污染物修复技术介绍
- 格式:doc
- 大小:3.85 MB
- 文档页数:33
土壤污染治理与修复技术土壤污染是当今社会面临的严重环境问题之一。
随着工业化和城市化的快速发展,大量的工业废物和污染物被排放到土壤中,导致土壤质量下降,对生态系统和人类健康造成严重威胁。
因此,土壤污染治理与修复技术成为了迫切需要解决的问题。
一、土壤污染治理技术1.1 土壤修复原则对于不同类型的土壤污染,需要采用不同的修复原则。
常见的修复原则包括物理修复、化学修复和生物修复。
1.2 物理治理技术物理治理技术是利用物理手段将有害物质从土壤中分离出来或改变其形态,以减少其对环境和人体造成的危害。
常见的物理治理技术包括热解、蒸汽提取、电动力场等。
1.3 化学治理技术化学治理技术是利用化学方法将有害物质转变为无害或减少其毒性。
常见的化学治理技术包括氧化还原法、酸碱中和法、络合剂法等。
1.4 生物治理技术生物治理技术是利用生物体或生物过程来修复土壤污染。
常见的生物治理技术包括植物修复、微生物修复和土壤堆肥等。
二、土壤污染修复技术2.1 植物修复技术植物修复是利用植物的吸收、转运和转化能力来减少或清除土壤中的有害污染物。
常见的植物修复技术包括悬浮液培养法、土壤堆肥法和农田种植法等。
2.2 微生物修复技术微生物修复是利用微生物的代谢活性来降解有害污染物或将其转化为无害化合物。
常见的微生物修复技术包括菌种增殖法、菌种接种法和菌根共培养法等。
2.3 土壤堆肥技术土壤堆肥是将有机废弃材料与土壤混合,通过微生态过程降解有机废弃材料中的有害成分,使其转化为稳定性较高的有机质。
常见的土壤堆肥技术包括堆肥堆制法、厌氧发酵法和静态堆肥法等。
三、土壤污染治理与修复案例3.1 污染土壤的修复与农田种植在农田种植中,可以通过悬浮液培养法和土壤堆肥法等技术,将有机废弃物与农田土壤混合,促进有害物质的降解和转化,提高农田土壤质量。
3.2 工业废弃物污染地区的修复对于工业废弃物污染地区,可以采用化学治理技术和生物治理技术相结合的方法。
通过酸碱中和、氧化还原等化学方法将有害污染物转变为无害或减少其毒性,并利用悬浮液培养法、菌种增殖法等生物修复技术进一步降解有害污染物。
环境污染物的生态修复技术环境污染是当今社会面临的重要问题之一。
随着人类活动的不断增加,大量的污染物被排放到大气、水体和土壤中,给我们的生态环境带来了巨大的破坏。
为了解决环境污染问题,科学家和工程师们开发并应用了各种生态修复技术。
本文将介绍几种常见的生态修复技术,包括植物修复、生物修复和土壤修复。
1. 植物修复技术植物修复是一种利用植物的生物吸附、生物富集和代谢转化能力来减少或移除环境中的污染物的方法。
这种技术通常适用于土壤和水体的污染修复。
例如,一些植物如柳树、菊花和农作物的根系能够吸收土壤中的重金属物质,从而减少其对环境的影响。
此外,湿地植被也可以通过吸附和降解有机污染物来净化水体。
2. 生物修复技术生物修复技术是利用微生物的吸附、代谢转化、生物酶和菌株等特性,通过激活、促进或改造污染环境中的生物体而达到修复污染的目的。
这种技术通常适用于土壤和水体中的有机污染物修复。
例如,通过引入合适的微生物菌株,可以分解和降解土壤中的有机物,将其转化为无害物质。
同时,微生物修复还可以修复水体中的油污、废水和污泥等有机物。
3. 土壤修复技术土壤修复技术是一种通过改变土壤环境、修复土壤结构和提高土壤质量的方法来减轻污染物对土壤的影响。
这种技术通常适用于土壤中的重金属和化学物质的修复。
例如,通过添加有机物质,可以提高土壤的有机质含量和水分保持能力,从而促进植物生长和减少重金属在植物之间的传递。
除了以上提到的植物修复、生物修复和土壤修复技术,还有许多其他的生态修复技术,如湿地修复、人工修复和生物壁修复等。
这些技术的应用取决于不同的污染环境和具体的需求。
总结起来,环境污染物的生态修复技术是一项重要的工作,对于减轻和消除环境污染具有重要意义。
通过植物修复、生物修复和土壤修复等技术的应用,我们可以有效地减少污染物对环境的危害,保护生态系统的稳定和可持续发展。
希望随着科技的不断进步,生态修复技术能够得到更广泛的应用,为我们的环境保护事业做出更大的贡献。
土壤污染修复技术土壤是地球上重要的自然资源之一,对于维持生态平衡和农田产出至关重要。
然而,随着工业化和城市化的快速发展,土壤污染问题日益突出。
土壤污染不仅对农作物生长和人类健康构成威胁,也对生态系统的稳定性和可持续发展造成了严重影响。
因此,发展有效的土壤污染修复技术是当今亟需解决的问题。
本文将主要介绍几种常见的土壤污染修复技术,包括生物修复、物理修复和化学修复。
生物修复是利用生物技术手段通过微生物和植物等生物体来修复污染土壤的一种方法。
其中,菌藻共培技术是一种利用蓝藻和细菌来修复重金属污染土壤的方法。
蓝藻通过光合作用吸收氮和修复土壤,细菌则通过降解和吸附重金属离子来减少土壤污染。
此外,植物修复技术也是一种常见的土壤修复方法。
比如,使用具有较好生物修复能力的植物如银杏、柳树和白蜡等进行修复,可以通过根系吸附、降解和转运等途径减少土壤污染物的浓度。
生物修复技术相对来说成本较低,并且无需引入大量外部材料,对自然环境影响较小,因此受到越来越多的关注。
物理修复是利用物理力学原理和手段来修复土壤污染的方法。
热解技术是一种常见的物理修复方法,通过高温处理使有机污染物分解、蒸发或升华,从而达到清除污染物的目的。
有机热解技术能够有效去除有机污染物,但却无法对重金属等无机污染物产生明显的净化效果。
此外,超声波技术是另一种物理修复方法,利用超声波的机械振动作用可以促进土壤中污染物的迁移和转化,并提高土壤释放污染物的速率。
物理修复技术虽然具有高效、快速的优点,但其应用范围相对较窄,专业设备和技术要求较高,因此在实际应用中受到一定限制。
化学修复是利用化学原理和药剂来修复土壤污染的方法。
化学固化技术是一种广泛应用的化学修复方法,通过添加固化剂和稳定剂等化学药剂,将土壤中的污染物转化为无毒或难溶于水的物质,从而减少污染物对生态环境的危害。
化学修复技术具有操作简便、修复周期短、成本相对较低的优点,广泛应用于工业源污染土壤的修复中。
环境修复技术环境修复技术是指通过各种手段和方法来修复和恢复被破坏的自然环境的技术。
随着人类活动的不断增加,环境污染和破坏问题日益严重,环境修复技术的应用变得越来越重要。
本文将从土壤修复、水体修复和大气修复三个方面介绍环境修复技术的相关内容。
一、土壤修复技术1. 生物修复技术生物修复技术是指通过引入特定的植物或微生物来恢复受污染土壤的功能。
植物修复技术主要通过植物的根系吸收和转化有毒物质,促进土壤的净化和恢复。
而微生物修复技术则是利用某些微生物对有毒物质进行降解和转化的作用。
这些方法在植被恢复、土壤改良和有机物分解方面都有广泛的应用。
2. 物理修复技术物理修复技术主要通过物理手段去除土壤中的有害物质。
例如,采用土壤挖掘、回填和隔离等方法,将受污染的土壤剥离并取出,然后填充新的无污染土壤。
此外,还可以利用电动力场技术、超声波技术和热解技术等对土壤进行治理,以实现土壤修复的效果。
二、水体修复技术1. 物理修复技术物理修复技术主要包括物理隔离、悬浮沉降和浮游植物治理等方法。
物理隔离是通过构筑隔离屏障,将受污染水体与干净水体进行隔离,以阻止污染的扩散。
悬浮沉降则是利用重力沉淀原理将水体中的悬浮颗粒物沉降,从而达到净化水体的目的。
浮游植物治理是利用浮游植物的生长和代谢作用,在水体中吸收和转化有害物质。
2. 化学修复技术化学修复技术主要是利用化学物质对水体中的有害物质进行处理和转化。
例如,利用氧化剂对有机物进行降解,利用沉淀剂对重金属离子进行沉淀和去除。
这些化学方法在水体净化、海洋污染处理和地下水修复等方面发挥重要作用。
三、大气修复技术1. 气象修复技术气象修复技术主要是通过人工影响气象条件,减少大气中的污染物浓度,改善空气质量。
例如,通过人工降雨、喷雾和离子安装等手段来清除大气中的颗粒物和有害气体,以达到净化大气的目的。
此外,还可以利用人工调控大气流动和温度分布,降低污染物扩散的程度。
2. 废气处理技术废气处理技术主要是利用物理、化学和生物等手段对工业废气中的污染物进行治理和净化。
生态环境修复的新技术有哪些在当今社会,随着人类活动的不断加剧,生态环境面临着越来越多的挑战,如土壤污染、水污染、大气污染等。
为了保护和修复我们的生态环境,科学家们不断探索和创新,研发出了一系列新技术。
这些新技术为生态环境的修复带来了新的希望和可能性。
一、微生物修复技术微生物在生态环境的物质循环和能量流动中起着至关重要的作用。
微生物修复技术就是利用微生物的代谢活动来降解和转化污染物,从而达到修复环境的目的。
例如,在土壤修复中,某些微生物能够分解有机污染物,如石油烃、农药等,将它们转化为无害物质。
这些微生物可以通过自身的生长繁殖,逐渐增加在土壤中的数量,提高修复效率。
在水污染治理方面,微生物也发挥着重要作用。
例如,一些细菌和藻类能够吸收水中的氮、磷等营养物质,减少水体富营养化的发生。
同时,还有一些微生物能够分解水中的有机物,降低化学需氧量(COD)和生化需氧量(BOD),改善水质。
微生物修复技术具有成本低、效果好、环境友好等优点,但也存在一些局限性,如微生物的生长和代谢受到环境条件的影响较大,修复过程相对较慢等。
二、植物修复技术植物修复是一种利用植物来吸收、转化、降解或固定污染物的技术。
植物通过根系吸收土壤中的污染物,并将其运输到地上部分,然后通过代谢过程将污染物转化为无害物质或者将其固定在植物组织中。
例如,一些超积累植物能够大量吸收土壤中的重金属,如镉、铅、汞等,并将其积累在体内。
这些植物在生长一段时间后,可以通过收割的方式将重金属从土壤中去除。
此外,植物还可以通过根系分泌的物质来促进土壤中微生物的生长和活动,从而增强微生物对污染物的降解能力。
植物修复技术具有操作简单、成本低、美化环境等优点,但也存在修复周期长、对污染物的去除效率有限等不足之处。
三、土壤气相抽提技术土壤气相抽提(Soil Vapor Extraction,SVE)是一种用于去除土壤中挥发性有机污染物(VOCs)的技术。
该技术通过在污染土壤中设置抽提井,利用真空泵产生负压,将土壤中的挥发性有机物抽取到地面上进行处理。
石油污染修复技术及案例分析石油污染是当今世界所面临的一个严重环境问题。
由于石油及其衍生品的广泛使用,石油泄漏的事故时有发生,不仅给自然环境带来巨大的破坏,同时也对人类的健康和生存环境构成威胁。
为了解决石油污染所带来的问题,许多石油污染修复技术不断涌现并得到了广泛的应用。
本文将探讨一些主要的石油污染修复技术及其相关案例分析。
一、物理方法物理方法是石油污染修复的常见手段之一。
该方法通过物理手段将污染物与底泥或水分离,从而实现石油污染的修复。
物理方法包括吸附、分散、机械分离和气泡浮选等。
吸附法是常用的物理方法之一,利用吸附剂将石油污染物从水或土壤中吸附出来。
例如,使用活性炭、沸石和生物质炭等材料进行吸附可以有效去除水中的石油污染物。
分散法是通过添加分散剂将石油污染物分散成微小颗粒,使其更容易与水分离。
这种方法常用于水体中的石油污染修复。
机械分离法是通过使用机械设备将石油污染物与水或土壤分离。
例如,使用离心机可以将水中的石油分离出来。
气泡浮选法是通过注入气泡来促使污染物浮起。
这种方法广泛用于处理含有大量石油的水体。
案例分析:2005年,美国墨西哥湾发生了历史上最严重的石油泄漏事故之一——BP公司的地平线号石油钻井平台爆炸。
这起事故导致了大量的石油泄漏,对海洋生态系统产生了巨大影响。
为了修复石油污染,当时采取了物理方法中的气泡浮选法。
利用气泡浮选法,石油污染物可以从水中分离出来,并最终被收集起来。
这一修复技术被采用后,效果显著地减少了石油对海洋环境的破坏,并有效保护了世界上最重要的生态系统之一。
二、化学方法化学方法是另一种常用的石油污染修复技术。
