求一个小数的近似数(例二)
- 格式:ppt
- 大小:994.50 KB
- 文档页数:13
求近似数的⼏种⽅法在实际解题时,往往根据需要取⼀个数的近似值。
取近似值的常⽤⽅法有以下⼏种。
1.四舍五⼊法这是最常⽤的求近似数的⽅法。
当省略的尾数的最⾼位上的数是4或⽐4⼩的时候,就把尾数舍去;当省略的尾数最⾼位上的数是5或⽐5⼤时,把尾数去掉后,要向前⼀位进1。
⽤四舍五⼊法取近似值,要保留到哪⼀位,只要看它的下⼀位上的数是⼏就⾏了。
例如,计算0.731×2.3(得数保留两位⼩数)时,先求出准确值1.6813,再根据保留两位⼩数的要求看⼩数点后第三位。
因为⼩数点后第三位是1,⼩于4,所以0.731×2.3≈1.68.⼜如,计算35.6÷7(得数保留两位⼩数),除到⼩数点后第三位时商是5.085,因为⼩数点后第三位是5,所以,35.6÷7≈5.09.2.进⼀法在实际⽣活中,有时把⼀个数的尾数省略后,不管尾数最⾼位上的数是⼏,都要向它的前⼀位进⼀。
⽤进⼀法得到的近似数总⽐准确值⼤。
例如,有525千克粮⾷,每条⿇袋可装100千克,⼀共需要⼏条⿇袋?通过分析这道题,我们不难发现,525千克粮⾷装了5⿇袋后还余25千克,所以还要增加⼀条⿇袋,即省略尾数后要向前⼀位“进1”。
列式为: 525÷100=5.25≈6(条)3.去尾法在实际⽣活中,有时把⼀个数的尾数省略后,不管尾数最⾼位上的数字是⼏,都不要向它的前⼀位进⼀。
⽤去尾法得到的近似数总⽐准确值⼩。
例如:把350张纸订成每本40张的本⼦,最多可订多少本?通过计算,350除以40商为8.75,也就是说订成8本后,剩下的不⾜40张,不够订⼀本,因此要把尾数舍去。
列式为: 350÷40=8.75≈8(本)综上所述,取⼀个数的近似值,对于计算题通常⽤“四舍五⼊法”;对于应⽤题,通常根据题⽬的实际意义和具体要求决定取近似值的⽅法。
求一个小数的近似数在日常生活和数学运算中,我们经常会遇到需要对小数进行近似的情况。
无论是为了简化计算,还是为了更好地进行表示和理解,寻找一个小数的近似数都是很有必要的。
本文将介绍几种寻找小数近似数的方法和技巧。
1. 四舍五入法四舍五入法是最常见且简单的一种近似小数的方法。
在四舍五入法中,我们根据小数位的后一位数字来进行判断。
如果后一位数字小于5,则舍去;如果后一位数字大于等于5,则进位。
下面是一个用四舍五入法近似小数的示例:例:将小数3.14159近似为两位小数步骤:1. 定位到小数第三位(百分位),即4。
2. 根据后一位数字(百分位后一位)的大小,判断是否进位。
因为后一位数字5大于等于5,所以进位。
3. 进位后,将小数第三位及之后的数字都置为0,得到近似的小数3.14。
四舍五入法是一种比较常用且简便的近似方法,但它并不一定能够给出最精确的近似结果。
2. 小数点移动法小数点移动法是另一种常见的求小数近似数的方法。
通过移动小数点的位置,可以得到较大或较小的近似数。
具体的步骤如下:2.1 向右移动小数点如果需要得到小数的一个较大近似数,可以将小数点向右移动。
移动的位数由需要的近似精度决定。
例如,将小数3.14159近似为一个整数,可以将小数点向右移动到个位所在的位置。
移动的位数为四位,则得到近似数31。
2.2 向左移动小数点如果需要得到小数的一个较小近似数,可以将小数点向左移动。
同样,移动的位数由需要的近似精度决定。
例如,将小数3.14159近似为一位小数,可以将小数点向左移动到十分位所在的位置。
移动的位数为一位,则得到近似数3.1。
小数点移动法可以根据需要进行小数的近似,但要注意移动的位数和所产生的近似数是否符合实际情况。
3. 连分数法连分数法是一种特殊的近似数表示方法。
它将一个小数表示为一个连分数的形式,其中整数部分为首项,其余部分为连续的倒数项。
连分数法可以给出较为精确的近似数,但也需要一定的计算和理解。
求小数近似数的方法
第一种:简单数位的近似计算:
例如:将小数1.3456保留2位小数则为:1.35。
其主要过程是,看保留数位的下一位,按照“四舍五入”斤牢速的方法进行近似计算。
第二种:根式小数开方的近似计算
例如求√4.11的近似值计算,本例采取线性穿插法计算,如:设√4.11=x,列三组数如下:
√4=2
√4.11=x
√9=3,
(4.11-4)/(9-4.11)=(x-2)/(3-x)
(4.11-4)(3-x)=(x-2)(9-4.11)
0.11(3-x)=4.89(x-2)
4.89x+0.11x=0.11*3+2*4.89
5x=10.11
x≈2.022。
第三种:小数的小数次方的近似计算
例如,计算0.91^2.91次方的近似值,本例主要采取微积分计算近似值,具体步骤如下。
第四种:正弦小数的近似计算:蕉茄
例如,计算sin38.88°的近似值,主要使用微分法计算,∵(sinx)´=cosx
∴dsinx=cosxdx.
