2016-2017学年高中数学第3章概率章末综合测评北师大版必修3
- 格式:doc
- 大小:119.50 KB
- 文档页数:10
阶段测试(三) 第三章 概率时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a ,b 是实数,那么b +a =a +b ;②某地明年1月1日刮西北风;③当x 是实数时,x 2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有( )A .1个B .2个C .3个D .4个2.一个口袋内装有大小相同的红、蓝球各一个,若有放回地摸出一个球并记下颜色为一次试验,试验共进行三次,则至少摸到一次红球的概率是( ) A.18 B.78 C.38 D.583.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则从产品中任意抽查一件抽得正品的概率为( )A .0.09B .0.98C .0.97D .0.964.如图,矩形ABCD 的长为π,宽为2,以每个顶点为圆心作4个半径为1的扇形,若从矩形区域内任意选取一点,则该点落在阴影部分的概率为( )A.18B.π8C.π4D.125.一个三位数字的密码锁,每位数字都可在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人开锁时,在对好前两位数字后,随意拨动最后一个数字恰好能开锁的概率为( )A.1103B.1102C.110 D .16.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB的最大边是AB ”发生的概率为12,则AD AB =( )A.12B.14C.32D.747.小明通过做游戏的方式来确定周末的活动,他随机往单位圆内投掷一颗弹珠(大小忽略),若弹珠到圆心的距离大于12,则周末去逛公园;若弹珠到圆心的距离小于14,则去踢足球;否则,在家看书.则小明周末不在家看书的概率为( ) A.12 B.16 C.1316 D.5128.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( ) A.9100 B.350 C.3100 D.299.下课以后,教室里最后还剩下2位男同学,2位女同学,如果一个一个的走出去,则第2位走的是男同学的概率为( )A.12B.13C.14D.1510.在区域⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )A .0 B.π4-12 C.π4 D .1-π411.《九章算术》是中国古代数学专著,全书采用问题集的形式,收集有246个与生产、生活实践有联系的应用问题,其中“均赋粟”问题讲的是古代劳动人民的赋税问题.现拟编试题如下,已知甲、乙、丙、丁四县向国家交税,则甲必须第一个交且乙不是第三个交的概率为( )A.16B.112C.18D.11012.阅读如图所示的算法框图,如果函数的定义域为(-3,4),则输出函数的值在54,32内的概率为( )A.17B.37C.27D.47二、填空题(本大题共4小题,每小题5分,共20分)13.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________.14.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中各随机选一匹进行一场比赛,则田忌马获胜的概率为________.15.在一个不透明的袋中装有除颜色外完全相同的3个小球,其中一个红色球,两个黄色球,如果第一次先从袋中摸出1个球后再放回,第二次再从袋中摸出1个球,那么两次都摸到黄色球的概率是________.16.在区间[-3,3]上随机取一个数x ,则使得lg(x -1)<lg 2成立的概率为________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)现共有6家企业参与某项工程的竞标,其中A企业来自辽宁省,B,C两家企业来自福建省,D,E,F三家企业来自河南省.此项工程需要两家企业联合施工,假设每家企业中标的概率相同.(1)列举所有企业的中标情况.(2)在中标的企业中,至少有一家来自福建省的概率是多少?18.(本小题满分12分)某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑,希望中学要从甲、乙两种品牌电脑中各随机选购一种型号的电脑.(1)写出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(直接写出结果即可)19.(本小题满分12分)设关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求上述方程有实根的概率.20.(本小题满分12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂.(1)求从A,B,C区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.21.(本小题满分12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表:(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.22.(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15),…,第五组[17,18].如图是按上述分组方法得到的频率分布直方图:(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n∈[13,14)∪[17,18].求事件“|m-n|>1”的概率.阶段测试(三) 第三章 概率1.解析:①③是必然事件,②④是随机事件.答案:B2.解析:所有的基本事件为:(红,红,红),(红,红,蓝),(红,蓝,红),(蓝,红,红),(红,蓝,蓝),(蓝,红,蓝),(蓝,蓝,红),(蓝,蓝,蓝),共8个.三次都是蓝球的基本事件只有1个,其概率是18,根据对立事件的概率之间的关系,所求的概率为1-18=78.选B.答案:B3.解析:任意抽查一件抽得正品的概率为:1-0.03-0.01=0.96. 答案:D4.解析:由图可得,阴影部分面积为π×12=π.因为矩形ABCD 的长为π,宽为2,所以矩形的面积为2π,所以从矩形区域内任意选取一点,则该点落在阴影部分的概率为P =π2π=12.答案:D5.解析:第三位数字的选择共有10种可能,随意拨动一个数字正好正确的概率为110,故选C.答案:C6.解析:由已知得,点P 的分界点恰好是边CD 的四等分点,由勾股定理可得AB 2=(34AB )2+AD 2,解得(AD AB )2=716,即AD AB =74,故选D.答案:D7.解析:本题主要考查与圆的面积有关的几何概型问题.由题意画出示意图,如图所示.表示小明在家看书的区域如图中阴影部分所示,则他在家看书的概率为,因此他不在家看书的概率为1-316=1316,故选C.答案:C8.解析:任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i )(i =0,1,2,…,9);(1,i )(i =0,1,2,…,9);(2,i )(i =0,1,2,…,9);…;(9,i )(i =0,1,2,…,9).故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9).共有9种.故所求概率为9100.答案:A9.解析:法一:已知有2位女同学和2位男同学,所有走的可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率P =36=12.法二:由于每一位同学走出的概率是相同的,因此第2位走出的是男同学的概率P =24=12.答案:A10.解析:所有基本事件构成的区域为边长为1的正方形,而满足条件的点构成的区域为圆心在原点,半径为1的圆在第一象限的部分即14的圆,所以P =14×π×1212=π4.答案:C11.解析:依题意,所有的基本事件为甲—乙—丙—丁,甲—乙—丁—丙,甲—丙—乙—丁,甲—丙—丁—乙,甲—丁—丙—乙,甲—丁—乙—丙,乙、丙、丁第一个交的情况也各有6种,故总的基本事件数有24种,其中满足条件的基本事件为甲—乙—丁—丙,甲—乙—丙—丁,甲—丙—丁—乙,甲—丁—丙—乙,共4种,故所求概率为424=16.答案:A12.解析:由算法框图得,f (x )=⎩⎪⎨⎪⎧ 2x +1,-1≤x ≤1,2-x +1,x <-1或x >1,若-1≤x ≤1,令54<2x +1<32,即14<2x <12,∴-2<x <-1(舍去);若x <-1或x >1,令54<2-x +1<32,即14<2-x <12,∴1<x <2.问题转化为长度型的几何概型,总长度为4-(-3)=7,所求事件表示的长度为2-1=1,则所求的概率为17.故选A.答案:A13.解析:基本事件有ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10个.其中有a 的事件的个数为4个,故所求概率为P =410=25.答案:2514.解析:记田忌的上等马、中等马、下等马分别为a ,b ,c ,齐王的上等马、中等马、下等马分别为A ,B ,C ,由题意可知,可能的比赛为Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共有9种,其中田忌可以获胜的事件为Ba ,Ca ,Cb ,共有3种,则田忌马获胜的概率为P =39=13.答案:1315.解析:从袋中取出两个球,画出树状图如图所示.由树状图知,基本事件的总数为9,两次都摸到黄色球所包含的基本事件的个数为4,所以两次都摸到黄色球的概率是49.答案:4916.解析:由题意,得⎩⎪⎨⎪⎧ x -1>0,lg (x -1)<lg 2,解得⎩⎪⎨⎪⎧x >1,x <3.所以在区间[-3,3]上不等式lg(x -1)<lg 2的解集为(1,3),其长度为 2.又因为x ∈[-3,3],其长度为6,由几何概型知识,得P =26=13.答案:1317.解析:(1)从这6家企业中选出2家的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共有15种,以上就是中标情况.(2)在中标的企业中,至少有一家来自福建省的选法有(A ,B ),(A ,C ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种.则“在中标的企业中,至少有一家来自福建省”的概率为915=35.18.解析:(1)画出树状图如图:则选购方案为:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(2)A 型号电脑被选中的情形为(A ,D ),(A ,E ),即基本事件为2种,所以A 型号电脑被选中的概率为P =26=13.19.解析:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a >0,b >0时,方程x 2+2ax +b 2=0有实根的等价条件为Δ=4a 2-4b 2=4(a 2-b 2)≥0,即a ≥b .(1)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34.(2)试验的所有基本事件所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},其中构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },所以所求的概率为3×2-12×223×2=23. 20.解析:(1)工厂总数为18+27+18=63,样本容量与总体中的个体数之比为763=19,所以从A ,B ,C 三个区中分别抽取的工厂个数为2,3,2.(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂,在这7个工厂中随机抽取2个,全部可能的结果有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.随机抽取的2个工厂至少有1个来自A区的结果(记为事件X)有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A1,C2),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(A2,C2),共有11种.所以这2个工厂中至少有1个来自A区的概率为P(X)=1121.21.解析:(1)由题设知,分层抽样的抽取比例为6%,所以各组抽到的人数如下表:组别 A B C D E人数5010015015050抽取人数3699 3(2)记从A1231,a2支持1号歌手;从B组抽到的6个评委为b1,b2,b3,b4,b5,b6,其中b1,b2支持1号歌手.从{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1,a1b2,a2b1,a2b2共4种,故所求概率P=418=2 9.22.解析:(1)由题中的频率分布直方图知,成绩在[14,16)内的人数为50×(0.16×1)+50×(0.38×1)=27,所以该班成绩良好的人数为27.(2)设事件M:“|m-n|>1”.由频率分布直方图知,成绩在[13,14)的人数为50×0.06×1=3,设这3人分别为x,y,z;成绩在[17,18]的人数为50×0.08×1=4,设这4人分别为A,B,C,D.若m,n∈[13,14)时,则有xy,xz,yz,共3种情况;若m,n∈[17,18]时,则有AB,AC,AD,BC,BD,CD,共6种情况;若m,n分别在[13,14)和[17,18]内时,此时有|m-n|>1.列出下表,可得共有12种情况.A B C Dx xA xB xC xDy yA yB yC yD“|m -n |>1”所包含的基本事件个数有12种.故所求概率P (M )=1221=47.由Ruize收集整理。
