求一个小数的近似数
- 格式:docx
- 大小:15.51 KB
- 文档页数:3
求一个小数的近似数讲义(5)------------------------------------------作者------------------------------------------日期【人教版小四】:小数的意义及其性质适用学科数学适用年级四年级知识点求一个小数的近似数教学目标复习掌握小数单位的换算;学会求一个小数的近似数。
教学重点求小数的近似数教学难点求小数的近似数教学过程课前检测1、把10.258的小数点先向右移动两位,再向左移动三位,这个数是,原数就到它的.2、下面说法错误的是()A.0.8和0.80大小意义都相同B.7.4吨>7吨4千克C.3个是0.003D.2.56保留一位小数是2.63、(1)2.45245。
(2)30.04。
(3)一个小数的小数点先向右移动三位,再向左移动一位,这个小数倍。
4、单位变换7千米=( )米 400厘米=( ) 米6000千克=( )吨 3吨500千克=( )千克3.600千米=( )千米( )米 0.15千克=()克知识讲解一、填空题1、单位换算3.7平方分米=()平方毫米 5.80元=()元()角2吨100千克=( )吨 5千克700克=( )千克( )吨( )千克=4.08吨 9分米6厘米=( )米7.05米=()米()厘米 5.45千克=( )千克( )克3千米50米=( )千米 5.6公顷=()平方千米=()平方米3千克500克=( )千克 ( )时=2时45分2、比一比(1)7.2千米 7150米 7千米20米(2)465克 4.6千克 0.46千克(3)92厘米 1米31厘米 0.89米 1.28米(4)32角 1.5元 120分 25角3分3、仔细想,认真填。
(1)求一个小数的近似数可以用法。
(2)求近似数时,保留整数,表示精确到();保留一位小数,表示精确到()位;保留两位小数,表示精确到()位。
(3)3.978精确到十分位约是(),精确到百分位约是()。
四年级下册数学教案求一个小数的近似数教学目标1. 理解求小数近似数的基本概念和方法。
2. 学会运用四舍五入法求小数的近似数。
3. 能够在实际情境中运用求小数近似数的方法,解决实际问题。
教学内容1. 求小数近似数的基本概念。
2. 四舍五入法求小数的近似数。
3. 求小数近似数在实际情境中的应用。
教学重点与难点重点1. 掌握四舍五入法求小数的近似数。
2. 能够在实际情境中运用求小数近似数的方法。
难点1. 理解四舍五入法的原理和应用。
2. 在实际情境中灵活运用求小数近似数的方法。
教具与学具准备1. 教具:PPT,教学视频,示例题。
2. 学具:练习本,计算器。
教学过程1. 导入:通过一个实际情境引入求小数近似数的概念。
2. 新课:讲解求小数近似数的基本概念和方法,重点讲解四舍五入法。
3. 示例:通过示例题展示如何运用四舍五入法求小数的近似数。
4. 练习:让学生进行练习,巩固所学知识。
5. 应用:通过实际情境题,让学生运用求小数近似数的方法解决实际问题。
板书设计1. 板书求小数的近似数2. 板书内容:求小数近似数的基本概念,四舍五入法的步骤,示例题,练习题。
作业设计1. 基础题:求给定小数的近似数。
2. 提高题:在实际情境中运用求小数近似数的方法解决问题。
3. 挑战题:探索求小数近似数的其他方法。
课后反思通过本节课的学习,学生应该能够掌握求小数近似数的基本方法,并能够在实际情境中运用。
在教学过程中,我注重了理论与实践的结合,让学生在实际操作中理解四舍五入法的原理和应用。
在作业设计中,我设置了不同难度的题目,以满足不同学生的学习需求。
在课后,我将对学生的作业进行批改和反馈,及时纠正他们的错误,帮助他们巩固所学知识。
四舍五入法求小数的近似数四舍五入法的原理例如,如果要将3.4567保留到小数点后两位,我们需要看小数点后第三位的数字,即6。
因为6大于5,所以我们在小数点后第二位的数字4上加1,得到3.46,这就是3.4567保留到小数点后两位的近似数。
求一个小数的近似数在日常生活和数学运算中,我们经常会遇到需要对小数进行近似的情况。
无论是为了简化计算,还是为了更好地进行表示和理解,寻找一个小数的近似数都是很有必要的。
本文将介绍几种寻找小数近似数的方法和技巧。
1. 四舍五入法四舍五入法是最常见且简单的一种近似小数的方法。
在四舍五入法中,我们根据小数位的后一位数字来进行判断。
如果后一位数字小于5,则舍去;如果后一位数字大于等于5,则进位。
下面是一个用四舍五入法近似小数的示例:例:将小数3.14159近似为两位小数步骤:1. 定位到小数第三位(百分位),即4。
2. 根据后一位数字(百分位后一位)的大小,判断是否进位。
因为后一位数字5大于等于5,所以进位。
3. 进位后,将小数第三位及之后的数字都置为0,得到近似的小数3.14。
四舍五入法是一种比较常用且简便的近似方法,但它并不一定能够给出最精确的近似结果。
2. 小数点移动法小数点移动法是另一种常见的求小数近似数的方法。
通过移动小数点的位置,可以得到较大或较小的近似数。
具体的步骤如下:2.1 向右移动小数点如果需要得到小数的一个较大近似数,可以将小数点向右移动。
移动的位数由需要的近似精度决定。
例如,将小数3.14159近似为一个整数,可以将小数点向右移动到个位所在的位置。
移动的位数为四位,则得到近似数31。
2.2 向左移动小数点如果需要得到小数的一个较小近似数,可以将小数点向左移动。
同样,移动的位数由需要的近似精度决定。
例如,将小数3.14159近似为一位小数,可以将小数点向左移动到十分位所在的位置。
移动的位数为一位,则得到近似数3.1。
小数点移动法可以根据需要进行小数的近似,但要注意移动的位数和所产生的近似数是否符合实际情况。
3. 连分数法连分数法是一种特殊的近似数表示方法。
它将一个小数表示为一个连分数的形式,其中整数部分为首项,其余部分为连续的倒数项。
连分数法可以给出较为精确的近似数,但也需要一定的计算和理解。
求小数近似数的方法
一、利用最简分数
所谓最简分数,指的是分子和分母互质的最简分数,比如
8/24,3/9等,这类最简分数可以用来近似小数。
方法如下:
1.将小数部分取整,比如将0.716取整为71。
2.把取整后得到的小数乘以欲近似的小数的分母,比如0.716 ×1000 = 716。
3.将得到的积除以小数原来的分母,比如716/100=7.16。
4.把积的分子分母拆分成最简分数,比如716,最简分数为71/10,则最后的近似小数结果为7.17。
二、利用百分数
百分数也可以用来近似小数,方法也很简单:
1.把小数换算成百分数,比如将0.716换算成百分数则为71.6%。
2.将取得的百分数乘以欲近似的小数的分母,比如将71.6%×1000=716。
3.将乘积的分子分母拆分成最简分数,比如716,最简分数为
71/10,故最后的近似小数结果为7.17。
三、根据经验和假设
熟悉小数的人一般都有自己的经验,也可以利用自己的经验和假设来近似小数。
比如有人可能认为0.716近似与7.2,所以可以把这个小数近似为7.2。