则有△y≈cosx△x,此时有:
sinx=sinx0+△y≈sinx0+cosx0△x。
需要注意的是,计算中的△x若是角度要转化为弧度。
近似数【知识要点】1、求整数的近似数:(1)省略万后面的尾数:看“千”位上的数,用“四舍五入”法取近似值.添上“万”字,用“≈”连接.(2)省略亿后面的尾数:看“千万”位上的数,用“四舍五入”法取近似值.添上“亿”字,用“≈”连接.2、求小数的近似数:(1)保留整数:就是精确到个位,要看十分位上的数来决定四舍五入.(2)保留一位小数:就是精确到十分位,要看百分位上的数来决定四舍五入.(3)保留两位小数:就是精确到百分位,要看千分位上的数来决定四舍五入.【经典例题】【例1】把下面横线上的数改写成用“万”或“亿”作单位的数.(1)我们的地球是距太阳的第三颗行星,离太阳距离大约是150000000千米,它在太空飞行速度是每小时108000千米,约用365天绕太阳一周,它的直径是12756千米,够大的吧!150000000=()亿108000=()万12756=()万(2)火星2003年8月27日到达距地球仅55760000千米的位置,成为两者60000年来距离最近的一次.55760000=()亿60000=()万(3)科学家们最近指出,地球已有4530000000年的历史,一月初,地球离太阳最近,为147100000千米,七月初地球离太阳最远,为152100000千米.453000000=()亿14710000=()亿152100000=()亿【练习1.1】下表是2005年我国1~6月份国产品牌手机出口量统计.你能把它们改写成用“万”作单位的数吗?【练习1.2】把下面的数改写成用“万”或“亿”作单位的数.687522=()万23600=()万8568700000=()亿60870000=()亿【例2】求下面小数的近似数.(1)保留一位小数.0.374≈25.45≈17.246≈8.98≈(2)保留两位小数.0.549≈0.896≈4.897≈3.658≈【练习2】用“四舍五入法”写出下表中各小数的近似数.【例3】求下面小数的近似数.(1)精确到十分位.0.468≈()4.087≈()8.296≈()2.985≈()3.095≈()7.999≈()(2)精确到百分位.0.518≈8.353≈0.502≈20.807≈9.374≈5.603≈3.259≈【练习3】2005年我国原油产量1.815亿吨,比2004年增加0.0648亿吨,原油净进口1.1875亿吨,比2004年增加了0.0143亿吨,全国石油消费量约3.1767亿吨.把横线上的数精确到百分位是多少亿吨?1.815亿吨= 0.0648亿吨= 1.1875亿吨=0.0143亿吨= 0.0153亿吨=【例4】下面的小数各在哪两个相邻的整数之间?它们各近似于哪个整数?① <7.498< ,近似于____.② <0.87< ,近似于____.③ <23.64< ,近似于____.④ <100.39< ,近似于____.【练习4】下面各小数在哪两个相邻的整数之间?它们各接近于那个整数?① <4.29< ,近似于____.② <15.24< ,近似于____.③ <8.27< ,近似于____.④ <6.05< ,近似于____.【例5】在下面的◯里填上“=”或“≈”.419000◯41.9万8070000000◯81亿513000◯51万4060000000◯40.6亿【练习5】在下面的◯里填上“=”或“≈”.54000◯5.4万9816000◯1亿2702000000◯27亿2708000000◯270800万【例6】在“□”里填上合适的数.68.9□≈68.9,□里能填().4.99□≈5.00,□里能填().6.7□20万≈6.7亿,□里可填的数().5.3□9≈5.4,□里可填的数().【练习6】在横线上填上合适的数字.43.6□≈43.6,□里可填的数字有().7.99□≈8.00,□里可填的数字有().6.39□≈6.40,□里可填的数字有().6.5□8≈6.5,□里可以填的数字有().7.5□8≈7.6,□里可以填的数字有().