【课堂新坐标】2016-2017学年高中数学 第3章 概率 2.3 互斥事件学业分层测评 北师大版必修3(建议用时:45分钟)[学业达标]一、选择题1.抽查10件产品,记事件A 为“至少有2件次品”,则A 的对立事件为( ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品D .至少有2件正品【解析】 至少有2件次品包含2,3,4,5,6,7,8,9,10件.共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.【解析】 B2.如果事件A 与B 是互斥事件,且事件A +B 的概率是0.8,事件A 的概率是事件B 的概率的3倍,则事件A 的概率为( )A .0.2B .0.4C .0.6D .0.8【解析】 根据题意有⎩⎪⎨⎪⎧P A +P B =0.8,P A =3P B ,解得P (A )=0.6. 【答案】 C3.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( )A .60%B .30%C .10%D .50%【解析】 甲不输包含两个事件:甲获胜,甲、乙和棋.所以甲、乙和棋概率P =90%-40%=50%.【答案】 D4.某射手在一次射击中命中9环的概率是0.28,命中8环的概率是0.20,不够8环的概率是0.30,则这个射手在一次射击中命中9环或10环的概率是( )A .0.50B .0.22C .0.70D .无法确定【解析】 根据对立事件公式知,命中9环或10环的概率为1-0.20-0.30=0.50.【答案】 A5.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在[4.8,4.85]g 范围内的概率是( )A .0.62B .0.38C .0.02D .0.68【解析】 设“质量小于4.8 g”为事件A ,“质量小于4.85 g”为事件B ,“质量在[4.8,4.85]g”为事件C ,则A +C =B ,且A ,C 为互斥事件,所以P (B )=P (A +C )=P (A )+P (C ),则P (C )=P (B )-P (A )=0.32-0.3=0.02.【答案】 C 二、填空题6.我国西部一个地区的年降水量在下列区间内的概率如下表如示:【解析】 设年降水量在[200,300],[200,250],[250,300]的事件分别为A 、B 、C ,则A =B +C ,且B 、C 为互斥事件,所以P (A )=P (B )+P (C )=0.13+0.12=0.25.【答案】 0.257.同时抛掷两枚骰子,没有5点或6点的概率是49,则至少一个5点或6点的概率是________.【解析】 由对立事件的概率公式得所求的概率为1-49=59.【答案】 598.在平面直角坐标系中,从六个点:A (0,0),B (2,0),C (1,1),D (0,2),E (2,2),F (3,3)中任取三个,这三点能构成三角形的概率是________(结果用分数表示).【导学号:63580040】【解析】 从六个点中任取三点,共有以下20种所有可能的情况:ABC ,ABD ,ABE ,ABF ,ACD ,ACE ,ACF ,ADE ,ADF ,AEF ,BCD ,BCE ,BCF ,BDE ,BDF ,BEF ,CDE ,CDF ,CEF ,DEF .其中,A (0,0),C (1,1),E (2,2),F (3,3)在直线y =x 上,B (2,0),C (1,1),D (0,2)在直线x +y =2上,所以A ,C ,E ,F 四点共线,B ,C ,D 三点共线.构不成三角形的点有:ACE ,ACF ,AEF ,CEF ,BCD ,共5种情况.所以取三点能构成三角形的概率为1-520=34.【答案】3 4三、解答题9.某医院一天内派出医生下乡医疗,派出医生的人数及其概率如下:(1)(2)求派出至少3名医生的概率.【解】记派出医生的人数为0,1,2,3,4,5及其以上分别为事件A0,A1,A2,A3,A4,A5,显然它们彼此互斥.(1)至多2名医生的概率为P(A0+A1+A2)=P(A0)+P(A1)+P(A2)=0.18+0.25+0.36=0.79.(2)法一:至少3名医生的概率为P(C)=P(A3+A4+A5)=P(A3)+P(A4)+P(A5)=0.1+0.1+0.01=0.21.法二:“至少3名医生”的反面是“至多2名医生”,故派出至少3名医生的概率为1-P(A0+A1+A2)=1-0.79=0.21.10.黄种人群中各种血型的人所占的比例如下表所示.不能互相输血.小明是B型血,若小明因病需要输血,则:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?【解】(1)对任一个人,其血型为A,B,AB,O的事件分别为A′,B′,C′,D′,它们是互斥的.由已知得P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.由于B,O型血可以输给B型血的人,因此“可以输血给B型血的人”为事件B′+D′,根据互斥事件的概率加法公式,得:P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,因此“不能输血给B型血的人”为事件A′+C ′,所以P (A ′+C ′)=P (A ′)+P (C ′)=0.28+0.08=0.36.[能力提升]1.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,从中取出2粒都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( )A.17 B.1235C.1735D .1【解析】 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A +B ,且事件A 与事件B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.故选C.【答案】 C2.现有政治、生物、历史、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A.15B.25C.35D.45【解析】 记取到政治、生物、历史、物理、化学书分别为事件A ,B ,C ,D ,E ,则A ,B ,C ,D ,E 互斥,取到理科书的概率为事件B ,D ,E 概率的和.∴P (B +D +E )=P (B )+P (D )+P (E )=15+15+15=35.【答案】 C3.事件A ,B 互斥,它们都不发生的概率为25,且P (A )=2P (B ),则P (A )=________.【解析】 由题意知P (A +B )=1-25,即P (A )+P (B )=35,又P (A )=2P (B ),联立方程组得P (A )=25,P (B )=15,故P (A )=1-P (A )=35.【答案】 354.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率是512,试求得到黑球、黄球、绿球的概率各是多少?【解】 从袋中任取一球,记事件“摸到红球”,“摸到黑球”,“摸到黄球”,“摸到绿球”分别为A 、B 、C 、D ,则有P (B +C )=P (B )+P (C )=512,P (C +D )=P (C )+P (D )=512,P (B +C +D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23.解得P (B )=14,P (C )=16,P (D )=14.所以得到黑球、黄球、绿球的概率各是14,16,14.。
第三章基础知识测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
时间120分钟,满分150分。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛掷一只骰子,落地时向上的点数是5的概率是( ) A.13 B .14C.15 D .16[答案] D[解析] 掷一次骰子相当于做一次试验,因为骰子是均匀的,它有6个面,每个面朝上的机会是均等的,故出现5点的可能性是16.2.下列结论正确的是( )A .事件A 的概率P (A )必有0<P (A )<1B .事件A 的概率P (A )=0.999,则事件A 是必然事件C .用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计其明显疗效的可能性为76%D .某奖券中奖率为50%,则某人购买此券10张,一定有5张中奖 [答案] C[解析] A ,B 明显不对,C 中,380÷500=76%,正确.D 中,购买此券10张,可能一张也不中奖.3.两根电线杆相距100 m ,若电线遭受雷击,且雷击点距电线标10 m 之内时,电线杆上的输电设备将受损,则电线遭受雷击时设备受损的概率为( )A .0.1B .0.2C .0.05D .0.5 [答案] B[解析] 概率P =10×2100=0.2.4.在区间(10,20]内的所有实数中,随机取一个实数a ,则这个实数a <13的概率是( ) A.13 B .17C.310 D .710[答案] C[解析] 这是一个与长度有关的几何概型.所求的概率P =(10,13)的区间长度(10,20]的区间长度=310.5.有100张卡片(从1号到100号),从中任取1张,取到卡片是7的倍数的概率是( ) A.750 B .7100C.748 D .15100[答案] A[解析] 令1≤7k ≤100(k ∈Z ),则17≤k ≤1427,所以k =1,2,…,14.即在1~100中共有14个7的倍数,故所求概率P =750.6.某产品的设计长度为20 cm ,规定误差不超过0.5 cm 为合格品,今对一批产品进行测量,测得结果如下表:A.580 B .780C.1720 D .320[答案] D[解析] P =5+75+68+7=320.7.(2014·辽宁文,6)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2 B .π4C.π6 D .π8[答案] B[解析] 总面积2×1=2. 半圆面积12×π×12=π2.∴p =π22=π4.8.将一枚均匀的硬币先后抛掷两次,至少出现一次正面向上的概率是( ) A.12 B .14C.34 D .1[答案] C[解析] 将一枚硬币先后抛掷两次包含的基本事件有(正,正),(正,反),(反,正),(反,反)4种可能的结果,至少出现一次正面向上包含了3个基本事件,故所求概率为34.9.已知某运动员每次投篮命中的概率为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .0.35 B .0.25 C .0.20 D .0.15 [答案] B[解析] 由题意知在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393,共5组随机数,故所求概率为520=14=0.25.10.在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( )A.16 B .13C.23 D .45[答案] C[解析] 本题考查几何概型问题. 由题意如图知点C 在C 1C 2线段上时分成两条线段围成的矩形面积小于32cm 2, ∴P =812=23.注意几何概型用长度刻画.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,将正确答案填在题中横线上)11.袋中装有100个大小相同的红球、白球、黑球,从中任取一球,摸出红球、白球的概率分别是0.4和0.35,那么黑球共有________个.[答案] 25[解析] 可求得摸出黑球的概率为1-0.4-0.35=0.25,袋中共有100个球,所以黑球有25个. 12.如图所示,在一个边长为a 、b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为13a 与12a ,高为b .向该矩形内随机投一点,则所投的点落在梯形内部的概率为________.[答案]512[解析] S 矩形=ab ,S 梯形=12(13a +12a )·b =512ab ,故所投的点落在梯形内部的概率为S 梯形S 矩形=512ab ab =512.13.(2014·广东文,12)从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________. [答案] 25[解析] 本题考查古典概型.基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d )(c ,e ),(d ,e )共10个,含a 的有4个,故概率为410=25.写全基本事件个数是解决问题的关键.14.设集合P ={-2,-1,0,1,2},x ∈P 且y ∈P ,则点(x ,y )在圆x 2+y 2=4内部的概率为________. [答案]925[解析] 以(x ,y )为基本事件,用列表法或坐标法可知满足x ∈P 且y ∈P 的基本事件有25个,且每个基本事件发生的可能性都相等.点(x ,y )在圆x 2+y 2=4内部,则x ,y ∈{-1,1,0},用列表法或坐标法可知满足x ∈{-1,1,0}且y ∈{-1,1,0}的基本事件有9个.所以点(x ,y )在圆x 2+y 2=4内部的概率为925.15.有5根木棍,它们的长度分别是3,4,6,7,9,从中任取3根,能搭成一个三角形的概率是________.[答案]710[解析]从长度为3,4,6,7,9的5根木棍中任取3根,基本事件总数为10,其中事件“不能构成三角形”用A表示,有长度为3,4,7;3,4,9;3,6,9的三种情况,所以P(A)=310,故P(A)=1-P(A)=710.三、解答题(本大题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)某射击运动员在同一条件下进行练习,结果如下表所示:(1)(2)这名运动员射击一次,击中10环的概率约为多少?[解析](1)填表如下:(2)这名运动员射击一次,击中10环的概率约为0.9.17.(本小题满分12分)先后抛掷两枚均匀的正方体骰子,观察向上的点数,问:(1)共有多少种不同的结果?(2)所得点数之和是3的概率是多少?(3)所得点数之和是3的倍数的概率是多少?[解析](1)先后抛掷两枚骰子,第一枚骰子出现6种结果,对其每一种结果,第二枚又有6种可能结果,于是一共有6×6=36(种)不同的结果.(2)所得点数之和为3记为事件A,共有两种结果:“第一枚点数为1,第二枚点数为2”和“第一枚点数为2,第二枚点数为1”,故所求概率为P(A)=236=118.(3)第一次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第二次抛掷时都可以有两种结果,使两次向上的点数和为3的倍数(例如第一次向上的点数为4,则当第二次向上的点数为2或5时,两次的点数之和都为3的倍数),于是共有6×2=12(种)不同的结果.因为抛掷两枚骰子得到的36种结果是等可能出现的,记“向上的点数之和是3的倍数”为事件概率为P (B )=1236=13.B ,则事件B 的结果有12种,故所求的18.(本小题满分12分)某城市为了发展地铁,事先对地铁现状做一份问卷调查,为此,成立了地铁运营发展指挥部,下设A ,B ,C 三个工作组,其分别有组员24人、24人、12人.为搜集意见,拟采用分层抽样的方法从A ,B ,C 三个工作组抽取5名工作人员来完成.(1)求从三个工作组分别抽取的人数;(2)问卷调查搜集意见结束后,若从抽取的5名工作人员中再随机抽取2名进行汇总整理,求这2名工作人员没有A 组工作人员的概率.[解析] (1)三个工作组的总人数为24+24+12=60, 样本容量与总体中个体数的比为560=112,所以从三个工作组分别抽取的人数为2,2,1.(2)设A 1,A 2为从A 组抽得的2名工作人员,B 1,B 2为从B 组抽得的工作人员,C 1为从C 组抽得的工作人员.若从这5名工作人员中随机抽取2名,其所有可能的结果有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,B 1),(A 2,B 2),(A 2,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共有10种,其中没有A 组工作人员的结果有(B 1,B 2),(B 1,C 1),(B 2,C 1),共有3种,所以所求的概率P =310. 19.