该方法通过添加化学品改变石油污染物的性质,并使其变得更容易移除。
化学方法包括氧化、还原、酸洗和中和等。
氧化法是利用氧化剂将污染物氧化成较易分离的物质,从而实现污染物的修复。
例如,使用过氧化氢、高锰酸钾等氧化剂可以对石油污染物进行有效分解。
还原法是通过添加还原剂还原石油污染物,使其变成不溶于水的物质。
有机污染土壤及地下水原位化学氧化修复技术介绍有机污染土壤及地下水是当今环境保护领域中的一大挑战。
有机污染物如石油、溶剂、农药等对土壤和地下水造成了严重的污染,对生态环境和人类健康构成了威胁。
针对这一问题,研究人员开发了原位化学氧化修复技术,用于降解有机污染物,恢复土壤和地下水的健康状态。
原位化学氧化修复技术是指在污染土壤和地下水中注入化学氧化剂,通过氧化剂与有机污染物进行反应,将其降解成较为无害的物质。
常用的化学氧化剂包括高锰酸钾(KMnO4)、过硫酸盐(S2O82-)、过氧化氢(H2O2)等。
这些氧化剂具有很强的氧化能力,能够有效地降解有机污染物。
原位化学氧化修复技术的步骤如下:1.侦查与评估:针对土壤和地下水污染的范围、程度和类型进行侦查和评估,包括有机污染物的种类、浓度、空间分布等方面的信息收集。
2.氧化剂注入:根据土壤和地下水的特性,确定合适的氧化剂类型、剂量和注入方式。
通常采用直接注入或钻孔注入的方式,将氧化剂均匀地注入到污染源区域。
3. 反应与降解:氧化剂与有机污染物发生化学反应,将其降解成较为无害的物质。
氧化反应常常 BegunBegunBegunBegun服从自由基反应动力学,因此通常需要在反应过程中加入催化剂或表面活性剂,以增强反应速率。
4.监测与评估:进行持续的监测与评估,跟踪化学氧化修复的效果。
通过采样和分析,确定有机污染物浓度的减少情况,评估修复效果的持久性和稳定性。
原位化学氧化修复技术具有以下优点:1.高效性:化学氧化剂具有较强的氧化能力,能够迅速降解有机污染物,加快修复速度。
2.适应性:原位化学氧化修复技术适用于多种类型的有机污染物,可以对不同化学结构和性质的污染物进行有效降解。
3.环保性:该技术主要依靠化学反应进行修复,不需要大规模的土方开挖和土壤堆放,减少了对环境的二次污染。
4.经济性:相比传统的土壤和地下水修复技术,原位化学氧化修复技术成本较低,可以节约修复成本。
石油污染土壤的生物修复技术综述石油是一种常见的化石燃料,广泛应用于工业生产和交通运输等领域。
石油生产、储运和使用过程中不可避免地会引起石油泄漏和污染。
石油污染土壤给环境和人类健康带来了极大的危害,因此有效的修复技术显得尤为重要。
生物修复技术是一种绿色环保的修复方法,利用微生物、植物和动物等生物资源对石油污染土壤进行修复。
本文将对石油污染土壤的生物修复技术进行综述。
一、微生物修复技术微生物修复技术是利用微生物降解石油污染物,从而恢复土壤的一种修复方法。
在微生物修复技术中,常用的微生物包括细菌、真菌和藻类等。
这些微生物具有较强的降解能力,能够将石油中的有害物质分解成无害的化合物,从而降低土壤和地下水的污染程度。
微生物修复技术有以下几种常见的应用方法:1. 生物堆肥技术生物堆肥技术是将石油污染土壤与有机物质混合成堆,利用微生物的生物降解作用,加速有机物质的分解,从而降低土壤中石油含量。
生物堆肥技术不仅可以有效降解石油污染物,还能改善土壤的肥力和结构,促进土壤的生物修复过程。
生物增强技术是通过向石油污染土壤中投放活性微生物和营养物质,以增强土壤中微生物的降解能力。
通常采用的方法包括喷施、滴灌和钻孔注入等,通过增加土壤中的微生物数量和活性,促进石油污染物的降解,加快土壤的修复速度。
生物吸附技术是利用微生物或其代谢产物吸附土壤中的石油污染物,从而减少石油污染物对土壤的影响。
还可以利用植物根系吸附土壤中的石油污染物,起到净化土壤的作用。
植物修复技术是利用植物的生长和代谢过程对石油污染土壤进行修复的一种方法。
植物修复技术具有环保、经济、技术成熟等优势,可以有效修复石油污染土壤。
植物修复技术主要包括以下几种常见的应用方法:植物生理吸附技术是通过植物根系、茎叶等组织对土壤中的石油污染物进行吸附和富集,从而净化土壤。
植物生理吸附技术通常采用植物修复区、植物修复带、植物屏障等形式,将植物引入石油污染土壤中,利用植物的吸收能力将土壤中的石油污染物吸附至植物体内,减少土壤的污染程度。
重金属污染修复技术及工程施工方案重金属污染是当今环境保护中的一大难题,但我们可以通过合理的技术及工程施工方案来解决这个问题。
本文将介绍一些常用的重金属污染修复技术,并为您提供一些可行的工程施工方案。
重金属污染的危害及修复的重要性重金属污染是指土壤、水体或空气中存在过高浓度的重金属元素,如铅、汞、镉等。
这些重金属污染物对人类健康和生态系统造成严重威胁,长期暴露可能导致癌症、免疫系统受损和神经系统损伤等健康问题。
因此,修复重金属污染至关重要,以保护人类和环境的健康。
重金属污染修复技术1.菌类修复技术菌类修复技术是利用某些菌类的特殊代谢能力,降解或转化重金属污染物,从而实现修复的方法。
常用的菌类修复技术包括菌根菌植株修复技术和菌类驯化修复技术。
菌根植株能够与重金属形成络合物,减少重金属的活性,而菌类驯化修复技术则是将特殊的菌种引入受污染区域,通过它们的代谢活动降解重金属。
2.物理修复技术物理修复技术是利用物理手段去除或隔离重金属污染物,常用的方法有沉降、离心、过滤和吸附等。
沉降适用于重金属污染水体的处理,通过重力作用使重金属颗粒沉积到底部。
离心技术利用离心力将含重金属的物质分离开来。
过滤是通过筛网或过滤器去除重金属颗粒。
吸附是利用活性炭或其他吸附剂吸附重金属离子。
3.化学修复技术化学修复技术是指利用化学反应来处理重金属污染,包括还原、氧化、络合和沉淀等方法。
还原技术通过添加还原剂,将重金属离子还原成不溶于水的金属沉淀。
氧化技术则是将重金属离子氧化成不活性的金属离子或沉淀。
络合技术利用络合剂与重金属离子形成不溶于水的配合物。
沉淀技术通过添加沉淀剂将重金属离子沉淀下来。
工程施工方案根据实际情况,工程施工方案应根据场地特点、污染程度和修复目标而定。
以下是一些常用的工程施工方案:土壤剥离和置换法:将受污染的土壤层剥离并置换成未受污染的土壤,以降低重金属污染程度。
植物修复法:选择具有耐重金属污染能力的植物种植在受污染土壤中,通过植物的吸收、积累和稳定化作用,将重金属污染物从土壤中转移到植物体内。
土壤污染物的修复技术与机理土壤污染对环境和生态系统带来了严重影响,而土壤污染物的修复是一项突破性的技术,具有重要的环境意义。
本文将介绍土壤污染物的修复技术和机理,以期对于我们的环境保护工作有一定的帮助。
一、土壤污染物的危害土壤污染物是指在土壤中超过其自然含量的某种物质,由于它们具有毒性、生物累积性、抗生物降解性等特点,会对人体健康和环境造成严重危害。
例如,重金属污染会影响土壤微生物的种群和活性,抑制植物生长和提高土壤酸化程度,而有机物污染则会降低土壤质量,导致土壤肥力下降、生态系统失衡等问题。
二、土壤污染物的修复技术1. 生物修复技术生物修复技术是一种自然的修复技术,利用微生物、植物等生物体吸附、分解或转化土壤污染物。
其中,微生物修复技术是利用土壤中的微生物将污染物转化为无害物质的过程,它是一种依靠微生物进行化学反应的工艺,常用于修复有机物污染土壤。
而植物修复技术则是通过植物的吸收、吸附和化学代谢作用来处理土壤污染物,通常用于修复重金属污染土壤。
2. 物理修复技术物理修复技术主要是利用物理方法进行处理,例如,通过爆破、挖掘、削平等方式将污染土壤清除,或者采用土壤气吸、水力冲洗、土壤流体抽取等方法将污染物排除。
这种方法操作简单、效果明显,但由于成本较高,所以适用范围较窄。
3. 化学修复技术化学修复技术是利用化学法将土壤污染物转化为无毒或低毒的化合物,并在污染土壤中留下一种可以抑制或降低污染效应的物质。
这种技术适用于有机物和重金属污染的土壤,在效果和费用方面都比较可靠,但可能会对土壤性质产生不良影响。
三、土壤污染物修复机理土壤污染物的修复机理有多种,其中最广泛接受的理论是“污染物去除和稳定化理论”,也就是污染物的去除和稳定性化。
通过这种方法,可以将土壤污染物转化为无害成分或稳定的物质,最终达到修复土壤的目的。
去除法主要是通过吸附、挥发、生物降解等方法将污染物保留在吸附剂、生物体或其他介质中,从而除去其危害作用。
土壤污染修复技术研究近年来,人类活动对土壤环境造成了严重的污染,这对农田生产、生态环境和人类健康带来了不可忽视的威胁。
为了解决土壤污染问题,科研人员们展开了一系列的研究工作,致力于开发和应用土壤污染修复技术。
一、物理修复技术物理修复技术是利用物理方法来修复土壤污染的一种方式。
常见的物理修复技术有热解、高压水洗和土壤通气等。
热解技术通过加热污染土壤,使有机物蒸发或分解而达到修复的目的。
高压水洗技术则是利用高压水流冲刷土壤,将污染物冲刷出土壤,从而达到净化土壤的效果。
土壤通气技术则是通过注入气体,提高土壤中污染物的挥发性,进而促使其蒸发或分解。
二、化学修复技术化学修复技术是通过添加化学药剂来修复土壤污染。
比较常见的化学修复技术有氧化还原法、络合剂法和酸碱调节法等。
氧化还原法是利用氧化还原反应来改变土壤中污染物的化学性质,使其转化为无害物质。
络合剂法则是通过添加络合剂,使络合剂与重金属离子产生稳定的络合物,从而减少其毒性。
酸碱调节法则是通过调节土壤的pH值来改变污染物的溶解度和迁移性,以达到修复的目的。
三、生物修复技术生物修复技术以生物的活动来修复土壤污染。
常见的生物修复技术有微生物修复和植物修复。
微生物修复是通过利用土壤中的微生物对污染物进行降解、转化或吸附,从而修复土壤污染。
植物修复则是利用植物的生物活性和吸收能力来修复土壤污染。
植物吸收污染物后,可以通过植物的代谢活动转化为无害物质,或者通过植物的根系持久地稳定地保持住这些污染物。
四、复合修复技术为了更好地修复土壤污染,科研人员们也开始将不同的修复技术进行组合,形成复合修复技术。
复合修复技术的优势在于能够充分利用不同方法的互补性,提高修复效果。
常见的复合修复技术有物理-化学修复技术、化学-生物修复技术和物理-生物修复技术等。
综上所述,土壤污染修复技术的研究发展得越来越成熟,研究人员们不断探索新的技术和方法。
物理、化学和生物修复技术以及复合修复技术都在实践中得到了良好的应用效果。
污染场地修复技术方案引言污染场地修复是指通过一系列的技术手段和方法,将受到不同程度污染的场地恢复到环境安全标准以下的合理水平。
随着工业化的不断发展,环境污染问题逐渐凸显,对污染场地的修复需求也日渐增加。
本文将介绍几种常见的污染场地修复技术方案。
1. 原位修复技术原位修复技术是指在不需要将污染物剥离出土壤的情况下,通过注入特定的修复剂或引进某些生物或微生物来分解、转化污染物,以达到修复污染场地的目的。
常见的原位修复技术包括:•生物修复技术:利用生物方法来修复污染场地,如植物修复、微生物修复等。
通过选择适合的植物或微生物,利用其对污染物的降解能力,达到修复效果。
•化学修复技术:通过注入一定浓度的化学修复剂,以改变土壤中的化学环境,促进污染物的分解或转化。
常见的化学修复剂包括过氧化氢、活性炭等。
•电动修复技术:通过电场或电流的作用,将土壤中的污染物迁移、分解或转化。
常见的电动修复技术有电渗析法、电动渗流法等。
原位修复技术具有操作简便、成本低廉等优点,在一些特定的情况下具有较好的应用前景。
2. 剥离修复技术剥离修复技术是指将受到污染的土壤或底泥剥离出来,然后经过适当的处理后重新填埋或回填,以达到修复污染场地的目的。
常见的剥离修复技术包括:•土壤剥离法:通过机械设备将受到污染的土壤剥离出来,然后进行分类、清洗等处理,最后重新填埋或回填。
•底泥剥离法:对于受到水污染的底泥,通过吸泥船等设备将底泥剥离出来,然后经过处理后重新填埋或回填。