【例7】填一填.一个三位小数精确到百分位是3.54,这个三位小数最小是.一个两位小数“四舍五入”保留整数取得近似值是2.7,这个数最小可能是,最大可能是.【练习7】填一填.一个三位小数的近似数是1.23,它最大可能是.一个两位小数取近似值是5.8,那么这个两位小数最大是____,最小是____.一个两位小数近似到十分位约是9.2,原数最大是____,最小是____.【例8】张明参加体检时,量得身高是1.679m,体重是59.87kg.他的身高精确到百分位是多少米?体重精确到十分位是多少千克?【练习8】张华参加体育达标测试,跑1000米用了4.16分钟,跳远跳了5.424米,他的跑步时间精确到十分位是多少分钟?跳远米数精确到百分位是多少米?【例9】汽车30分钟行驶了973m,那么这辆汽车每小时可以行驶多少米?约是多少千米?(得数保留整数)【练习9】一辆汽车通过一座6389m的大桥用了40分钟,那么这辆汽车每小时可以行驶多少米?约是多少千米?(得数保留整数)【例10】一棵橘子树可产橘子165kg,小莉家有53棵橘子树,她家今年可产橘子约多少吨?(得数精确到十分位)【练习10】公园的一头大象一天要吃250千克饲料,这头大象2020年二月份要吃多少千克的粮食?约多少吨?(得数精确到百分位)1.把下面的数改写成用“万”作单位的数.326000=()78500=()546000=()2.把下面的数改写成用“亿”作单位的数.3489000000=()75000000=()250000000=()3.填一填.(1)把23.7万改写成用“一”作单位的数是().(2)把9.28亿改写成用“万”作单位的数是().4.填表.5.在横线上填上合适的数字.①0.____5元>25分 ②4____g<0.045kg③3745kg>3.____46t ④1.____4km2>163公顷6.判断.(1)准确数总是大于近似数().(2)近似数12.0和近似数12,大小相同,精确度也相同.()(3)在表示近似数的时候,小数末尾的0可以去掉.()(4)近似数是7.41的三位小数不止一个.()(5)651000000元≈6.5亿元.()(6)1.96保留一位小数约是2.0.()(7)4.56精确到十分位是5.()(8)9.0999精确到个位是10.()7.下面的小数各在哪两个相邻的整数之间?____<3.7<____ ____>20.002>________<9.23<____ ____>0.69>________<99.57<____ ____>203.85>____8.横线上最大可以填几?4.74____≈4.740.78____≈0.780.9____≈19.横线上最小可以填几?7.06____≈7.072.63____≈2.6412.6____≈12.610.一个两位小数四舍五入后是8.4,这个两位小数最大是____,最小是____;一个三位小数五入后是8.42,这个三位小数最大是____,最小是____;一个三位小数四舍后是8.45,这个三位小数最大是____,最小是____.11.第六次全国人口普查调查显示:全国总人口为1370536875人,其中大陆人口为1339724852人,香港特别行政区人口为7097600人,澳门特别行政区人口为552300人,台湾地区人口为23162123人.(1)请把下面的数改写成用“亿”作单位的数.保留两位小数)1370536875人=____亿人≈____亿人1339724852人=____亿人≈____亿人(2)请把下面的数改写成用“万”作单位的数.(精确到十分位)7097600人≈____万人552300人≈____万人23162123人≈____万人12.一个三位小数,精确到百分位约是3.05,这个三位小数可能是多少?(写出所有可能的三位小数.)13.一个两位小数四舍五入后是60.0,这个小数最大是____,最小是____.14.一个三位小数精确到百分位后是5.03,在下面数轴上标出这个三位小数可能的最大数与最小数.15.妈妈到超市买水果,打出的总价钱是36.94元,在付款时,收银员根据“四舍五入”法实收36.9元,你认为超市里用“四舍五入”的方法收到整角钱对消费者公平吗?为什么?。
