八年级下册数学期末测试题[含答案][1]
- 格式:doc
- 大小:867.50 KB
- 文档页数:6
人教版初中数学八年级下册期末测试题一、选择题(本大题共小题,每小题分,共分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得分,选错、不选或多选均得零分.)A B C D 如图,O A B 为直角三角形,O A =,A B =,则点A 的坐标为()A()B ()C ()D ()如图,矩形A B C D 的对角线A C =,B O C Ð=°,则A B 的长为()A B C D 一次函数()y kx k =-¹的函数值y 随x 的增大而减小,它的图象不经过的象限是()A 第一象限B 第二象限C 第三象限D 第四象限如图,直线y x =和y k x b =+相交于点()P ,则不等式x k x b £+的解集为()A.x ³B.x £C.x ³D.x £一组数据:n a a a ×××的平均数为P ,众数为Z ,中位数为W ,则以下判断正确的是()A P 一定出现在n a a a ×××中B Z 一定出现在n a a a ×××中C W 一定出现在n a a a ×××中D P ,Z ,W 都不会出现在n a a a ×××中二、填空题(本大题共小题,每小题分,共分)将函数y x =的图象向下平移个单位,所得图象的函数解析式为______如图,点P 是正方形A B C D 内位于对角线A C 下方的一点,已知:P C A P B C Ð=Ð,则B P C Ð的度数为______.南吕是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏候遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:,,,,(单位:人),这组数据的中位数是______.一组数据,,,x 的众数只有一个,则x 的值不能为______.如图,在A B C 中,已知:A C B Ð=°,c m A B =,c m A C =,动点P 从点B 出发,沿射线B C 以c m s 的速度运动,设运动的时间为t 秒,连接P A ,当A B P △为等腰三角形时,t 的值为______.三、解答题(本大题共小题,每小题分,共分)()计算:+-()求x =.如图,点C为线段A B上一点且不与A,B两点重合,分别以A C,B C为边向A B的同侧做锐角为°的菱形.请仅用无刻度的直尺分别按下列要求作图.(保留作图痕迹)=,作出线段D F的中点M;()在图中,连接D F,若A C B C()在图中,连接D F,若A C B C¹,作出线段D F的中点N.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图、(图为图的平面示意图),推开双门,双门间隙C D的距离为寸,点C和点D距离门槛A B都为尺(尺寸),则A B 的长是多少?某种子站销售一种玉米种子,单价为元千克,为惠民促销,推出以下销售方案:付款金额y(元)与购买种子数量x(千克)之间的函数关系如图所示.()当x³时,求y与x之间的的函数关系式:()徐大爷付款元能购买这种玉米种子多少千克?已知:①,,,,的平均数是,方差是;②,,,,的平均数是,方差是;③,,,,的平均数是,方差是;④,,,,的平均数是,方差是;请按要求填空:()n,n+,n+,n+,n+的平均数是,方差是;()n,n+,n+,n+,n+的平均数是,方差是;()n,n,n,n,n的平均数是,方差是.四、解答题(本大题共小题,每小题分,共分)下表是某公司员工月收入的资料.职位总经理财务总监部门经理技术人员前台保安保洁人数月收入元()这家公司员工月收入的平均数是元,中位数是和众数是;()在()中的平均数,中位数和众数哪些统计量能反映该公司全体员工收入水平?说明理由;()为了避免技术人员流失,该公司决定给他们每人每月加薪x元至公司员工月收入的平均数,求x的值.已知:一次函数()()y m x m m =+-¹与x 轴、y 轴交于A点,B 点()当m =时,求O A B 的面积;()请选择你喜欢的两个不同的()m m ¹的值,求得到的两个一次函数的交点坐标;()m 为何值时,O A B 是等腰直角三角形?如图,若D E 是A B C 的中位线,则A B C A D E S S =△△,解答下列问题:()如图,点P 是B C 边上一点,连接P D 、P E ①若P D E S =△,则A B CS=;②若P D B S =△,P C E S =△,连接A P ,则A P DS =,A P E S =△,A B CS=.()如图,点P 是A B C 外一点,连接P D 、P E ,已知:P D BS=,P C E S =△,P D E S =△,求A B CS的值;()如图,点P 是正六边形F G H I J K 内一点,连接P G 、P F 、P K ,已知:P G F S =△,P K J S =△,P F K S =△,求F G H I J K S 六边形的值.五、综合题(本大题共小题,共分)已知直线y x =-+分别与x 轴、y 轴交于A 点,B 点,点()n n Q x y 为这条直线上的点,Q P x ^轴于点P ,Q R y ^轴于点R .()①将下表中的空格填写完整:nn x --ny --n nx y +②根据表格中的数据,下列判断正确的是.A .x y =,B .x yS S =,C .x y S +=.()当点Q 在第一象限时,解答下列问题:①求证:矩形O P Q R 的周长是一个定值,并求这个定值;②设矩形O P Q R 的面积为S ,求证:S £.