剥离修复技术相对于原位修复技术而言,需要进行大量的土壤或底泥的剥离和处理,操作复杂且成本较高,但在一些特定的情况下仍然具有较好的应用价值。
3. 热解修复技术热解修复技术是指通过物理热解的方式,将受到污染的土壤加热至一定温度,从而使污染物挥发或分解,以达到修复污染场地的目的。
常见的热解修复技术包括:•热解蒸馏法:利用高温下污染物的不同挥发性,通过蒸馏设备将挥发性污染物分离出来,然后进行进一步处理。
污染土壤处理与修复技术及案例土壤污染是当前全球面临的一大环境问题,对人类健康和生态系统都造成了严重威胁。
因此,土壤污染的治理和修复显得尤为重要。
本文将介绍一些常见的污染土壤处理与修复技术,并结合实际案例进行说明。
一、生物修复技术生物修复技术是利用生物体的代谢活动来修复污染土壤。
最常见的生物修复技术是植物修复。
植物通过吸收土壤中的污染物,或通过根系释放出有益的微生物来降解污染物。
例如,在一个受重金属污染的土壤中,可以种植耐受性强的植物,如拟南芥和金鱼草,它们可以吸收并积累土壤中的重金属。
通过周期性采样并测试植物组织中的重金属含量,可以监测植物吸收污染物的效率和土壤修复的进展。
二、物理修复技术物理修复技术是通过物理手段来去除土壤污染物。
例如,土壤气提取技术通过在受污染土壤下方放置气提取井,并通过负压抽取方法来收集土壤中的挥发性有机化合物。
电动力场技术则是利用电流在土壤中产生离子迁移,将带电的污染物迁移到收集地点以被去除。
这些物理修复技术可以快速有效地去除土壤中的有机污染物和挥发性物质。
三、化学修复技术化学修复技术是通过添加特定的化学药剂来降解或固定土壤中的污染物。
最常见的是土壤酸碱调节和氧化还原技术。
土壤酸碱调节通过添加碱性或酸性物质来调整土壤的pH值,从而改变污染物的溶解度和活性。
氧化还原技术则是通过添加氧化剂或还原剂来改变污染物的化学状态。
例如,双氧水可以将有机污染物氧化为无害的物质,而还原剂可以还原重金属离子形成不溶于水的沉淀。
这些化学修复技术可以在短时间内快速降解或固定土壤中的污染物。
四、案例分享为了更好地理解污染土壤处理与修复技术的应用和效果,以下是一个实际案例的分享。
某个地区的工业废弃物处理场因长期运营导致土壤严重污染,渗漏出的有机化合物和重金属严重影响了周围的生态环境。
针对这一问题,专家们采用了生物修复技术和化学修复技术的结合。
首先,通过调查研究确定了适合生物修复的耐受性强的植物,包括韭菜和早熟禾等。
环境污染治理与修复技术在当今社会,环境污染问题已经成为全球共同面临的挑战。
污染物的排放和积累不仅给人类的生活和健康带来威胁,也造成了生物多样性的丧失以及生态系统的破坏。
为了解决这一问题,环境污染的治理和修复技术被广泛研究和应用。
本文将探讨一些主要的环境污染治理和修复技术。
一、大气污染治理技术大气污染对人类健康和环境带来了巨大的影响。
为了改善大气质量,人们采取了一系列有效的措施。
首先,通过加强工业排放的监管和治理,减少大气污染物的释放。
其次,推广清洁能源和绿色交通工具,减少化石燃料的使用。
此外,建设城市绿化和园林绿地,增加城市的氧气含量,改善城市空气质量。
二、水污染治理和修复技术水污染是另一个亟待解决的环境问题。
治理水污染的方法多种多样。
首先,加强水体监测和管理,建立健全的水环境保护法规。
其次,采用物理、化学和生物等多种方法对废水进行处理,降低污染物浓度。
另外,建设湿地和人工湖泊,利用湿地植物吸附和分解有机物,修复水体生态系统。
三、土壤污染治理和修复技术土壤污染是由工业生产、垃圾填埋和农药使用等活动引起的。
治理土壤污染的方法包括物理、化学和生物技术。
物理方法包括土壤挖掘和覆盖等,用以隔离和收集污染物。
化学方法包括土壤中的化学溶解和土壤淋洗等,用以去除污染物。
生物技术则通过植物修复和微生物降解等方法,促进土壤中有机物的分解和去除。
四、噪声污染治理技术随着城市化进程的加快,噪声污染成为人们面临的另一个健康威胁。
噪声污染治理的方法主要包括控制噪声源的产生、减少噪声传播和保护受噪声影响的群体。
具体措施包括加强城市规划和建设标准,采用隔声材料和装置,以及推广噪声屏障等。
五、生态修复技术为了修复受污染和破坏的生态系统,人们采取了生态修复技术。
这些技术包括湿地恢复、植物种植和土地复垦等。
通过恢复湿地生态系统,可以提高水质和土壤质量,促进生物多样性的恢复。
同时,通过植物的种植和土地复垦,可以改善土壤质量,并提供适宜的生境条件。
土壤污染修复介绍土壤污染修复的方法和技术土壤污染是指在土壤中存在着对人类和生态系统有害的化学物质,给环境和人类健康带来潜在危害的现象。
随着人类活动的增加,土壤污染的问题日益突出。
土壤污染修复旨在恢复受损土壤的质量和功能,降低污染物的含量,以保护环境和人类健康。
本文将介绍土壤污染修复的方法和技术。
一、生物修复法生物修复法利用微生物和植物等生物体的作用,将有害物质转化为无害或低毒的物质,以降低或去除土壤中的污染物。
生物修复法包括自然修复和人工修复两种方式。
1. 自然修复自然修复是指利用自然界中存在的微生物、植物和动物等生物体,通过生态系统的自我修复机制来恢复土壤质量。
这种修复方式无需人为干预,在适当的环境条件下,通过微生物的降解、植物的吸收和物理化学过程的作用,污染物逐渐降解、转化、稀释或迁移,最终达到修复的目的。
2. 人工修复人工修复是指通过引入特定的微生物、植物或生物体来加速土壤污染物的降解和修复。
常见的人工修复方式包括菌种添加、菌菇园、人工湿地和植物修复等。
例如,通过添加特定的细菌或真菌,利用其降解能力来分解有机污染物;利用菌菇园种植特定的菌类,通过菌类的吸收和降解作用来修复土壤;同时,人工湿地和植物修复也是常见的方法,通过湿地植物的吸附、吸收和生物降解等过程来修复土壤。
二、物理修复法物理修复法主要是利用物理过程来修复土壤污染。
它通过改变土壤的物理性质和环境条件,实现对污染物的迁移、分离、转化和稳定。
1. 土壤热疏浚法土壤热疏浚法是指利用高温热处理来实现对土壤污染物的去除。
通过将高温传导到污染土壤中,使污染物被升温,进而挥发或分解,达到去除污染物的目的。
这种方法适用于热稳定性较差的有机污染物。
2. 土壤冷冻法土壤冷冻法是指利用低温处理来修复土壤污染。
通过降低土壤温度,将有机污染物冷冻并使其形成固态,然后通过物理手段进行分离和去除。
这种方法适用于低温稳定性较差的有机污染物。
三、化学修复法化学修复法是指利用化学物质来修复土壤污染。
污染沉积物原位和异位修复方法概述沉积物是指在水体、土壤等自然介质中沉淀、富集、固定和保存的各种物质。
其中,由于人类活动带来的污染物对沉积物的污染现象十分普遍,如重金属、有机物、农药、工业废物等,对环境和生物造成了巨大的影响。
本文将介绍污染沉积物的原位和异位修复方法。
1. 原位修复方法原位修复方法是将修复措施直接在污染现场进行,不改变沉积物的位置及特性。
原位修复方法的主要目标是降低沉积物中污染物的浓度,为生态环境恢复提供净化基础条件。
原位修复方法包括生物修复、化学修复和物理修复三种。
1.1 生物修复生物修复是利用微生物等生物体对污染物进行降解和转化的技术,其优点是具有安全、经济、环境友好和没有副作用等特点。
生物修复技术包括微生物降解技术、植物吸收技术、土壤生物修复技术等几种。
1.1.1 微生物降解技术微生物降解技术是利用微生物的代谢作用,将污染物分解为无毒物质的技术。
常用的微生物降解技术有泥炭土填充法、生物堆肥法、微生物培养法等。
植物吸收技术是通过植物的吸收和积累作用,将污染物从土壤和水中去除的技术,常用的植物吸收技术有污染悬浮物累积植物技术、人工湿地技术等。
土壤生物修复技术依靠土壤微生物、植物、昆虫等生物的共同作用,将有机污染物分解为无毒化合物的修复技术。
常用的土壤生物修复技术有面源污染修复技术、南京加速氧化沟技术等。
化学修复是指通过添加一些化学物质对污染物进行氧化还原、化学反应等扩散作用,来还原和去除污染物的技术。
化学修复技术包括还原法、氧化法、络合物去除法等几种。
1.2.1 还原法还原法是指通过还原剂加速还原污染物为无毒或减少毒性的技术。
常用的还原法有铁还原法、硫代硫酸盐还原法等。
氧化法是指通过氧化剂加速氧化或者分解有毒化合物为无毒物质的技术。
常用的氧化法有电化学氧化法、促进过氧化物降解法等。
1.2.3络合物去除法络合物去除法是指通过添加一定络合剂以提高污染物的可溶解性,使其被分解为无毒物质的技术。
Lecture 1第一课Introduction to Remediation Technology 修复技术介绍U.S. Environmental Protection Agency, September 30, 2002. Emergency Response Program. United States Environmental Protection Agency. Washington, D.C. /superfund/programs/er/resource/photos1.htm. Accessed December 20, 2002.美国环保局,2002。
9.30,应急响应程序,美国环保局,华盛顿/superfund/programs/er/resource/photos1.htm.获取自2002.12.20REILLY TAR & CHEMICAL SITEBetween 1917 and 1972, Reilly Tar & Chemical Corp. operated a coal tar distillation and wood preserving plant on 80 acres in St. Louis Park, Minnesota. Wastes from the operation were disposed of on the site and in a network of ditches that discharged to an adjacent wetland. The wastes contained many compounds, including polynuclear aromatic hydrocarbons (PAH), some of which are carcinogenic. Soil and ground water below the wetland and the southern portion of the site are heavily contaminated. Seven wells have been closed. All draw on the Prairie du Chien-Jordan Aquifer, which provides most of the drinking water for local communities. This is the top priority site in Minnesota.In the late 1970s, 28 multiaquifer wells were reconstructed to prevent the spread of contamination. In 1982, U.S. Environmental Protection Agency (U.S. EPA) provided funds to the Minnesota Pollution Control Agency (MPCA) to clean out two contaminated wells which had been used for disposal of site wastes. In 1984, a Consent Order was issued requiring Reilly Tar, the potentially responsible party (PRP) as owner