调节阀,使流体在管道中稳定流动。
4、调节流量,从小到大依次测量不同流量下直管段的压差和流量。
记录压差计的读数和流量计的示数。
流体流动阻力的测定实验报告实验报告名称:流体流动阻力的测定一、实验目的本实验旨在通过实验测定流体的流动阻力,理解流体流动的基本原理,掌握流体流动阻力的计算方法,提高实验操作和数据处理能力。
二、实验原理在流体流动过程中,由于流体的粘滞性,会产生流动阻力。
流动阻力与流体的性质、管道的几何尺寸和流速等因素有关。
根据伯努利方程,流体的能量守恒,但在流动过程中会存在压力损失,这种压力损失即为流动阻力。
流动阻力的大小可以通过测定管道两端的压力差来计算。
三、实验步骤1.实验准备:准备实验器材,包括水、测压计、管道、阀门、流量计等。
2.开始实验:开启水源,调节流量,打开测压计,记录初始数据。
3.改变流量:通过调节阀门改变流量,记录每次改变流量后测压计的数据。
4.结束实验:关闭水源,整理实验数据。
四、数据分析表1 测压计数据记录表根据实验数据,我们发现随着流量的增加,测压计的压力差也在增加。
这说明流速越大,流动阻力也越大。
同时,我们可以通过计算得到每个流量下的阻力值。
将数据绘制成图表可以更直观地观察阻力与流量之间的关系。
通过线性拟合可以找到阻力与流量之间的定量关系。
这将为我们后续的流体流动分析提供重要依据。
五、实验结论本实验通过测定不同流量下管道两端的压力差,成功地测得了流体的流动阻力。
实验结果表明,随着流量的增加,流动阻力也相应增加。
这说明流速是影响流动阻力的一个重要因素。
此外,本实验还初步探讨了流动阻力与流量之间的关系,为今后更深入的流体流动研究奠定了基础。
本实验不仅提高了我们的实验操作能力,还强化了我们对于流体流动基本原理的理解。
通过数据处理和图表分析,我们能够更准确地把握流动阻力的变化规律,为实际生产过程中的流体输送和分配提供了重要参考依据。
六、实验体会与建议在本次实验中,我深刻体会到了实践对于理论知识的检验作用。
通过实际操作和观察,我对流体流动阻力的概念有了更深入的理解。
同时,我也意识到了实验数据处理和误差分析的重要性。
流体流动阻⼒测定实验实验报告项⽬名称:流体流动阻⼒测定实验学院:专业年级:学号:姓名:指导⽼师:实验组员:⼀、实验⽬的1、学习管路阻⼒损失h f和直管摩擦系数?的测定⽅法。
2、掌握不同流量下摩擦系数?与雷诺数Re之间的关系及其变化规律。
3、学习压差测量、流量测量的⽅法。
了解压差传感器和各种流量计的结构、使⽤⽅法及性能。
4、掌握对数坐标系的使⽤⽅法。
⼆、实验原理流体在管道内流动时,由于黏性剪应⼒和涡流的存在,会产⽣摩擦阻⼒。
这种阻⼒包括流体流经直管的沿程阻⼒以及因流体运动⽅向改变或管⼦⼤⼩形状改变所引起的局部阻⼒。
流体在直管内流动阻⼒的⼤⼩与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:h f = ρfP ?=22u d l λ(4-1)式中: -f h 直管阻⼒,J/kg ;-d 直管管径,m ;-?p 直管阻⼒引起的压强降,Pa ; -l 直管管长,m ;-u 流速,m / s ;-ρ流体的密度,kg / m 3; -λ摩擦系数。
滞流时,λ=Re 64;湍流时,λ与Re 的关系受管壁相对粗糙度dε?的影响,即λ= )(Re,d f ε。
当相对粗糙度⼀定时,λ仅与Re 有关,即λ=(Re)f ,由实验可求得。
由式(4—1),得λ=22u P l d fρ(4-2)雷诺数 Re =µρu d (4-3)式中-µ流体的黏度,Pa*s测量直管两端的压⼒差p ?和流体在管内的流速u ,查出流体的物理性质,即可分别计算出对应的λ和Re 。
三、实验装置1、本实验共有两套装置,实验装置⽤图4-2所⽰的实验装置流程图。
每套装置中被测光滑直管段为管内径d=8mm ,管长L=1.6m 的不锈钢管;被测粗糙直管段为管内径d=10mm ,管长L=1.6m 的不锈钢管2、流量测量:在图1-2中由⼤⼩两个转⼦流量计测量。
3、直管段压强降的测量:差压变送器或倒置U 形管直接测取压差值。
图4-2 流体流动阻⼒测定实验装置流程图⑴—⼤流量调节阀;⑵—⼤流量转⼦流量计;⑶—光滑管调节阀;⑷—粗糙管调节阀;⑸—光滑管;⑹—粗糙管;⑺—局部阻⼒阀;⑻—离⼼泵;⑼—排⽔阀;⑽倒U 管⑾⑾’—近端测压点;⑿⑿’—远端测压点;⒀⒀’—切断阀;⒁⒁’—放空阀;⒂⒂’—光滑管压差;⒃⒃’—粗糙管压差;⒄—数字电压表;⒅—压差变送器四、实验步骤1、检查储⽔槽内的⽔位是否符合要求,检查离⼼泵的所有出⼝阀门以及真空表、压⼒表的阀门是否关闭。
一:实验目的:
1).掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。