(本小题满分12分)设点(p ,q )在|p |≤3,|q |≤3中按均匀分布出现,试求方程x 2+2px -q 2+1=0的两根都是实数的概率.[解析] 基本事件总数的区域A 的测度为正方形的面积,即A 的测度=62=36. 由方程x 2+2px -q 2+1=0的两根都是实数Δ=(2p )2-4(-q 2+1)≥0, ∴p 2+q 2≥1.∴当点(p ,q )落在如右图所示的阴影部分时,方程的两根均为实数,由图可知,区域B 的测度=S 正方形-S ⊙O =36-π,∴原方程两根都是实数的概率是P =36-π36.20.(本小题满分13分)设x ∈(0,4),y ∈(0,4).(1)若x ∈N *,y ∈N *,以x ,y 作为矩形的边长,记矩形的面积为S ,求S <4的概率; (2)若x ∈R ,y ∈R ,求这两数之差不大于2的概率.[解析] (1)若x ∈N *,y ∈N *,则(x ,y )所有的结果为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共9个,满足S <4的(x ,y )所有的结果为(1,1),(1,2),(1,3),(2,1),(3,1)共5个,故S <4的概率为59.(2)所有结果的区域为Ω={(x ,y )|0<x <4,0<y <4},两数之差不大于2的所有的结果的区域为A ={(x ,y )|0<x <4,0<y <4,|x -y |≤2},则P (A )=42-2242=34.21.(本小题满分14分)某单位要在甲、乙、丙、丁4人中安排2人分别担任周六、周日的值班任务(每人被安排是等可能的,每天只安排1人,每人最多排一天).(1)一共有多少种安排方法?(2)其中甲、乙2人都被安排的概率是多少? (3)甲、乙两人中至少有1人被安排的概率是多少?[解析] (1)用“甲乙”表示安排甲担任周六值班任务,安排乙担任周日值班任务,则所有的安排情况如下:甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙,共有12种安排方法.(2)由(1)知在甲、乙、丙、丁4人中安排2人的结果是有限个,属于古典概型.甲、乙2人都被安排的情况包括:甲乙,乙甲,共2种,所以甲、乙2人都被安排(记为事件A )的概率P (A )=212=16.(3)方法一:“甲、乙2人中至少有1人被安排”与“甲、乙2人都不被安排”这两个事件是对立事件,因为甲、乙2人都不被安排的情况包括:丙丁,丁丙,共2种,则甲、乙两人都不被安排的概率为212=16,所以甲、乙2人中至少有1人被安排(记为事件B )的概率P (B )=1-16=56.方法二:甲、乙2人中至少有1人被安排的情况包括:甲乙,甲丙、甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丁甲,丁乙,共10种,所以甲、乙2人中至少有1人被安排(记为事件B )的概率P (B )=1012=56.。
一、选择题1.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个区间[]0,1上的均匀随机数()*,110i y i N i ∈≤≤,其数据如下表的前两行. x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y 0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是A .()215e + B .()215e - C .()315e + D .()315e - 2.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率( ) A .110B .310C .12D .7103.如图所示,已知圆1C 和2C 的半径都为2,且1223C C =,若在圆1C 或2C 中任取一点,则该点取自阴影部分的概率为( )A 33533π+B 33533π+C 331033π+D 331033π+4.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为( ) A .435B .635C .1235D .18355.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为( ) A .910B .710C .310D .1106.已知三个村庄,,A B C 所处的位置恰好位于三角形的三个顶点处,且6,8,10AB km BC km AC km ===.现在ABC ∆内任取一点M 建一大型的超市,则M 点到三个村庄,,A B C 的距离都不小于2km 的概率为( ) A .3324+ B .12πC .21324- D .1212π- 7.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14 B .12 C .34D .18.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于x 的回归方程为ˆˆ0.65yx a =+落在回归直线下方的概率为( ) A .25B .35C .34D .129.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为( )A .15B .25C .35D .4510.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( ) A .710B .35C .12D .2511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 二、填空题13.一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为______.14.重庆一中高一,高二,高三的模联社团的人数分别为25,15,10,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取5名同学,若从这5名同学中再随机抽取2名同学承担文件翻译工作,则抽取的两名同学来自同一年级的概率为__________.15.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.16.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.17.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.18.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.19.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________20.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________三、解答题21.袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求:(1)从中任取一球,得到黑球、黄球、绿球的概率各是多少?(2)从中任取两个球,得到的两个球颜色不相同的概率是多少?22.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y bx a=+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?23.某生产企业研发了一种新产品,该新产品在某网店试销一个阶段后得到销售单价x和月销售量y之间的一组数据,如下表所示:(Ⅰ)根据统计数据,求出y关于x的回归直线方程,并预测月销售量不低于12万件时销售单价的最大值;(Ⅱ)生产企业与网店约定:若该新产品的月销售量不低于10万件,则生产企业奖励网店1万元;若月销售量不低于8万件且不足10万件,则生产企业奖励网店5000元;若月销售量低于8万件,则没有奖励.现用样本估计总体,从上述5个销售单价中任选2个销售单价,求抽到的产品含有月销量量不低于10万件的概率.参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.参考数据:51392i ii x y==∑,521502.5i i x ==∑.24.安庆市某中学教研室从高二年级随机抽取了50名学生的十月份语文成绩(满分100分,成绩均为不低于40分的整数),得到如图所示的频率分布直方图.(1)若该校高二年级共有学生1000人,试估计十月份月考语文成绩不低于60分的人数; (2)为提高学生学习语文的兴趣,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲乙恰好被安排在同一小组的概率.25.某市工会组织了一次工人综合技能比赛,一共有1000名工人参加,他们的成绩都分布在[]52,100内,数据经过汇总整理得到如下的频率分布直方图,规定成绩在76分及76分以上的为优秀.(1)求图中t 的值;(2)估计这次比赛成绩的平均数(同一组中的数据以这组数据所在区间中点的值作代表);(3)某工厂车间有25名工人参加这次比赛,他们的成绩分布和整体的成绩分布情况完全一致,若从该车间参赛的且成绩为优秀的工人中任选两人,求这两人成绩均低于92分的概率.26.端午节吃粽子是我国的传统习俗,设一盘中装有6个粽子,其中豆沙粽1个,肉粽2个,白粽3个,这三种粽子的外观完全相同.(Ⅰ)从中不放回的任取3个,记X 表示取到的肉粽个数,求X 的分布列和()E X ; (Ⅱ)从中有放回的任取3个,记Y 表示取到的肉棕个数,求(2)P Y ≥; (Ⅲ)比较()E X 与()E Y 的大小(只需写出结论).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】 由题意可得ACB ABCD=10SnS ∆曲线矩形,n 为阴影部分的点的个数,即满足y<lnx,共6个点,即ACB ABCD6=101S S S e ∆=-曲线矩形,所以S=()315e -,选D.2.B解析:B 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()1,3,5、()1,3,7、()1,3,9、()1,5,7、()1,5,9、()1,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故选:B . 【点睛】本题考查古典概型的概率计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.3.D解析:D 【分析】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB C C 交于点D ,由已知的数据可得1AC B △为等边三角形,从而可求出阴影部分的面积,进而求出总面积,即可求出概率. 【详解】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB C C 交于点D , 则112132C D C C ==,190ADC ∠=︒, 所以1113cos C D AC D AC ∠==,所以130AC D ∠=︒,则160AC B ∠=︒, 所以1AC B △为等边三角形, 所以604342(4)233603S ππ⨯=-⨯=-阴, 图形的总面积42024(23)2333S πππ=⨯--=+总, 所以求概率为4232333201033233ππππ--=++,故选:D【点睛】此题考查几何概型概率的求法,关键是求阴影部分的面积,属于中档题.4.C解析:C 【分析】本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是48C ,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得. 【详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是4870C =,以A 为顶点的四个面都是直角三角形的三棱锥有:111111111111,,,,,A A D C A A B C A BB C A BCC A DCC DD C A ------共6个.同理以1111,,,,,,B C D A B C D 为顶点的也各有6个, 但是,所有列举的三棱锥均出现2次,∴四个面都是直角三角形的三棱锥有186242⨯⨯=个, ∴所求的概率是24127035= 故选:C . 【点睛】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.5.A解析:A 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.6.D解析:D 【分析】采用数形结合,计算ABC S ∆,以及“M 点到三个村庄,,A B C 的距离都不小于2km ”这部分区域的面积S ,然后结合几何概型,可得结果. 【详解】由题可知:222AB BC AC += 所以该三角形为直角三角形分别以,,A B C 作为圆心,作半径为2的圆 如图所以则 “M 点到三个村庄,,A B C 的距离都不小于2km ” 该部分即上图阴影部分,记该部分面积为S11682422ABC S AB BC ∆=⨯⨯=⨯⨯=又三角形内角和为π,所以2122422ABC S S ππ∆=-⨯=- 设M 点到三个村庄,,A B C 的距离都不小于2km 的概率为P所以242122412ABCS P S ππ∆--=== 故选:D 【点睛】本题考查面积型几何概型问题,重点在于计算面积,难点在于计算阴影部分面积,考验理解能力,属基础题.7.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根, 故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.8.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.9.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==, ∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.10.B解析:B 【分析】先由题意写出成等比数列的10个数,然后找出小于8的项的个数,代入古典概率的计算公式即可求解 【详解】解:由题意()13n n a -=-成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯-其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数 这10个数中随机抽取一个数, 则它小于8的概率是63105P ==. 故选:B . 【点睛】本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.C解析:C把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m nπ⨯=⨯,则答案可求。