and operator of the site, to construct a granular activated carbon treatment plant for two existing contaminated municipal wells, to restore drinking water and to contain the contaminant plume from contaminating other municipal wells. The granular activated carbon treatment plant was completed in 1986. A Consent Decree (CD) was subsequently signed by the PRPs, U.S. EPA and the MPCA in September, 1986. In 1986 and 1987, a number of pumping wells were constructed in the various groundwater aquifers beneath the site to remove the contaminant sources and to contain the spread of the contaminant plume. Another granular activated carbon treatment plant was completed in 1993, to allow a municipal well to be used for containment of the contaminant plume. Two additional pumping wells were also completed in 1991 and 1995. It is estimated that as of 1996, 6.2 billion gallons of groundwater contaminated with PNAs had been pumped and treated. An additional pumping well was constructed in the Summer of 1997. Construction at the site is now complete and a Preliminary Close-Out Report was issued on June 30, 1997.STRINGFELLOW ACID PITS, CASource: U.S. Environmental ProtectionAgency,/r9/sfund/SPHOTOS.NSF/57079f1ed19a0334882565cd006099c5/15d3b6f6f6ad7993882565cd0082879f/$FILE/Saerz1nw.jpg. Accessed May 13, 2004.STRINGFELLOWSITE DESCRIPTION AND HISTORYDescription: From 1956 until 1972, the 17-acre Stringfellow site was operated as a hazardous waste disposal facility. Over 34 million gallons of industrial waste, primarily from metal finishing, electroplating, andpesticide production were deposited in evaporation ponds. Spray evaporation procedures were used to decrease the volume of wastes in the ponds. In 1969, excessive rainfall caused the disposal ponds to overflow andresulted in the contamination of Pyrite Creek and Channel. In 1978, heavy rains caused the California Regional Water Quality Control Board (CRWQCB) to authorize a controlled release of 800,000 gallons of wastewaterfrom the site to prevent further waste pond overflow and massive releases. An additional 500,000 gallons of liquid wastes were removed at that time to a Federally approved facility. In 1979 and 1980, heavy rains againthreatened releases from the waste ponds. Between the years 1975 and 1980, approximately 6.3 million gallons of liquid wastes and materials contaminated with pesticides were removed from the site. The neighboringcommunity, Glen Avon, has a population of approximately 10,000 people. A contaminated groundwater plume potentially affected private drinking water wells, however, since 1989 the community has received water frompublic utilities and no longer relies on groundwater.Initial Actions: From 1980 to 1984, three groundwater extraction wells, a subsurface barrier structure, and an on-site surface water drainage system with gunite channels were built. All liquid wastes at the surface of thesite were removed to a Federally approved hazardous waste disposal facility. With the exception of 1,000 cubic yards of DDT-contaminated soil, which were taken to a Federally approved facility, contaminated soils fromthe site were used to fill waste ponds. The surface was graded, covered with clean soil, and seeded. In 1984, the State completed initial cleanup measures including fencing the site, maintaining the existing soil cap,controlling erosion, and disposing of the leachate extracted above and below the on-site clay barrier dam. In 1989, residences that had been receiving bottled water from the State were connected to the JurupaCommunity Services District. Pre-Treatment Plant: In 1984, the EPA selected a remedy for interim treatment of contaminated groundwater. The remedy featured installing a pre-treatment system consisting of limeprecipitation for removing heavy metals and granular activated carbon treatment for removing VOCs. The treated groundwater is discharged to an industrial sewer line, which ultimately discharges to a publicly ownedtreatment works system. Additional interceptor and monitoring wells were installed to extract contaminated groundwater downgradient of the site. The State completed installation of the pre-treatment plant in 1985. As ofMarch 1996, nearly 128 million gallons of groundwater had been extracted and treated. Source Control: In 1984, the State completed an investigation to identify and evaluate alternatives to control the source ofcontamination. At that time, the State determined that continuing the pumping and treating of contaminated groundwater is sufficient to reduce contamination at the site. The treatment system will operate until establishedcleanup levels have been met. Lower Canyon: In 1987, the EPA selected a remedy to: 1) capture and treat groundwater in the lower canyon area of the site with a groundwater barrier system, 2) install a peripheralchannel to divert clean surface water runoff from upgradient areas, 3) extend the existing gunite channels southward to discharge surface water into Pyrite Creek, and 4) reconstruct the Pyrite Creek Channel. Thepotentially