第1课时求一个小数的近似数备教材内容1.本课时学习的是教材52页的内容及相关习题。
2.例1结合豆豆测量身高这一现实情境,说明求一个小数的近似数在现实生活中的广泛应用及如何利用“四舍五入”法保留两位小数、一位小数。
在“想一想”中,教材将“如何保留整数”的问题留给学生自己思考并解决,既促使学生在已有知识的基础上通过自主探究解决问题,又引导学生主动概括、归纳求小数的近似数的方法。
最后,教材特别指出求小数的近似数的注意事项。
同时帮助学生明确,求小数的近似数时,小数末尾的0不能去掉的原因。
3.学生在之前学习过求整数的近似数,因此已形成基本的学习经验。
学习本课时的内容,既可以加深学生对小数的认识,又可以培养学生的数感。
备已学知识备教学目标知识与技能1.结合具体情境,理解求小数的近似数的意义。
2.理解并掌握用“四舍五入”法求一个小数的近似数。
过程与方法1.通过旧知迁移新知的方法,经历求小数的近似数的过程,提高类推能力。
2.借助数形结合的教学策略培养学生的数感。
情感、态度与价值观1.感悟数学与生活的密切联系,激发学生学习数学的兴趣。
2.增进学生对数学的理解和应用数学的信心。
备重点难点重点:掌握用“四舍五入”法求一个小数的近似数的方法。
难点:理解小数保留的位数越多,精确度越高;求小数的近似数时,小数末尾的“0”不能去掉。
备知识讲解知识点 求小数近似数的方法问题导入 他们是怎样得出豆豆身高的近似数的?(教材52页例1)过程讲解1.明确求小数近似数的意义在日常生活和计算中,有些数据并不需要知道它的精确值。
比如例题中豆豆的身高是0.984 m ,说明已经精确到了毫米,但通常测量身高只要精确到厘米就可以。
因此,可以运用“四舍五入”法把0.984保留两位小数,求出它的近似数。
近似数在现实生活中的应用极为广泛。
2.明确求小数近似数的方法求小数近似数的方法与求整数近似数的方法相同,都可以用“四舍五 入 ”法 。
用“四舍五入”法求近似数时关键要明确两点:(1)看保留到哪一位。
《求一个小数的近似数》教学分析(第73~77页)这部分内容安排了两个例题:例1教学求一个小数的近似数;例2教学将不是整万或整亿的数改写成用“万”或“亿”作单位的数。
具体内容的说明和教学建议1. 例1及“做一做”。
编写意图(1)结合豆豆测量身高这一现实情境,说明求一个小数的近似数在现实生活中的广泛应用,加深对小数的认识,培养学生的数感。
(2)利用“求豆豆身高近似数”这一问题,介绍求小数近似数的方法——四舍五入法,并结合豆豆身高的数据依次说明如何利用“四舍五入”法保留两位小数、保留一位小数。
(3)在“想一想”中,教材将“如何保留整数”的问题留给学生思考解决,既促使学生在已有知识基础上通过自主探索解决新问题;也引导学生主动概括归纳求小数近似数的方法。
(4)最后,教材特别指出求小数近似数的注意事项,并说明保留不同位数小数的精确程度,促使学生深入理解近似数的精确性,即保留几位小数,就是精确到所保留的小数的最末一位。
同时也帮助学生明确:求小数近似数时,小数末尾的0不能去掉的原因。
(5)“做一做”习题,使学生进一步掌握求小数近似数的方法。
教学建议(1)学习求小数近似数之前可先复习一下求整数近似数的方法——四舍五入法,为进一步学习求小数的近似数做好准备和铺垫。
(2)可利用现实情境,如比较身高或物品的价格等问题导入,让学生切实感受到求小数近似数在生活中的应用。
(3)在求小数近似数的过程中,引导学生理解保留几位小数的含义。
保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。
(4)完成上述环节后,教师可鼓励学生自主探索“保留整数”的含义,并引导学生总结求小数的近似数的方法。
(5)在学生掌握求小数近似数的方法后,可启发学生思考:保留不同位数的小数求得的近似数是否相同?如果不同,哪个近似数会更精确一些?2.例2及“做一做”。
编写意图(1)这部分内容是教学将不是整万或整亿的数改写成用“万”或“亿”作单位的数。