章末综合测评(三) 概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a ,b 是实数,那么b +a =a +b ;②某地1月1日刮西北风;③当x 是实数时,x 2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有( )A .1个B .2个C .3个D .4个【解析】 由题意可知①③是必然事件,②④是随机事件. 【答案】 B2.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nmB.2nmC.4mnD.2mn【解析】 分别确定n 个数对(x1,y 1),(x 2,y 2),…,(x n ,y n )和m 个两数的平方和小于1的数对所在的平面区域,再用随机模拟的方法和几何概型求出圆周率π的近似值.因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n ,所以π=4mn. 【答案】 C3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是( )A.310 B.112C.4564D.38【解析】 所有子集共8个,其中含有2个元素的为{a ,b },{a ,c },{b ,c },所以概率为38.【答案】 D4.(2016·山东青岛一模)如图1所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是( )图1A.2-32 B.2+32 C.1+32D.1-32【解析】 易知小正方形的边长为3-1,故小正方形的面积为S 1=(3-1)2=4-23,大正方形的面积为S =2×2=4,故飞镖落在小正方形内的概率P =S 1S =4-234=2-32.【答案】 A5.4张卡片上分别写有数字1,2,3,4.从这4张卡片中随机抽取2张,则抽取的2张卡片上的数字之和为奇数的概率为( )A.13 B.12 C.23D.34【解析】 基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中两数字之和为奇数的有(1,2),(2,3),(1,4),(3,4),所以概率为23.【答案】 C6.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( )A.23B.13C.34D.14【解析】 如图,设点M 为AB 的三等分点,要使△PBC 的面积不小于S 3,则点P 只能在AM 上选取,由几何概型的概率公式得所求概率|AM ||AB |=23|AB ||AB |=23. 【答案】 A7.(2016·东北八校二模)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19 B.29 C.718D.49【解析】 任意找两人玩这个游戏,共有6×6=36种猜数字结果,其中满足|a -b |≤1的有如下情形:①a =1,b =1,2;②a =2,b =1,2,3;③a =3,b =2,3,4;④a =4,b =3,4,5;⑤a =5,b =4,5,6;⑥a =6,b =5,6,总共16种,故他们“心有灵犀”的概率为P =1636=49.【答案】 D8.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4C.π8D .1-π8【解析】 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2,取到的点到O 的距离大于1的概率为2-π22=1-π4. 【答案】 B9.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23 B.13 C.12D.512【解析】 若方程有实根,则a 2-8>0.a 的所有取值情况共6种,满足a 2-8>0的有4种情况,故P =46=23.【答案】 A10.(2016·石家庄高一检测)有分别写着数字1到120的120张卡片,从中取出1张,这张卡片上的数字是2的倍数或是3的倍数的概率是( )A.12B.34C.47D.23【解析】 是2的倍数的数有60个,是3的倍数的数有40个,是6的倍数的数有20个,∴P =60+40-20120=23.【答案】 D11.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12B .p 2<12<p 1C.12<p 2<p 1 D .p 1<12<p 2【解析】 如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.【答案】 D12.如图2所示,在矩形ABCD 中,AB =5,AD =7.现在向该矩形内随机投一点P ,则∠APB >90°的概率为( )图2A.536B.556π C.18π D.18【解析】 由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 为区域Ω.要使得∠APB >90°,需满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A .记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求∠APB >90°的概率转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意,得μA =12π×⎝ ⎛⎭⎪⎫522=25π8,矩形ABCD 的面积μΩ=35,故所求的概率为P (A )=25π835=5π56. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,二级品的概率是0.21,则出现一级品与三级品的概率分别是________,________.【解析】 由题意知出现一级品的概率是0.98-0.21=0.77,又由对立事件的概率公式可得出现三级品的概率是1-0.98=0.02.【答案】 0.77 0.0214.如图3的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.图3【解析】 由题意得138300=S 阴5×2,S 阴=235.【答案】23515.在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为________. 【导学号:63580044】【解析】 先后两次取卡片,形成的有序数对有(1,1),(1,2),(1,3),…,(1,10),…,(10,10),共计100个.因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个,故x +y 是10的倍数的概率为P =10100=110. 【答案】11016.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.【解析】 ∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-4 3p -2 ≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+ 5-2 5-0=23. 【答案】 23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.【解】 将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5种饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.18.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“x +y ≤3”的概率; (2)求事件“|x -y |=2”的概率.【解】 设(x ,y )表示一个基本事件,则掷两次骰子包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个基本事件.(1)用A 表示事件“x +y ≤3”,则A 的结果有(1,1),(1,2),(2,1),共3个基本事件. ∴P (A )=336=112.即事件“x +y ≤3”的概率为112.(2)用B 表示事件“|x -y |=2”,则B 的结果有(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)共8个基本事件.∴P (B )=836=29.即事件“|x -y |=2”的概率为29.19.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和与标号之积都不小于5的概率.【解】 设从甲、乙两个盒子中各取出1个球,编号分别为x ,y ,用(x ,y )表示抽取的结果,结果有以下25种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).(1)取出的两个球上标号为相邻整数的结果有以下8种:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),故所求概率为P =825,即取出的两个球上标号为相邻整数的概率为825.(2)标号之和与标号之积都不小于5的结果有以下17种:(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),故所求概率为P =1725,故取出的两个球上标号之和与标号之积都不小于5的概率是1725.20. (本小题满分12分)把一颗骰子抛掷两次,第一次出现的点数记为a ,第二次出现的点数记为b .试就方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2解答下列各题:(1)求方程组只有一组解的概率;(2)求方程组只有正数解(x 与y 都为正)的概率.【解】 (1)当且仅当a b ≠12时,方程组只有一组解;a b =12的情况有三种:⎩⎪⎨⎪⎧a =1,b =2或⎩⎪⎨⎪⎧a =2,b =4或⎩⎪⎨⎪⎧a =3,b =6.而抛掷两次的所有情况有6×6=36(种),所以方程组只有一组解的概率为P =1-336=1112. (2)因为方程组只有正数解,所以两直线的交点一定在第一象限,解方程组得 ⎩⎪⎨⎪⎧x =6-2b 2a -b ,y =2a -32a -b .当⎩⎪⎨⎪⎧2a -b >0,6-2b >0,2a -3>0,或⎩⎪⎨⎪⎧2a -b <0,6-2b <0,2a -3<0,且a >0,b >0,即⎩⎪⎨⎪⎧ 2a >b ,2a >3,b <3,a >0,b >0,或⎩⎪⎨⎪⎧2a <b ,2a <3,b >3,a >0,b >0,时,x >0,y >0.当b =1或2时,a =2,3,4,5,6; 当b =4或5或6时,a =1.所以方程组只有正数解的概率为P =1336.21.(本小题满分12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.【解】 (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班级随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个. 因此A 1被选中且B 1未被选中的概率为P =215.22.(本小题满分12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B ,C 三个区中抽取7个工厂进行调查,已知A ,B ,C 区中分别有18,27,18个工厂.(1)求从A ,B ,C 区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率.【解】 (1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为763=19,所以从A ,B ,C 三个区中应分别抽取的工厂个数为2,3,2.(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂,在这7个工厂中随机抽取2个,全部可能的结果有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.随机地抽取的2个工厂至少有1个来自A 区的结果(记为事件X )有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2)11 21.共有11种,所以这2个工厂中至少有1个来自A区的概率为P(X)=。
最新北师大版数学精品教学资料【成才之路】高中数学 第三章 概率综合能力测试 北师大版必修3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于概率是1‰的事件,下列说法正确的是( ) A .概率太小,不可能发生 B .1 000次中一定发生1次C .1 000人中,999人说不发生,1人说发生D .1 000次中有可能发生1 000次 [答案] D[解析] 概率是1‰是说明发生的可能性是1‰,每次发生都是随机的,1 000次中也可能发生1 000次,只是发生的可能性很小,故选D.2.从装有2个红球和2个黑球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有1个黑球与都是黑球B .至少有1个黑球与至少有1个红球C .恰有1个黑球与恰有2个黑球D .至少有1个黑球与都是红球 [答案] C[解析] “从装有2个红球和2个黑球的口袋内任取2个球”这一事件共包含3个基本事件,关系如图所示. 显然恰有1个黑球与恰有2个黑球互斥但不对立.3.从装有大小相同的3个红球和2个白球的口袋内任取1个球,取到白球的概率为( )A.15 B.13 C .12 D.25[答案] D[解析] 任取1球,有5种取法,取到1个白球有两种可能,所以取到白球的概率为25.4.某产品的设计长度为20 cm ,规定误差不超过0.5 cm 为合格品,今对一批产品进行测量,测得结果如下表:A.580B.780 C .1720 D.320[答案] D[解析] P =5+75+68+7=320.5.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4 C .π6D.π8[答案] B[解析] 总面积2×1=2.半圆面积12×π×12=π2.∴p =π22=π4.6.将一枚均匀的硬币先后抛掷两次,至少出现一次正面向上的概率是( ) A.12 B.14 C .34 D.1[答案] C[解析] 将一枚硬币先后抛掷两次包含的基本事件有(正,正),(正,反),(反,正),(反,反)4种可能的结果,至少出现一次正面向上包含了3个基本事件,故所求概率为34.7.(2015·福建文,8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图像上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于()A.16 B.14 C .38 D.12[答案] B[解析] 由已知得,B (1,0),C (1,2),D (-2,2),F (0,1)(F 为f (x )与y 轴的交点),则矩形ABCD 面积为3×2=6,阴影部分面积为12×3×1=32,故该点取自阴影部分的概率等于326=14. 8.甲、乙两人随意住两间空房,则甲、乙两人各住一间房的概率是( ) A.14 B.13 C .12 D.23 [答案] C[解析] 不妨设两间空房为A 、B ,则甲、乙两人随意入住的所有可能情况为:甲、乙都住A ;甲、乙都住B ;甲住A ,乙住B ;甲住B ,乙住A 共4种情况.