()当点Q 在第四象限时,直接写出Q P ,Q R 满足的等式关系.参考答案B C B A D By x﹣°或或()解:()原式(=+-=(=,∴x-=,∴x=解:()如图点M为D F的中点()如图点N为D F的中点解:取A B的中点O,过D作D E⊥A B于E,如图所示:由题意得:O A O B A D B C,设O A O B A D B C r寸,则A B r(寸),D E寸,O E C D寸,∴A E(r-)寸,在R t△A D E中,A E D E A D,即(r-)r,解得:r,∴r(寸),∴A B寸.解:()当x³时,设y与x之间的的函数关系式为y k x b=+,将点(),()带入解析式得k b k b+=ìí+=î解得k b=ìí=î∴y x=+.()将y=时,带入y x=+中解得x=千克.答:徐大爷付款元能购买这种玉米种子千克.解:()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴数据n,n+,n+,n+,n+的平均数+n E=n+,方差依然是,()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴n,n+,n+,n+,n+的平均数是+n E=n+,方差依然是,()数据n,n,n,n,n是将,,,,分别乘以n所得,∴数据n,n,n,n,n的平均数为n,方差为n,解:()∵一共有++++++=(人),∴这组数据的中位数是第、个数据的平均数,而第、个数据分别为、,∴中位数是+=(元),∵数据出现次数最多,∴这组数据的众数为元,故答案为:元,元;()中位数和众数能反映该公司全体员工收入水平,该公司员工月收入的平均数为,在这名员工中只有名员工的收入在元以上,有名员工的收入在元以下,因此用平均数不能反映所有员工的收入水平,中位数和众数为元能反映多数员工的收入水平.()由题意列方程:x x +=+,解得x =元∴技术人员需要加薪元.解:()当m =时,y x =-,当x =时,y =-,∴()B -,∴O B =当y =时,x =,∴A æöç÷èø,∴O A =,O A B S O A O B =×=△;()取m =,y x =+,取m =,y x=,∴y x y x =+ìí=î解得x y=ìí=î∴两个一次函数的交点坐标为()()当x =时,y m =-,∴O B m =-;当y =时,m x m-=,∴m O A m -=,∵O A B 是等腰直角三角形,∴O A O B =,即m m m--=;∵m -¹,∴m =±.解:()如图,连接B E ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P D E =S △B D E =,∴S △A B E =,∴S △A B C =,②∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A B C =;()如图,连接A P ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,S △A B C =S △A D E ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A D E =S △A P D S △A P E ﹣S △P D E =,∴S △A B C =S △A D E =;()如图,延长G F ,J K 交于点N ,连接G J ,连接P N ,∵六边形F G H I J K 是正六边形,∴F G =F K =K J ,∠G F K =∠J K F =°,S 六边形F G H I J K =S 四边形F G J K ,∴∠N F K =∠N K F =°,∴△N F K 是等边三角形,∴N F =N K =F K =F G =K J ,∴S △P G F =S △P F N =,S △P K J =S △P K N =,F K 是△N G J 的中位线,∴S △N F K =S △P F N S △P K N ﹣S △P F K =,∵F K 是△N G J 的中位线,∴S △N G J =S △N F K =;∴S 四边形F G J K =﹣=,∴S 六边形F G H I J K =.()①填表如下:n n x --n y --n nx y +②x y ==´--+++++++,故A 正确;[]x S =--+--+-+-+-+-+-+-+-=[]y S =--+--+-+-+-+-+-+-+-=∴x y S S =,故B 正确;∵x y +=∴x y S +=故C 正确;故答案为:A 、B 、C()①设()Q x x -+,∵点Q 在第一象限,∴O P x =,P Q x =-+,∴()O P Q R C O P P Q ==矩形+,∴矩形O P Q R 的周长是一个定值,周长为;②∵()()S x x x x x -=--+=+-=-³∴S £.()设点Q 的坐标为()xx -+,∵点Q 在第四象限,∴Q R x =,Q P x =-,∴Q R Q P -=.。
数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
明.)20。
如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。
(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。
21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。