responsible parties installed the groundwater barrier system and reconstructed the Pyrite Creek Channel. The State designed the system and completed construction of the northern channels in 1990.Community Wells and Source Control: In 1988, the State and the EPA completed an investigation determining the type and extent of contamination in the canyon and community areas. In 1990, the EPA selected aremedy that called for the installation of a groundwater extraction system in the community to treat contaminated groundwater that has migrated downgradient to the area, possibly followed by reinjection of the treatedwater. The potentially responsible parties have installed an initial community wells extraction system, to attempt to hydraulically control the plume of contaminated groundwater. Further work was begun in September 1997to install an additional extraction well in order to put the remaining portions of the plume under hydraulic control.In addition, the EPA's 1990 remedy selected dewatering of the on-site groundwater, a more aggressive effort to remove water from the groundwater table, as an interim source control measure. The potentiallyresponsible parties have installed an initial system but more work may still be needed. The potentially responsible parties also conducted field studies of soil vapor extraction in the on-site area, and paper studies ofreinjection. During 1997, the State carried out additional investigation of the source area and began a well drilling program to enhance the capability of the dewatering facilities at the site.STRINGFELLOW GROUND-WATER PLUME Source: U.S. Environmental Protection Agency, Stringfellow: Map displaying the inferred demarkation (sic) of the groundwater plume,/r9/sfund/mappicsx.nsf/f1db3be350ba0cc3882565cd00709ec4/919d1d407d4bd3378825673f0069ec15?OpenDocument. Accessed May 13, 2004.REMEDIALACTIONS Clay barrier damCap, drainage,extraction wells,vapor extractionHorizontal well Extraction wellsEstimated eventualcleanup cost: Extraction wells $400 million to$700 millionExtraction wells Source: U.S. Environmental Protection Agency.UNION CHEMICAL, MAINESee Union Chemical site images at theWeb site of the U.S. EnvironmentalProtection Agency:/region01/superfund/sites/union/35789.pdf(Accessed May 13, 2004.)The 12-acre Union Chemical Company, Inc. site began operations in 1967 as a formulator of paint and coating strippers. In 1969, the company expanded its operations and began handling and recovering petrochemical-based solvents. In 1979, as part of the recovery process, the company added a fluidized bed incinerator to burn contaminated sludges, still bottoms, and other undetermined hazardous wastes. Some of these types of waste were burned in an on-site boiler that provided heat and operating power to the facility. Between 1979 and 1984, the plant was cited by the State for deficiencies or violations of several operating licenses. The State closed the waste treatment operations in 1984, at which time approximately 2,000 drums and 30 liquid storage tanks containing hazardous waste were stored on the site. The on-site soil and groundwater contamination resulted from improper handling and operating practices such as leaking stored drums, spills, use of a septic tank and a leachfield for disposal of process wastewater, and could also be attributed to past disposal methods.In 1984, the State and EPA collectively removed all surface drums, over 100,000 gallons of liquid wastes and sludges from aboveground storage tanks, and some contaminated soil from the site. In 1994, EPA with the Maine Department of Environmental Protection and community concurrence, adjusted the treatment to soil vapor extraction of the contaminated soils. In addition, the groundwater extraction system was significantly expanded to clean up groundwater more quickly at the site. In late 1994 and early 1995, EPA began limited source control actions in preparation for the soil vapor extraction and groundwater extraction systems. The soil vapor extraction and groundwater extraction systems began operating in early 1996. Compliance sampling of the site soils in September 1998 demonstrated that the soil performance standards had been achieved.INDUSTRIPLEX 128, WOBURN, MAFrom 1853 to 1969, a succession of manufacturers at the site produced chemicals, insecticides, munitions, and glue products made from raw and chrome-tanned animal hides. As a result of these activities, large waste piles of animal hides remain. Soil at the site is contaminated with lead, arsenic, and chromium, and the groundwater beneath portions of the site is contaminated with benzene, toluene, arsenic, and chromium. Since 1969, a variety of industrial and commercial establishments have occupied portions of the site. Approximately 60 acres are currently used for warehousing and distribution.The cleanup plan included controlling the sources of contamination by demolishing buildings on the site and constructing several protective covers (e.g., soil, clay, and synthetic layers, concrete