其中甲、乙两人各住一间的情形有2种,故所求的概率P =24=12.9.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是( )A.34 B.14 C .12D.18[答案] A[解析] 从长度分别为2、3、4、5的四条线段中任意取出三条总共有4种情况,依据四条边长可得满足条件的三角形有三种情况:2、3、4或3、4、5或2、4、5,故P =34.10.袋中有红、黄、白色球各一个,每次任取一个,有放回地抽取3次,则下列事件中概率是89的是( )A .颜色全相同 B.颜色不全相同 C .颜色全不相同 D.无红颜色球[答案] B[解析] 共有3×3×3=27种可能,而颜色全相同有三种可能,其概率为19.因此,颜色不全相同的概率为1-19=89,故选B.11.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π[答案] A[解析] 本题考查几何概型的计算方法.设图中阴影面积为S 1,S 2,令OA =R ,∴S 2-S 1=πR 24-π·(R 2)2=0,即S 2=S 1,由图形知,S 1=2(S 扇ODC -S △ODC )=2[πR224-12·(R 2)2]=πR 2-2R 28, ∴P =S 1+S 2S 扇AOB =π-R 24πR24=1-2π,充分利用图形的对称性才能求出阴影部分的面积.12.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78[答案] D[解析] 本题主要考查古典概型概率的求法,关键是求出可能结果的种数.4名同学各自在周六、周日两天中任选一天参加公益活动的情况共有24=16种,其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.口袋中装有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率是________.[答案] 0.32[解析] 白球个数为100×0.23=23,黑球个数为100-45-23=32,所以摸出黑球的概率为32100=0.32.14.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆x 2+y 2=25外的概率是________.[答案]712[解析] 基本事件空间含有36个基本事件,而“点P 落在圆x 2+y 2=25外”含有21个基本事件,所以概率为2136=712.15.同时抛掷两个骰子,向上的点数之积为偶数的概率为________. [答案] 34[解析] 同时抛掷两个骰子,有6×6=36种不同结果,朝上一面的点数之积是奇数,当且仅当两个骰子向上一面都是奇数的有3×3=9个不同结果,∴“朝上一面点数的积为奇数”的概率P =936=14,其对立事件“朝上一面点数的积为偶数”的概率为1-14=34.16.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.[答案]1316[解析] 本题主要考查几何概型. ∵去看电影的概率P 1=π×12-π122π×12=34; ∴去打篮球的概率P 2=π142π×12=116. 小波不在家看书的概率P =34+116=1316.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较,在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.(1)求所选用的两种不同的添加剂的芳香度之和等于4的概率; (2)求所选用的两种不同的添加剂的芳香度之和不小于3的概率.[解析] 设“所选用的两种不同的添加剂的芳香度之和等于4”的事件为A ,“所选用的两种不同的添加剂的芳香度之和不小于3”的事件为B .六种添加剂中任选两种有15种不同选法.(1)芳香度之和等于4的取法有2种:(0,4),(1,3),故P (A )=215.(2)芳香度之和等于1的取法有1种:(0,1);芳香度之和等于2的法取有1种:(0,2),所以事件B 的对立事件B 是“所选用的两种不同的添加剂的芳香度之和小于3”,所以P (B )=215,故P (B )=1-P (B )=1315. 18.(本小题满分12分)现从A ,B ,C ,D ,E 五人中选取三人参加一个重要会议,五人被选中的机会均等.求:(1)A 被选中的概率; (2)A 和B 同时被选中的概率; (3)A 或B 被选中的概率.[解析] 基本事件有“ABC ,ABD ,ABE ,ACD ,ACE ,CDE ,BCD ,BCE ,BDE ,ADE ”共10个.(1)事件A 被选中包含6个基本事件,即ABC ,ABD ,ABE ,ACD ,ACE ,ADE . ∴P 1=610=0.6.(2)事件A 和B 同时被选中包含3个基本事件, 即ABC ,ABD ,ABE ,∴P 2=310=0.3.(3)A 、B 都不被选中只有事件CDE 一种,所以事件A 或B 被选中包含9个基本事件,∴P 3=910=0.90.19.(本小题满分12分)袋中有红、黄2种颜色的球各1只,从中每次任取1只,有放回地抽取两次.求:(1)两次全是红球的概率; (2)两次颜色相同的概率; (3)两次颜色不同的概率.[解析] 因为是有放回地抽取两次,所以每次取到的球可以都是红球,也可以都是黄球.把第一次取到红球,第二次取到红球简记为(红,红),其他情况用类似记法,则有放回地抽取2次,所有的基本事件有4个,分别是:(红,红),(红,黄),(黄,红),(黄,黄).(1)两次全是红球的概率是P 1=14.(2)“两次颜色相同”包含“两次都是红球”与“两次都是黄球”这两个事件互斥,因此两次颜色相同的概率是P 2=14+14=12.(3)“两次颜色不同”与“两次颜色相同”是对立事件,所以两次颜色不同的概率是P 3=1-12=12.点拨:可用枚举的方法把所有基本事件列举出来,解(2)、(3)可以考虑用互斥、对立事件求解.20.(本小题满分12分)(2015·北京文,17)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? [解析] (1)从统计表可以看出,在这1 000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.21.(本小题满分12分)已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0. (1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率; (2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率. [分析] 分别利用古典概型与几何概型的概率公式求解.[解析] (1)易知基本事件(a ,b )共有36个,方程有两正根(借助根与系数的关系)等价于a -2>0,16-b 2>0,Δ≥0,即a >2,-4<b <4,(a -2)2+b 2≥16,设“方程有两个正根”为事件A ,则事件A 包含的基本事件为(6,1),(6,2),(6,3),(5,3)共4个,故所求的概率为P (A )=436=19.(2)试验的全部结果构成区域为{(a ,b )|2≤a ≤6,0≤b ≤4,a ,b ∈N *},其面积为16.设“方程无实根”为事件B ,则构成事件B 的区域为{(a ,b )|2≤a ≤6,0≤b ≤4,(a -2)2+b 2<16},其面积为14×π×42=4π.故所求的概率为P (B )=4π16=π4.22.(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13s 至18s 之间,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15)……第五组[17,18].如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14 s 且小于16 s 认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m ,n 表示该班某两位同学的百米测试成绩,且已知m ,n ∈[13,14)∪[17,18].求事件“|m -n |>1”的概率.[解析] (1)由题中的直方图知,成绩在[14,16)内的人数为50×(0.16×1)+50×(0.38×1)=27,所以该班成绩良好的人数为27. (2)设事件M :“|m -n |>1”由频率分布直方图知,成绩在[13,14)的人数为50×0.06×1=3, 设这3人分别为x ,y ,z ;成绩在[17,18)的人数为50×0.08×1=4, 设这4人分别为A ,B ,C ,D .若m ,n ∈[13,14)时,则有xy ,xz ,yz 共3种情况;若m ,n ∈[17,18]时,则有AB ,AC ,AD ,BC ,BD ,CD ,共6种情况; 若m ,n 分别在[13,14)和[17,18]内时,此时有|m -n |>1.共有12种情况.所以基本事件总数为3+6+12=21种,则事件“|m -n |>1”所包含的基本事件个数有12种. 所以P (M )=1221=47.。
北师大版高二数学必修三第三章概率练习(含解析)数学是应用符号言语研讨数量、结构、变化以及空间模型等概念的一门学科。
查字典数学网为大家引荐了高二数学必修三第三章概率练习,请大家细心阅读,希望你喜欢。
一、选择题1.某人将一枚硬币延续抛掷了10次,正面朝上的情形出现了6次,那么()A.概率为0.6B.频率为0.6C.频率为6D.概率接近于0.6【解析】延续抛掷了10次,正面朝上的情形出现了6次,只能说明频率是0.6,只要停止少量的实验时才可估量概率.【答案】B2.以下说法错误的选项是()A.频率反映事情的频繁水平,概率反映事情发作的能够性大小B.做n次随机实验,事情A发作m次,那么事情A发作的频率mn就是事情A的概率C.频率是不能脱离n次实验的实验值,而概率是具有确定性的不依赖于实验次数的实际值D.频率是概率的近似值,概率是频率的动摇值【解析】依据频率与概率的意义可知,A正确;C、D均正确,B不正确,应选B.【答案】B3.从寄存号码区分为1,2,,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119那么取到号码为奇数的频率是()A.0.53B.0.5C.0.47D.0.37【解析】mn=13+5+6+18+11100=0.53.【答案】A4.(2021沈阳检测)某彩票的中奖概率为11 000意味着()A.买1 000张彩票就一定能中奖B.买1 000张彩票中一次奖C.买1 000张彩票一次奖也不中D.购置彩票中奖的能够性是11 000【解析】中奖概率为11 000,并不意味着买1 000张彩票就一定中奖,中一次奖或一次也不中,因此A、B、C均不正确.【答案】D5.2021年山东省高考数学试题中,共有12道选择题,每道选择题有4个选项,其中只要1个选项是正确的,那么随机选择其中一个选项正确的概率为14,某家长说:要是都不会做,每题都随机选择其中一个选项,那么一定有3题答对这句话()A.正确B.错误C.不一定D.无法解释【解析】把解答一个选择题作为一次实验,答对的概率是14,说明做对的能够性大小是14.做12道选择题,即停止了12次实验,每个结果都是随机的,那么答对3题的能够性较大,但是并不一定答对3道,也能够都选错,或仅有2,3,4题选对,甚至12个题都选择正确.【答案】B二、填空题6.样本容量为200的频率散布直方图如图3-1-1所示.依据样本的频率散布直方图估量,样本数据落在[6,10)内的频数为________,数据落在[6,10)内的概率约为________.图3-1-1【解析】样本数据落在[6,10)内的频率为0.084=0.32,频数为2021.32=64.由频率与概率的关系知数据落在[6,10)内的概率约为0.32.【答案】64 0.327.在5张不同的彩票中有2张奖票,5团体依次从中各抽取1张,各人抽到奖票的概率________(填相等不相等).【解析】由于每人抽得奖票的概率均为25,与前后的顺序有关.【答案】相等8.假设袋中装有数量差异很大而大小相反的白球和黑球(只是颜色不同),每次从中任取一球,记下颜色后放回并搅匀,取了10次有9次白球,估量袋中数量最多的是________.【解析】取了10次有9次白球,那么取出白球的频率是910,估量其概率约是910,那么取出黑球的概率是110,那么取出白球的概率大于取出黑球的概率,所以估量袋中数量最多的是白球 .【答案】白球三、解答题9.(1)设某厂产品的次品率为2%,问从该厂产品中恣意地抽取100件,其中一定有2件次品这一说法对不对?为什么?(2)假定某次数学检验,全班50人的及格率为90%,假定从该班中恣意抽取10人,其中有5人及格是能够的吗?【解】(1)这种说法不对,由于产品的次品率为2%,是指产品是次品的能够性为2%,所以从该产品中恣意地抽取100件,其中有能够有2件次品,而不是一定有2件次品.(2)这种状况是能够的.10.(2021课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t盈余300元.依据历史资料,失掉销售季度内市场需求量的频率散布直方图,如图3-1-2所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图3-1-2(1)将T表示为X的函数;(2)依据直方图估量利润T不少于57 000元的概率.【解】(1)当X[100,130)时,T=500X-300(130-X)=800X-39 000.当X[130,150]时,T=500130=65 000.所以T=800X-39 000,100130,?65 000,130150.(2)由(1)知利润T不少于57 000元当且仅当120210.由直方图知需求量X[120, 150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估量值为0.7.11.在消费进程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位:mm)共有100个数据,将数据分组如下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54)2总计100(1)画出频率散布直方图;(2)估量纤度落在[1.38,1.50)mm中的概率及纤度小于1.42的概率是多少.【解】(1)频率散布直方图,如图:(2)纤度落在[1.38,1.50)mm中的频数是30+29+10=69,那么纤度落在[1.38,1.50)mm中的频率是69100=0.69,所以估量纤度落在[1.38,1.50)mm中的概率为0.69.纤度小于1.42 mm的频数是4+25+30=59,那么纤度小于1.42 mm的频率是59100=0.59,所以估量纤度小于1.42 mm的概率为0.59.小编为大家提供的高二数学必修三第三章概率练习,大家细心阅读了吗?最后祝同窗们学习提高。