2).测定直管摩擦系数λ与雷诺准数Re的关系,将所得的λ~Re方程与经验公式比较。
3).测定流体流经阀门时的局部阻力系数ξ。
4).学会倒U形差压计、1151差压传感器、Pt100温度传感器和转子流量计的使用方法。
5).观察组成管路的各种管件、阀门,并了解其作用。
6).掌握化工原理实验软件库(组态软件MCGS和VB实验数据处理软件系统)的使用。
二:基本原理:
流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。
1)沿程阻力
流体在水平等径圆管中稳定流动时,阻力损失表现为压力降低。
即
影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。
根据因次分析,影响阻力损失的因素有,
(1)流体性质:密度ρ、粘度μ;
(2)管路的几何尺寸:管径d、管长l、管壁粗糙度ε;
(3)流动条件:流速μ。
可表示为:
组合成如下的无因次式:
(1—3)
令
则式(1—1)变为:
式中,λ称为摩擦系数。
层流(滞流)时,λ=64/Re;湍流时λ是雷诺准数Re和相对粗糙度的函数,须由实验确定。
2)局部阻力
局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
(1)当量长度法
流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le表示。
这样,就可以用直管阻力的公式来计算局部阻力损失,而且在管路计算时.可将管路中的直管长度与管件、阀门的当量长度合
并在一起计算,如管路中直管长度为l,各种局部阻力的当量长度之和为,则流体在管路中
流动时的总阻力损失为为
(1—6)
(2)阻力系数法
流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法。
即
(1—7)
式中,ξ——局部阻力系数,无因次;
u——在小截面管中流体的平均流速,m/s。
2)由于管件两侧距测压孔间的直管长度很短.引起的摩擦阻力与局部阻力相比,可以忽略不计。
因此h f’值可应用柏努利方程由压差计读数求取。
三:实验装置与流程:
1)实验装置
1)实验装置如图所示主要由高位槽,不同管径、材质的管子,各种阀门和管件、转子流
量计等组成。
第一根为不锈钢光滑管,第二根为镀锌铁管,分别用于光滑管和粗糙管
湍流流体流动阻力的测定。
第三根为不锈钢管,装有待测闸阀,用于局部阻力的测
定。
流体流动阻力测定实验装置图
1、1、进水阀
2、
3、5球阀
4、闸阀 6、流量调节阀 7、 8、9、10、11光滑管 12、粗糙管
13、不锈钢管 14、倒U形差压计(3个) 15、1151差压传感器 16、转子流量计 17、仪表箱
18、Pt100温度传感器 19、温度计 20、均压环 21、测压导管
本实验的介质为水,由高位水塔供给(其位头约为25m),经实验装置后的水通过地下管道流人泵房内水池.再用泵送至高位水塔循环使用。
水流量采用装在测试装置尾部的转子流量计测量,直管段和闸阀的阻力分别用各自的倒U形差压计或1151差压传感器和数显表测得。
倒U形差压计的使用方法见4.2节。
2)装置结构尺寸
装置结构尺寸如表所示。
四:实验步骤与注意事项:
(1)实验步骤:
1)熟悉实验装置系统;
2)打开进水阀(1),水来自带溢流装置的高位槽;
3)打开阀(2)、(3)、(4)、(5)(6)排尽管道中的空气,之后关阀(5)(6);
4)在管道内水静止(零流量)时,按2.2.1(4)的倒U形差压计的使用方法,将三个倒U 形差压计调节到测量压差正常状态;
5)打开考克(7)、(8)、(9) 、(10)排尽1151差压传感器的测压导管内的气泡,然后关闭考克。
打开1151差压传感器数据测量仪电源,记录零点数值(或校零、校零由指导教师完成);
6)关闭阀(2),打开阀(6)并调节流量使转子流量计的流量示值(转子最大截面处对应的刻度值)分别为2、3、4…….110m3/h,测得每个流量(8~9个)下对应的光滑管和粗糙管的阻力(压差mmH2O),分别记下倒U行压差计和1151差压传感器测量仪表的读数。
注意:调节好流量后,须等一段时间,待水流稳定后才能读数,测完后关闭(6);
7)关闭阀(2),打开阀(3),测得闸阀全开时的局部阻力。
(流量设定为2,3,4m3/h,测三个点对应的压差,以求得平均的阻力系数);
8)实验结束后打开系统排水阀(5),排尽水,以防锈和冬天防冻。
(2)注意事项:
开启、关闭管道上的各阀门及倒U型差压计上的阀门时,一定要缓慢开关,切忌用力过猛过大,防止测量仪表因突然受压、减压而受损(如玻璃管断裂,阀门滑丝等)!。