foundations, asphalt parking lots) over portions of the approximately 110 acres of contaminated soil. The plan called for a system to collect and treat gases that may form under the covers. The cleanup plan also identified an area of highly contaminated groundwater requiring treatment to reduce contaminants and limit migration away from the site.INDUSTRIPLEX 128 TODAYWOODLANDSSUPERFUNDSITE, NJThe Woodland Route 72 Dump site is a 12 acre industrial dump located along Route 72, just two miles away from an almost identical site on Route 532. Both are on the National Priorities List. From the early 1950s to the mid-1960s, various wastes were brought to this uncontrolled disposal site in 55-gallon drums and in bulk transport. Records indicated that the wastes were dumped into open pits and trenches, and then burned. However, investigations revealed that substantial amounts of these wastes were just buried.EDC (ethylene dichloride or 1,2-DCE) tar was major waste.Also, BCEE = bis(2-chloroethyl) etherOne generator hauled 50,000 drums from one plant alone starting in 1951. Ground-water contamination plume is over 1 mile long.By January 1991, a combined amount of approximately 100,000 cubic yards (160,000 tons) of contaminated waste materials were removed from both the Route 532 and Route 72 sites and disposed of by the potentially responsible parties at an EPA-approved facility.The New Jersey Department of Environmental Protection (NJDEP) completed a study of soil and ground water pollution at the site in 1989. In 1990, EPA and NJDEP selected the cleanup remedy, which included excavating all contaminated surface materials and disposing them at an approved offsite facility, and installing a ground water extraction and treatment system, with reinjection of the treated water back into the aquifer. By January 1991, waste materials were removed and disposed of by potentially responsible parties at an EPA approved facility. In 1993, a subsurface soils study was completed, which indicated that there was no contamination in the subsurface soils that poses a risk to human health and the environment. In September 1993, NJDEP documented that no further action was necessary regarding the subsurface soils; EPA concurred. In 1997, the potentially responsible parties conducted a study that analyzed and compared the groundwater remedy selected in the Record of Decision (ROD) with an alternative combination of air sparging-soil vapor extraction with natural attenuation. In April 1999, NJDEP amended the groundwater remedy from the extraction and treatment system selected in the 1990 ROD to a combination of air sparging-soil vapor extraction with natural attenuation; EPA concurred.MASSACHUSETTS MILITARY RESERVATION See image at the Web site of the Massachusetts Military Reservation Installation Restoration Program:/Cleanup/about_fs.htm (Accessed May 13, 2004.)GRACE CHEMICAL, ACTON, MASource: Peter Shanahan.The W. R. Grace and Company site covers approximately 200 acres. The site was the former location of the American Cyanamid Company and the Dewey & Almy Chemical Company. Thesecompanies produced sealant products for rubber containers, latex products, plasticizers, resins, and other products. Operations at the W. R. Grace facility included the production of materials usedto make concrete, container sealing compounds, latex products, and paper and plastic battery separators. Effluent wastes from these operations flowed into several unlined lagoons (the PrimaryLagoon, Secondary Lagoon, North Lagoon, and Emergency Lagoon), and solid and hazardous wastes were buried in or placed onto an on-site industrial landfill and several other disposal areas.These other waste sites include the Battery Separator Lagoons, the Battery Separator Chip Pile, the Boiler Lagoon, and the Tank Car Area. In addition, the by-products of some chemical processeswere disposed of in the Blowdown Pit. Since 1973, residents in South Acton have filed complaints about periodic odors and irritants in the air around the W. R. Grace plant. Investigations in 1978indicated that two municipal wells, Assabet #1 and #2, were contaminated. As a result of these findings, the Town took precautionary action and closed the two wells. Discharge to all lagoons andthe Battery Separator Area ceased in 1980. The site is bounded in part by Fort Pond Brook and by the Assabet River.Groundwater is contaminated with volatile organic compounds (VOCs) and heavy metals including lead, arsenic, chromium, and nickel. Sediments are contaminated with cadmium. The soil andsludge in the disposal areas are contaminated primarily with arsenic and VOCS, including vinyl chloride, ethyl benzene, benzene, 1,1-dichlorethylene, and bis(2-ethylhexyl)phthalate.MW MANUFACTURING, PENN.Source: Peter Shanahan. The 15-acre MW Manufacturing site in Valley Township, Pennsylvania, was a recovery operation for scrap wire. The main building was being used as a storage facility, and a smaller building was occupied by a metal fabrication operation by a caretaker resident who