第三章 §2 2.3一、选择题1.如果事件A 与B 是互斥事件,则( ) A .A +B 是必然事件 B.A -与B -一定互斥 C.A -与B -一定不互斥 D.A -+B -是必然事件[答案] D[解析] 特例检验:在掷一粒骰子的试验中,“上面出现点数1”与“上面出现点数2”分别记作A 与B ,则A 与B 是互斥而不对立的事件,A +B 不是必然事件,A -与B -也不互斥,∴A 、B 选项错误,A -+B -是必然事件,还可举例验证C 不正确.2.从1,2,3,…,9这9个数中任取两数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A .①B .②④C .③D .①③[答案] C[解析] 可根据互斥和对立事件的定义分析事件,③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~9中任取两数共有3个事件:“两个奇数”“一奇一偶”“两个偶数”,故“至少有一个是奇数”与“两个偶数”是对立事件.3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品任意抽查一件抽得正品的概率为( )A .0.99B .0.98C .0.97D .0.96 [答案] D[解析] 设“抽得正品”为事件A ,则P (A )=1-0.03-0.01=0.96. 4.抽查10件产品,设“至少抽到2件次品”为事件A ,则A -为( ) A .“至多2件次品” B .“至多2件正品” C .“至少2件正品” D .“至多1件次品” [答案] D[解析] 至少2件次品与至多1件次品不能同时发生,且必有一个发生.5.从某班学生中任意找出一人,如果该同学的身高低于160 cm 的概率为0.2,该同学的身高在[160,175] cm 的概率为0.5,那么该同学的身高超过175 cm 的概率为( )A .0.2B .0.3C .0.7D .0.8[答案] B[解析] 设身高低于160 cm 为事件M ,身高在[160,175] cm 为事件N ,身高超过175 cm 为事件Q ,则事件M 、N 、Q 两两互斥,且M +N 与Q 是对立事件,则该同学的身高超过175 cm 的概率为P (Q )=1-P (M +N )=1-P (M )-P (N )=1-0.2-0.5=0.3.6.如果事件A 与B 是互斥事件,且事件A +B 的概率是0.8,事件A 的概率是事件B 的概率的3倍,则事件A 的概率为( )A .0.2B .0.4C .0.6D .0.8 [答案] C[解析] 由题意知P (A +B )=P (A )+P (B )=0.8, ① P (A )=3P (B ),②解①②组成的方程组知P (A )=0.6. 二、填空题7.某人进行打靶练习,共射击10次,其中有2次击中10环,有3次击中9环,有4次击中8环,有1次未中靶.假设此人射击一次,则他中靶的概率大约是________.[答案] 0.9[解析] P =210+310+410=910=0.9.8.掷一粒骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则事件A +B -发生的概率为________.[答案] 23[解析] B -表示“大于或等于5的点数出现”. ∵A 与B -互斥,∴P (A +B -)=P (A )+P (B -)=26+26=23.三、解答题9.一个箱子内有9张票,其号数分别为1、2、…、9.从中任取2张,其号数至少有一个为奇数的概率是多少?[分析] 从9张票中任取2张,要弄清楚取法种数为12×9×8=36,“号数至少有一个为奇数”的对立事件是“号数全是偶数”,用对立事件的性质求解非常简单.[解析] 从9张票中任取2张,有 (1,2),(1,3),…,(1,9); (2,3),(2,4),…,(2,9); (3,4),(3,5),…,(3,9); …(7,8),(7,9);(8,9),共计36种取法.记“号数至少有一个为奇数”为事件B ,“号数全是偶数”为事件C ,则事件C 为从号数为2,4,6,8的四张票中任取2张有(2,4),(2,6),(2,8),(4,6),(4,8),(6,8)共6种取法.∴P (C )=636=16,由对立事件的性质得P (B )=1-P (C )=1-16=56.一、选择题1.甲袋中有大小相同的4只白球、2只黑球,乙袋中有大小相同的6只白球、5只黑球,现从两袋中各取一球,则两球颜色相同的概率是( )A.1233 B .533C.433 D .1733[答案] D[解析] 基本事件总数有6×11=66,而两球颜色相同包括两种情况:两白或两黑,其包含的基本事件有4×6+2×5=34(个),故两球颜色相同的概率P =3466=1733.2.从装有5只红球、5只白球的袋中任意取出3只球,有事件:①“取出2只红球和1只白球”与“取出1只红球和2只白球”;②“取出2只红球和1只白球”与“取出3只红球”;③“取出3只红球”与“取出3只球中至少有1只白球”;④“取出3只红球”与“取出3只白球”.其中是对立事件的是( )A .①②B .②③C .③④D .③[答案] D[解析] 从袋中任取3只球,可能取到的情况有:“3只红球”“2只红球1只白球”“1只红球2只白球”“3只白球”,由此可知①②④中的两个事件都不是对立事件.对于③,“取出3只球中至少有1只白球”包含“2只红球1只白球”“1只红球2只白球”“3只白球”三种情况,故是对立事件.二、填空题3.同时抛掷两枚骰子,没有5点或6点的概率为49,则至少有一个5点或6点的概率是________.[答案] 59[解析] 记“没有5点或6点”的事件为A ,则P (A )=49,“至少有一个5点或6点”的事件为B .由已知A 与B 是对立事件,则P (B )=1-P (A )=1-49=59.4.一枚五分硬币连掷三次,事件A 为“三次反面向上”,事件B 为“恰有一次正面向上”,事件C 为“至少两次正面向上”.写出一个事件A 、B 、C 的概率P (A )、P (B )、P (C )之间的正确关系式__________.[答案] P (A )+P (B )+P (C )=1[解析] 一枚五分硬币连掷三次包含的基本事件有(反,反,反),(反,正,正),(反,正,反),(正,反,反),(反,反,正),(正,反,正),(正,正,反),(正,正,正)共8种,事件A +B +C 刚好包含这8种情况,且它们两两互斥,故P (A +B +C )=P (A )+P (B )+P (C )=1.三、解答题5.在某一时期,一条河流某处的年最高水位在各个范围内的概率如下:(1)10~16m ;(2)低于12m ;(3)不低于14m.[解析] 分别设年最高水位低于10m ,在10~12m ,在12~14m ,在14~16m ,不低于16m 为事件A ,B ,C ,D ,E .因为这五个事件是彼此互斥的,所以(1)年最高水位在10~16m 的概率是:P (B +C +D )=P (B )+P (C )+P (D )=0.28+0.38+0.16=0.82. (2)年最高水位低于12m 的概率是: P (A +B )=P (A )+P (B )=0.1+0.28=0.38.(3)年最高水位不低于14m 的概率是: P (D +E )=P (D )+P (E )=0.16+0.08=0.24.6.某射手射击一次,中靶的概率为0.95.记事件A 为“射击一次中靶”,求: (1)A 的概率是多少?(2)若事件B (环数大于5)的概率是0.75,那么事件C (环数小于6)的概率是多少?事件D (环数大于0且小于6)的概率是多少?[解析] (1)P (A )=1-P (A )=1-0.95=0.05. (2)由题意知,事件B 即为“环数为6,7,8,9,10环” 而事件C 为“环数为0,1,2,3,4,5环”, 事件D 为“环数为1,2,3,4,5环”. 可见B 与C 是对立事件,而C =D +A . 因此P (C )=P (B )=1-P (B )=1-0.75=0.25. 又P (C )=P (D )+P (A ),所以P (D )=P (C )-P (A )=0.25-0.05=0.20.7.(2014·四川文,16)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. [解析] (1)由题意,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3), (2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种. 设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=8 9.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.。
一、选择题1.已知ABCD 为正方形,其内切圆I 与各边分别切于,,,E F G H ,连接,,,EF FG GH HE ,现向正方形ABCD 内随机抛掷一枚豆子(豆子大小忽略不计),记事件A:豆子落在圆I 内;事件B:豆子落在四边形EFGH 外,则()P B A =( )A .14π-B .4π C .21π-D .2π2.在OMN 中,1OM =,3ON =,2MN =,在OMN 内任取一点,该点到点M 的距离大于1的概率为( )A .3π B .31π-C .3π D .31π-3.如图,在菱形ABCD 中,3AB =,60BAD ∠=,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为0p ,则圆周率π的近似值为( )A .07.74pB .07.76pC .07.79pD .07.81p4.一个不透明的袋中装有6个白球,4个红球球除颜色外,无任何差异.从袋中往外取球,每次任取1个,取出后记下颜色不放回,若为红色则停止,若为白色则继续抽取,停止时从袋中抽取的白球的个数为随机变量X ,则(22)P X ≤=( ). A .23B .512C .56D .5185.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .356.4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,则每项活动至少一名同学参加的概率为( ) A .49B .427C .364D .3327.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为42,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB .2πC 3D .2π8.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .19.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .2310.在一个棱长为3cm 的正方体的表面涂上颜色,将其适当分割成棱长为1cm 的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是() A .49B .827C .29D .12711.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A.13B.12C.3D.212.在二项式42nxx⎛+⎪⎝⎭的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.13二、填空题13.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成33⨯小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______.14.在区间[]0,2上分别任取两个数m,n,若向量(),a m n=,()1,1b=,则满足1a b-≤的概率是______ .15.过点(0,0)O作直线与圆22(45)(8)169x y-+-=相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________.16.某同学进行投篮训练,在甲、乙、丙三个不同的位置投中的概率分别13,12,p,该同学站在这三个不同的位置各投篮一次,恰好投中两次的概率为718,则p的值为_____.17.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为a.现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为14,则cosα=_____________.18.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X,则()E X=______________.19.如图,圆柱12O O 内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱12O O 的概率为______;20.在区间[,]22ππ-上随机取一个实数x ,则事件“13sin cos 2x x -≤+≤”发生的概率是__________.三、解答题21.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n )进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图,已知得分在[)50,60,[]90,100的频数分别为8,2.(1)求样本容量n 和频率分布直方图中的,x y 的值; (2)估计本次竞赛学生成绩的中位数;(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[]90,100内的概率.22.互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占23,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.23.考试结束以后,学校对甲、乙两个班的数学考试成绩进行分析,规定:大于或等于80分为优秀,80分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个班全部110人中随机抽取1人为优秀的概率为3 11.(1)若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()()()()()n ad bcKa b c d a c b d-=++++.优秀非优秀合计甲班10乙班30合计11024.追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如下:AQI[0,50](50,100](100,150](150,200](200,250](250,300]空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率.(2)已知某企业每天因空气质量造成的经济损失y (单位:元)与空气质量指数x 的关系式为0,0100,220,100250,1480,250300.x y x x ⎧⎪=<⎨⎪<⎩假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为16,13,16,112,112,16,9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i )记该企业9月每天因空气质量造成的经济损失为X 元,求X 的分布列;(ii )试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.25.绝大部分人都有患呼吸系统疾病的经历,现在我们调查患呼吸系统疾病是否和所处环境有关.