was evicted by the land owner in 1993. Since 1993, no commercial activities have occurred at the site. The recovery process,which changed the polyvinyl chloride (PVC) insulation around the wire into granular black carbon sludge, also helped dissolve heavy metals like lead, zinc, and copper into the waste materials.Workers then treated the copper wire with chlorinated solvents. The spent solvent apparently was dumped on the site. Metal Wire (MW) Manufacturing, the first owner, used both mechanical and chemical processes and went bankrupt in the early 1970s. The current owner, Warehouse 81, Inc., used a mechanical process. Waste accumulation on the site consists of an 86,000-gallon surface impoundment, 32,000 cubic yards of finely divided scrap wire called "fluff," a buried underground tank, and 13,000 cubic yards of contaminated soil. While the mechanical process generated themost fluff, the chemical processes were responsible for the biggest environmental impact.Approximately 800 drums of Polychlorinated By phenol (PCB) contaminated waste were transported off site for incineration in 1992. In 1990, the EPA selected a remedy for the cleanup of thefluff pile, which entailed excavation of the fluff pile wastes and underlying soils, on-site burning of the wastes and soils, and disposing of the incinerator ash in an EPA-approved hazardous wastelandfill. Engineering designs began in 1990. The treatability study for burning of fluff and soil was completed and the results indicated that burning of fluff could cause a potential threat to the publicdue to emissions of dioxin which is a byproduct of burning of fluff. Therefore, EPA made a decision not to implement the selected remedy. Additional PRP searches in 1992 identified records that ledto Lucent Technology (formerly AT&T) and Pennsylvania Power & Lights (PP&L) as Potential Responsible Parties (PRPs).One of the PRPs, Lucent Technology, proposed alternate remedies and conducted a focus feasibility and treatability study to demonstrate the viability of other remedies. EPA reviewed this workand issued a Record of Decision (ROD), December 22, 1997, revising the 1990 decision document. This new ROD called for the ex-situ (outside of the immediate area) stabilization of the fluff,lagoon sediment and surface soils and the backfilling the excavated areas with the stabilized material. These areas will then be covered with two feet of clean topsoil, regraded and vegetated toprevent ponding and to control erosion. Soils contaminated with Non-Aqueous-Phase Liquids (NAPLs) will be treated with low temperature thermal desorption. Tank and drum contents and otherdebris remaining at the site will be transported off site to an appropriate facility. Institutional controls such as deed restrictions and fencing will insure security and protectiveness as will a continuing monitoring and Operation and Maintenance program.In 1992, the EPA selected a remedy for the groundwater contamination - providing public water to the affected residences and businesses, and pumping and treating the groundwater, andBLACKFOOT RIVER: MINE TAILINGSSource: Montana Department ofEnvironmental Quality, RemediationDivision Activities andAccomplishments: Upper BlackfootMining Complex./rem/Accomplishments/cecrubmc.asp.Accessed December 1, 2002.Tailings and waste rock dumps have contaminated the surface water, sediments, groundwater, and soil in this region (approximately 15 miles from Lincoln, MT). The area was known as the UpperBlackfoot Mining Complex, which included the following: Mike Horse, Anaconda, Carbonate, Edith, Mary P, and Paymaster mines. The mines have been inactive for about 50 years now, but heavyrains caused the impoundment to fail in 1975 and metal-laden water flooded into the Blackfoot River. The mines are located at the headwaters of the Blackfoot River, which provides drinking waterCOAL-FIRED POWER PLANT BARRY, ALABAMA·5-unit 1525 MW power plant (coal,oil, and natural gas fired units)·Unlined ash pond for fly andbottom ash·Operated since 1954·Ash pond is 624 acres (forcomparison MIT campus is 153acres)·Ash is known to contain arsenic,mercury, chromium, selenium,boron at elevated concentrationsCOAL-FIRED POWER PLANT REMEDIATION·Remediation will require:- Dredging and consolidating 7.5million cubic yards ($58 million)following by capping·Total remediation = approx. $100million·Switchyard has PCBs fromtransformers·Southern Company has 31 plantsMANUFACTURED GAS PLANTSSource: Peter Shanahan.SEAWAY BOATS SITE, MAINESource: Peter Shanahan.SEAWAY BOATS SITE, MAINESource: Peter Shanahan.Drums staged during EPA removal action. Photo by P. ShanahanLEAKING UNDERGROUND STORAGE TANKSTANKSSource: Peter Shanahan.The U.S. Environmental Protection Agency (EPA) estimates that there are about 716,000 federally regulated USTs buried at over 269,000 sites nationwide (as of March 2001). Nearly all USTs atthese sites contain petroleum. These sites include marketers who sell gasoline to the public (such as service stations and convenience stores) and nonmarketers who use tanks solely for their ownneeds (such as fleet service operators and local governments). EPA estimates about 25,000 tanks hold hazardous substances covered by the UST regulations.Photo by P. Shanahan in East Acton, MALEAKINGUNDERGROUNDSTORAGE TANKSAs of Dec 1998 when UST rules became fully effective:1,236,000 tanks closed892,000 tanks still active371,000 confirmed releasesPhoto by P. Shanahan in West Acton, MA Source: Peter Shanahan.LEAKING UNDERGROUND STORAGE TANKS See image at the Web site of the Kansas DepartmentHealth and Environment, Superfund Unit: KDHE Bureau of Environmental Remediation, Assessment andRestoration Section. /ber/ars/superfund_unit.html.