一共调查了500人,患有呼吸系统疾病的350人,其中150人在室外工作,200人在室内工作.没有患呼吸系统疾病的150人,其中50人在室外工作,100人在室内工作.(1)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.(2)你能否在犯错误率不超过0.05的前提下认为感染呼吸系统疾病与工作场所有关; 附表:()()()()()22n ad bc K a b c d a c b d -=++++26.“读书可以让人保持思想活跃,让人得到智慧启发,让人滋养浩然之气”,2018年第一期中国青年阅读指数数据显示,从供给的角度,文学阅读域是最多的,远远超过了其他阅读域的供给量.某校采用分层抽样的方法从1000名文科生和2000名理科生中抽取300名学生进行了在暑假阅读内容和阅读时间方面的调查,得到数据如表:(1)先完成上面的表格,并判断能否有90%的把握认为学生所学文理与阅读内容有关? (2从300名被调查的学生中,随机进取30名学生,整理其日平均阅读时间(单位:分钟)如表:试估计这30名学生日阅读时间的平均值(同一组中的数据以这组数据所在区间中点的值作代表)(3)从(2)中日均阅读时间不低于120分钟的学生中随机选取2人介绍阅读心得,求这两人都是女生的概率.参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:设正方形ABCD 边长为a ,分别求解圆I 和正方形EFGH 的面积,得到在圆I 内且在正方形EFGH 内的面积,即可求解()P B A . 详解:设正方形ABCD 边长为a ,则圆I 的半径为,2a r =其面积为21.4a π设正方形EFGH边长为b,则22,2b a b a=⇒=其面积为211,2S a=则在圆I内且在正方形EFGH内的面积为21,S S S=-故()121.S SP B ASπ-==-故选C.点睛:本题考查条件概率的计算,其中设正方形ABCD边长和正方形EFGH得到在圆I 内且在正方形EFGH内的面积是解题的关键.2.B解析:B【分析】在OMN∆内任取一点,该点到点M的距离大于1的区域是OMN∆中去掉扇形MOC的剩余部分,由几何概型能求出该点到点M的距离大于1的概率.【详解】解:以M为原点,以1为半径作圆,交MN于点C,在OMN∆中,1OM=,3ON=,2MN=,MO NO∴⊥,60OMC∠=︒,21166OMCSππ∴=⨯⨯=扇形,13132MONS∆=⨯⨯=.在OMN∆内任取一点,该点到点M的距离大于1的区域是OMN∆中去掉扇形MOC的剩余部分,∴由几何概型得该点到点M的距离大于1的概率为:332613MON OMCMONS SPSππ∆∆--===-扇形.故选:B.【点睛】本题考查概率的求法,考查几何概型等基础知识,考查运算求解能力,是基础题.3.C解析:C【解析】因为菱形的内角和为360°,所以阴影部分的面积为半径为1的圆的面积,故由几何概型可知20p =,解得0004.5 1.7327.791p p p π=≈⨯=.选C . 4.C解析:C 【分析】X k =表示前k 个球为白球,第1k +个球为红球,则((0)(1)(2)P X P X P X P X ≤==+=+=.由此计算可得结论.【详解】X k =表示前k 个球为白球,第1k +个球为红球, 42(0)105P X ===, 644(1)10915P X ⨯===⨯, 21643101(2)6A A P X A ===,所以2415((0)(1)(2)51566P X P X P X P X ≤==+=+==++=, 故选:C . 【点睛】本题考查古典概型概率计算,属于基础题,解题时要认真审题,注意列举法的合理运用.5.B解析:B 【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果. 【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C A A A A A ⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C C C A C C A A A ⋅=种分法, ∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.6.D解析:D 【分析】先求出基本事件总数n ,再求出每项活动至少有一名同学参加,包含的基本事件个数,由此能求出每项活动至少有一名同学参加的概率. 【详解】因为4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,所以基本事件总数n =44,每项活动至少有一名同学参加,因此4名同学分别参加一项活动,共有44A 种不同的情况.因此:每项活动至少一名同学参加的概率为:4443432A p ==. 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归的能力,属于中档题.7.A解析:A 【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果. 【详解】因为四棱锥的体积为3,设球半径为R,则1122332R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.8.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1,若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根, 故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.9.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.10.C解析:C 【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解. 【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为62279=. 故选:C .【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11.B解析:B 【分析】分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a -∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a--∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭解得:12a b = 本题正确选项:B 【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.12.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.二、填空题13.【分析】分两步进行:首先先排第一行再排第二行最后排第三行;其次对每一行选人;最后利用计算出概率即可【详解】首先第一行队伍的排法有种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后第一行的每个位解析:1140【分析】分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可. 【详解】首先,第一行队伍的排法有33A 种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有111333C C C 种;第二行的每个位置的人员安排有111222C C C 种;第三行的每个位置的人员安排有111⨯⨯种.所以来自同一队的战士既不在同一行,也不在同一列的概率311111133332229921140A C C C C C C P A ⋅⋅⋅==. 故答案为:1140. 【点睛】本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.14.【分析】由已知向量的坐标求出满足的所满足的条件结合数形结合得出答案【详解】由得由得即满足作出图像如图:圆的面积为正方形的面积为则的概率是故答案为:【点睛】本题考查了几何概型的概率求法解题的关键是变量解析:4π【分析】由已知向量的坐标求出满足1a b -≤的,m n 所满足的条件,结合[],0,2m n ∈,数形结合得出答案. 【详解】由(),a m n =,()1,1b =,得()1,1a b m n -=-- 由1a b -≤1≤,即()()22111m n -+-≤,,m n 满足0202m n ≤≤⎧⎨≤≤⎩,作出图像如图:圆()()22111m n -+-=的面积为π,正方形OABC 的面积为4. 则1a b -≤的概率是4π . 故答案为:4π【点睛】本题考查了几何概型的概率求法,解题的关键是变量满足的条件,属于基础题.15.【分析】根据圆的性质可求得最长弦和最短弦的长度从而得到所有弦长为整数的直线条数从中找到长度不超过的直线条数根据古典概型求得结果【详解】由题意可知最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为: 解析:932【分析】根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过14的直线条数,根据古典概型求得结果. 【详解】由题意可知,最长弦为圆的直径:221326r =⨯=()0,0O 在圆内部且圆心到O 806412+= ∴最短弦长为:216914410-=∴弦长为整数的直线的条数有:()22510232⨯-+=条其中长度不超过14的条数有:()2141019⨯-+=条∴所求概率:932p =本题正确结果:932【点睛】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.16.【分析】在甲乙丙处投中分别记为事件恰好投中两次为事件发生由此利用相互独立事件概率乘法公式能求出结果【详解】在甲乙丙处投中分别记为事件ABC 恰好投中两次为事件发生故恰好投中两次的概率P (1)解得p 故答解析:23【分析】在甲、乙、丙处投中分别记为事件A ,B ,C ,恰好投中两次为事件ABC ,ABC ,ABC 发生,由此利用相互独立事件概率乘法公式能求出结果.【详解】在甲、乙、丙处投中分别记为事件A ,B ,C , 恰好投中两次为事件ABC ,ABC ,ABC 发生, 故恰好投中两次的概率P ()1111113232p p ⎛⎫=⨯⨯-+⨯-⨯+ ⎪⎝⎭(113-)17218p ⨯⨯=, 解得p 23=. 故答案为:23. 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.17.【分析】设正方形边长为可得出每个直角三角形的面积为由几何概型可得出四个直角三角形的面积之和为可求出由得出并得出的值再利用降幂公式可求出的值【详解】设正方形边长为则直角三角形的两条直角边分别为和则每个【分析】设正方形边长为1,可得出每个直角三角形的面积为1sin 24α,由几何概型可得出四个直角三角形的面积之和为34,可求出3sin 24α=,由04πα<<得出cos 20α>并得出cos 2α的值,再利用降幂公式21cos 2cos 2αα+=可求出cos α的值. 【详解】设正方形边长为1,则直角三角形的两条直角边分别为sin α和cos α,则每个直角三角形的面积为11sin cos sin 224ααα=,由题意知,阴影部分正方形的面积为14, 所以,四个直角三角形的面积和为114sin 2144α⨯=-,即3sin 24α=,由于α是较小的锐角,则04πα<<,022πα∴<<,所以,cos 2α==,因此,cos α====. 【点睛】本题考查余弦值的计算,考查几何概型概率的应用,解题的关键就是求出sin 2α和cos 2α的值,并通过二倍角升幂公式求出cos α的值,考查计算能力,属于中等题.18.【解析】【分析】列出随机变量的分布列求解【详解】由题意知某人到达银行的概率为几何概型所以:其到达银行时服务窗口的个数为的分布列为: 5 4 3 4 2 则【点睛】本题考查几何概型及随 解析:3.5625【解析】 【分析】列出随机变量的分布列求解. 【详解】由题意知某人到达银行的概率为几何概型,所以: 其到达银行时服务窗口的个数为的分布列为:则()54342 3.56258161648E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查几何概型及随机变量的分布列.19.【分析】设出球的半径利用勾股定理求得圆柱的底面半径分别计算圆柱和球的体积然后利用几何概型的概率计算公式求得所求的概率【详解】设球的半径为依题意可知圆柱底面半径故圆柱的体积为而球的体积为故所求概率为【 解析:916【分析】设出球的半径,利用勾股定理求得圆柱的底面半径,分别计算圆柱和球的体积,然后利用几何概型的概率计算公式,求得所求的概率. 【详解】设球的半径为r ,依题意可知,圆柱底面半径22132r r r r ⎛⎫=-= ⎪⎝⎭',故圆柱的体积为22333πππ44r r r r r ⋅=⋅⋅=',而球的体积为34π3r ,故所求概率为333π944π163rr =. 【点睛】本小题主要考查有关球的内接几何体的问题,考查体积型的集合概型概率计算,属于基础题.对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间).有关球内接几何体的问题,主要是构造直角三角形,利用勾股定理来计算长度.20.【分析】用辅助角公式化简题目所给不等式解三角不等式求得点的取值范围利用几何概型的概率公式求得所求的概率【详解】由得故解得根据几何概型概率计算公式有概率为【点睛】本小题主要考查三角不等式的解法考查三角解析:512【分析】用辅助角公式化简题目所给不等式,解三角不等式求得x 点的取值范围,利用几何概型的概率公式求得所求的概率. 【详解】由13sin cos 2x x -≤+≤得π12sin 26x ⎛⎫-≤+≤ ⎪⎝⎭,1π2sin 262x ⎛⎫-≤+≤⎪⎝⎭,故πππ664x -≤+≤,解得ππ312x -≤≤,根据几何概型概率计算公式有概率为ππ5123ππ1222⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭.【点睛】本小题主要考查三角不等式的解法,考查三角函数辅助角公式,考查几何概型的计算,属于基础题.三、解答题21.(1);(2);(3).【详解】试题分析:(1)借助题设条件运用频率分布直方图求解;(2)借助题设条件运用频率分布直方图中提供的数据信息求解;(3)运用列举法和古典概型计算公式求解. 试题(1)由题意可知,样本容量n=80.01610⨯=50,,x=0.100﹣0.004﹣0.010﹣0.016﹣0.040=0.030;(2)设本次竞赛学生成绩的中位数为m,平均分为x,则[0.016+0.03]×10+(m﹣70)×0.040 =0.5,解得71m=,x=(55×0.016+65×0.030+75×0.040+85×0.010+95×0.004]×10=70.6,(3)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2.抽取的2名学生的所有情况有21种,分别为:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2).其中2名同学的分数都不在[90,100]内的情况有10种,分别为:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5).∴所抽取的2名学生中至少有一人得分在[90,100]内的概率101112121p=-=.考点:频率分布直方图、频率与频数的关系及古典概型的计算公式等有关知识的综合运用.【易错点晴】本题以学校中的数学竞赛的数学成绩的抽样统计的频率分布直方图为背景,设置了三个较为平常的数学问题.解答时一定要充分利用题设中提供的频率分布直方图所提供的数据信息,结合题设条件进行求解.第一问中求的是频率分布直方图中的未知数的值,运用该频率分布直方图时一定要注意该图的纵坐标是频率与组距的比值,这一点解题很容易被忽视.第二问中求的是中位数和平均数,求解时先依据中位数这个概念建立了方程求解,再运用平均数公式进行求解;第三问是运用简单枚举法一一列举出基本事件的所有可能和符合条件的事件的可能,最后运用古典概型的计算公式求出其概率的值.这是一道非常平常的考查基础知识和基本方法的基础题.22.(1)291494;(2)440【分析】(1)先计算出选取的3人中,全都是高于45岁的概率,然后用1减去这个概率,求得至少有1人的年龄低于45岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望. 【详解】(1)设事件A 表示至少有1人的年龄低于45岁,则()3303402911494C P A C =-=. (2)由题意知,以手机支付作为首选支付方式的概率为6031005=. 设X 表示销售的10件商品中以手机支付为首选支付的商品件数,则3~10,5X B ⎛⎫ ⎪⎝⎭, 设Y 表示销售额,则()40501050010Y X X X =+-=-, 所以销售额Y 的数学期望35001050010104405EY EX =-=-⨯⨯=(元). 【点睛】本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的计算. 23.(1)不能;(2)736. 【分析】(1)根据已知条件求得优秀人数,填写22⨯列联表,计算出2K 的值,由此作出判断. (2)根据古典概型概率计算方法,计算出所求概率. 【详解】(1)依题意,在甲、乙两个班全部110人中随机抽取1人为优秀的概率为311,所以总的优秀人数为31103011⨯=人.由于甲班优秀10人,故乙班优秀20人,由此填写22⨯列联表如下:根据列联表中的数据,得到()22110103020507.48610.82830805060K ⨯⨯-⨯=≈<⨯⨯⨯,因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.(2)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A 包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)。
章末综合测评(三) 概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a ,b 是实数,那么b +a =a +b ;②某地1月1日刮西北风;③当x 是实数时,x 2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有( )A .1个B .2个C .3个D .4个【解析】 由题意可知①③是必然事件,②④是随机事件. 【答案】 B2.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nmB.2nmC.4mnD.2mn【解析】 分别确定n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )和m 个两数的平方和小于1的数对所在的平面区域,再用随机模拟的方法和几何概型求出圆周率π的近似值.因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n ,所以π=4mn. 【答案】 C3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是( )A.310 B.112C.4564D.38【解析】 所有子集共8个,其中含有2个元素的为{a ,b },{a ,c },{b ,c },所以概率为38.【答案】 D4.(2016·山东青岛一模)如图1所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是( )图1A.2-32 B.2+32 C.1+32D.1-32【解析】 易知小正方形的边长为3-1,故小正方形的面积为S 1=(3-1)2=4-23,大正方形的面积为S =2×2=4,故飞镖落在小正方形内的概率P =S 1S =4-234=2-32.【答案】 A5.4张卡片上分别写有数字1,2,3,4.从这4张卡片中随机抽取2张,则抽取的2张卡片上的数字之和为奇数的概率为( )A.13 B.12 C.23D.34【解析】 基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中两数字之和为奇数的有(1,2),(2,3),(1,4),(3,4),所以概率为23.【答案】 C6.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( )A.23B.13C.34D.14【解析】 如图,设点M 为AB 的三等分点,要使△PBC 的面积不小于S 3,则点P 只能在AM 上选取,由几何概型的概率公式得所求概率|AM ||AB |=23|AB ||AB |=23. 【答案】 A7.(2016·东北八校二模)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19 B.29 C.718D.49【解析】 任意找两人玩这个游戏,共有6×6=36种猜数字结果,其中满足|a -b |≤1的有如下情形:①a =1,b =1,2;②a =2,b =1,2,3;③a =3,b =2,3,4;④a =4,b =3,4,5;⑤a =5,b =4,5,6;⑥a =6,b =5,6,总共16种,故他们“心有灵犀”的概率为P =1636=49.【答案】 D8.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4C.π8D .1-π8【解析】 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2,取到的点到O 的距离大于1的概率为2-π22=1-π4. 【答案】 B9.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23 B.13 C.12D.512【解析】 若方程有实根,则a 2-8>0.a 的所有取值情况共6种,满足a 2-8>0的有4种情况,故P =46=23.【答案】 A10.(2016·石家庄高一检测)有分别写着数字1到120的120张卡片,从中取出1张,这张卡片上的数字是2的倍数或是3的倍数的概率是( )A.12B.34C.47D.23【解析】 是2的倍数的数有60个,是3的倍数的数有40个,是6的倍数的数有20个,∴P =60+40-20120=23.【答案】 D11.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12B .p 2<12<p 1C.12<p 2<p 1 D .p 1<12<p 2【解析】 如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.【答案】 D12.如图2所示,在矩形ABCD中,AB=5,AD=7.现在向该矩形内随机投一点P,则∠APB>90°的概率为( )图2A.536B.556πC.18π D.18【解析】由于是向该矩形内随机投一点P,点P落在矩形内的机会是均等的,故可以认为矩形ABCD为区域Ω.要使得∠APB>90°,需满足点P落在以线段AB为直径的半圆内,以线段AB为直径的半圆可看作区域A.记“点P落在以线段AB为直径的半圆内”为事件A,于是求∠APB>90°的概率转化为求以线段AB为直径的半圆的面积与矩形ABCD的面积的比,依题意,得μA =12π×⎝ ⎛⎭⎪⎫522=25π8,矩形ABCD 的面积μΩ=35,故所求的概率为P (A )=25π835=5π56. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,二级品的概率是0.21,则出现一级品与三级品的概率分别是________,________.【解析】 由题意知出现一级品的概率是0.98-0.21=0.77,又由对立事件的概率公式可得出现三级品的概率是1-0.98=0.02.【答案】 0.77 0.0214.如图3的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.图3【解析】 由题意得138300=S 阴5×2,S 阴=235.【答案】23515.在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为________. 【导学号:63580044】【解析】 先后两次取卡片,形成的有序数对有(1,1),(1,2),(1,3),…,(1,10),…,(10,10),共计100个.因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个,故x +y 是10的倍数的概率为P=10100=110. 【答案】11016.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.【解析】 ∵方程x 2+2px +3p -2=0有两个负根,∴⎩⎪⎨⎪⎧Δ=4p 2-43p -2≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+5-25-0=23. 【答案】 23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.【解】 将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5种饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.18.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“x +y ≤3”的概率; (2)求事件“|x -y |=2”的概率.【解】 设(x ,y )表示一个基本事件,则掷两次骰子包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个基本事件.(1)用A 表示事件“x +y ≤3”,则A 的结果有(1,1),(1,2),(2,1),共3个基本事件. ∴P (A )=336=112.即事件“x +y ≤3”的概率为112.(2)用B 表示事件“|x -y |=2”,则B 的结果有(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)共8个基本事件.∴P (B )=836=29.即事件“|x -y |=2”的概率为29.19.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和与标号之积都不小于5的概率.【解】 设从甲、乙两个盒子中各取出1个球,编号分别为x ,y ,用(x ,y )表示抽取的结果,结果有以下25种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).(1)取出的两个球上标号为相邻整数的结果有以下8种:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),故所求概率为P =825,即取出的两个球上标号为相邻整数的概率为825.(2)标号之和与标号之积都不小于5的结果有以下17种:(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),故所求概率为P =1725,故取出的两个球上标号之和与标号之积都不小于5的概率是1725.20. (本小题满分12分)把一颗骰子抛掷两次,第一次出现的点数记为a ,第二次出现的点数记为b .试就方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2解答下列各题:(1)求方程组只有一组解的概率;(2)求方程组只有正数解(x 与y 都为正)的概率.【解】 (1)当且仅当a b ≠12时,方程组只有一组解;a b =12的情况有三种:⎩⎪⎨⎪⎧a =1,b =2或⎩⎪⎨⎪⎧a =2,b =4或⎩⎪⎨⎪⎧a =3,b =6.而抛掷两次的所有情况有6×6=36(种),所以方程组只有一组解的概率为P =1-336=1112. (2)因为方程组只有正数解,所以两直线的交点一定在第一象限,解方程组得⎩⎪⎨⎪⎧x =6-2b2a -b,y =2a -32a -b .当⎩⎪⎨⎪⎧2a -b >0,6-2b >0,2a -3>0,或⎩⎪⎨⎪⎧2a -b <0,6-2b <0,2a -3<0,且a >0,b >0,即⎩⎪⎨⎪⎧ 2a >b ,2a >3,b <3,a >0,b >0,或⎩⎪⎨⎪⎧2a <b ,2a <3,b >3,a >0,b >0,时,x >0,y >0.当b =1或2时,a =2,3,4,5,6; 当b =4或5或6时,a =1.所以方程组只有正数解的概率为P =1336.21.(本小题满分12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.【解】 (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班级随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个. 因此A 1被选中且B 1未被选中的概率为P =215.22.(本小题满分12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B ,C 三个区中抽取7个工厂进行调查,已知A ,B ,C 区中分别有18,27,18个工厂.(1)求从A ,B ,C 区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率.【解】 (1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为763=19,所以从A ,B ,C 三个区中应分别抽取的工厂个数为2,3,2.(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂,在这7个工厂中随机抽取2个,全部可能的结果有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.随机地抽取的2个工厂至少有1个来自A 区的结果(记为事件X )有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2)共有11种,所以这2个工厂中至少有1个来自A 区的概率为P (X )=1121.。