(Accessed May 13, 2004.)This is a “tank yank”Cleanup costs depend on a variety of factors, including the extent of contamination and state cleanup standards. The average cleanup is estimated to cost $125,000. If only a small amount of soilneeds to be removed or treated, cleanup costs can run as low as $10,000. However, costs to clean more extensive soil contamination can reach $125,000. Corrective action for leaks that affect groundwater can cost from $100,000 to over $1 million, depending on the extent of contamination. The presence of methyl tertiary-butyl ether (MTBE) can lead to a substantial increase in cleanupand drinking water treatment costs.What cleanup activities have taken place?As of March 31, 2001, states have used Trust Fund and state money to:Confirm over 417,000 releases,Oversee or conduct more than 12,800 emergency responses,Oversee or initiate more than 375,000 cleanups,Oversee or complete more than 258,000 cleanups, andOversee or conduct more than 1,468,000 closures.LEAKING UNDERGROUND STORAGE TANKSSource: U.S. Environmental Protection Agency, August 7, 2002. Office of Underground Storage Tanks (OUST). U.S. Environmental Protection Agency. Washington D.C./swerust1/graphics/ miscpix1.htm. Accessed January 28, 2003.Until mid-1980s, most tanks were bare steel – subject to corrosion and leakage.UNDERGROUNDSTORAGE TANKSSource: U.S. Environmental Protection Agency, August 7, 2002. Office ofUnderground Storage Tanks (OUST). U.S. Environmental Protection Agency.Washington D.C. /swerust1/graphics/ miscpix1.htm. Accessed January28, 2003.Petroleum products are lighter than water and hence float as LNAPL (light non-aqueous phase liquid) on top of the ground water. Picture shows water and LNAPL in a transparent bailer used tosample a monitoring well.LANDFILLSee image at the Web site of Zero Waste America,Landfills: Hazardous to the Environment,/Landfills.htm.(Accessed May 13, 2004.)Portion of the course is devoted to design, construction, and operation of landfills.LANDFILL LEACHATE COLLECTIONSource: The D.O.E. Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems./research.html. Accessed May 13, 2004.LANDFILL GAS COLLECTIONSource: NASA Goddard Space Flight Center, “NASA Warms Up to Maryland’s Trash,”/topstory/2003/0508landfill.html. Accessed May 13, 2004.LINER SYSTEMSSee images at the following Web sites:Engineering Design in Geotechnics and theEnvironment UK Ltd., Geosynthetics./liner_for_landfill.html.Pennsylvania Department of EnvironmentalProtection, How New Pads are Built./dep/deputate/enved/go_with_inspector/landfill/constructing_pads.htm.(Accessed May 13, 2004.)EDGE Consultants, undated. Geosynthetics. Engineering Design in Geotechnics and the Environment UK Ltd. Manchester, UK. /liner_for_landfill.html.Accessed January 28, 2003.Pennsylvania Department of Environmental Protection, February 5, 1997. How New Pads are Built. Pennsylvania Department of Environmental Protection. Harrisburg, PA./dep/deputate/enved/go_with_inspector/landfill/constructing_pads.htm. Accessed January 28, 2003.Summary: What each site illustratesReilly Tar & ChemicalImportance of hydrogeologyInterdisciplinary nature of workDNAPLSubtleties of risk Stringfellow Acid PitsSuperfund not necessarily justCosts may be very highGround-water impacts significant Union ChemicalTypical solvent site andremediation approach IndustriplexSite reuse: “Brownfields” site Olympia AvenueSurprising contaminant sources D’Imperio SiteInnocent landowner provision Woodland SiteHistorical knowledgeCleanups can be difficult MMRMilitary sites are sourcesLarge plumes, but variabledispersionSummary: What each site illustratesKansas City AirportContamination from routineindustrial practicesInnovative remedy (dual-phase vapor extraction)W.R. Grace, ActonThreat to public water suppliesPoint-of-use treatment$70 million cleanupPlatt-Saco-Lowell siteMetals (chromium) contaminationValue of historical photos MW ManufacturingJoint and several liability Anaconda SiteSuper(?) FundPlant Barry Ash PondLarge scale of sites (624 acres vs. 153 acre MIT campus) Manufactured Gas Plant Sites Common type of siteImportance of historical research Seaway BoatsHazwaste sites are everywhere!Summary: What each site illustratesLUST (leaking underground storage tank) sitesHazwaste sites areeverywhere!Very common type of siteLNAPL LandfillMajor topic of this course。