下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。
如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。
点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。
八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。
八年级第二学期期末数学测试题【含答案】说明:1.考试时间:100分钟,满分120分.2.考生在答题卡上答题.(是否填写右上角的座位号,请按考场要求做)3.答题可用黑色或蓝色字迹的钢笔、签字笔按各题要求答在答题纸指定的范围内...........,答在试卷....上或答题纸指定范围外..........无效..,不能用铅笔、圆珠笔和红笔. 4.考试结束时,将试卷交回.一、你一定能选对!(本题共有10小题,每小题3分,共30分)下列各题均附有四个备选答案,其中有且只有一个是正确的,请将正确答案填在题后的括号内. 1、使分式422-x x有意义的条件是 A .x≠2 B .x≠-2 C .x =±2 D .x≠±2 2、既是轴对称图形又是中心对称图形的是A. 等边三角形B. 平行四边形C. 菱形D. 等腰梯形 3、数据2,3,3,5,7的极差是A .5B .4C .3D .2 4、下列关系中,是反比例函数的是 A .5x y =B.2x y = C.x y 32= D.1-=y5、计算(2×10-6)2÷(10-2)3·(10-1)3的结果是A .2×10-9B .4×10-9C .4×2×10-15D .2×10-16、如图,在由六个全等的正三角形拼成的图中,不重不漏的平行四边形共有A. 3个B. 4个C. 5个D. 6个 7则这组数据的中位数与众数分别是A .24和25B .24.5和25C .25和24D .23.5和24 8、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.若“远航”号沿东北方向航行,则“海天”号沿A. 西南方向航行B. 西北方向航行C. 东南方向航行D. 西北方向航行或东南方向航行9、八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,则骑车同学的速度为A.10千米/时B. 15千米/时C.20千米/时D.30千米时 10、已知:如图,梯形ABCD 是等腰梯形,AB ∥CD ,AD=BC , AC ⊥BC ,BE ⊥AB 交AC 的延长线于E ,EF ⊥AD 交AD 的延长线于F ,下列结论: ①BD ∥EF ;②∠AEF=2∠BAC ;③AD=DF ;④AC=CE+EF. 其中正确的结论有 A .1个 B .2个 C .3个 D .4个二、你能填得又快又准吗?(本题共有6题,每小题3分,共18分)11、约分:433282n m n m = .12、甲、乙、丙三台包装机同时分装质量 为400克的茶叶.从它们各自分装的茶叶中 分别随机抽取了10盒,测得它们的实际 质量的方差如右表所示:根据表中数据,可以认为三台包装机 中, 包装机包装的茶叶质量最稳定.13、已知:如图,在△ABC 中, D 、E 分别是边AB 、AC的中点,且AB =6, AC =10,DE =4,∠C =40°,则∠A =_____________.14、写出一个图象在二、四象限的反比例函数的解析式.15、如图,菱形花坛ABCD 的边长为20m ,∠ABC =60°,沿着该菱形的对角线修建两条小路AC 和BD ,则较长的小路长约为 m.(精确到0.01m ) 16、如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,EFE BA DC (第 10 题图)在函数xy 1=(x >0)的图象上,若设点E 的纵坐标n ,则n 2+n +1= .三、解下列各题(本大题共有9小题,共72分)17、(6分)解方程:1221+=x x18、(7分)先化简,再选一个你认为合适的x 值代入92)331(2-÷+-+x xx x 求值.19、(5分)小红家在七月初用购电卡买了1000度电,设这些电够使用的天数为y,小红家平均每天的用电度数为x.(1)求y与x之间的函数关系式;(2)若她家平均每天用电8度,则这些电可以用多长时间?20、(7分)如图,在一束平行光线中插入一张对边平行的纸板,如果光线与纸板右下方所成的∠1是68°25′,那么光线与纸板左上方所成的∠2是多少度?请说明理由.21、(10分)某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个.为了考察西瓜的产量,在西瓜上市前该瓜农随机抽查了部分成熟的西瓜,秤重如下:(1)该问题中的样本容量是多少?(2)计算所抽查的西瓜的平均质量;(3)目前西瓜的批发价约为每500克0.3元,若瓜农按此价格卖出,请你估计这亩地所产西瓜大约能卖多少元钱?22、(5分)如图是反比例函数x my25-=的图象的一支.根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m的取值范围是什么?(2)若点A(m-3,b1)和点B(m-4,b2)是该反比例函数图象上的两点,请你判断b1与b2的大小关系,并说明理由.23、(10分)某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,统计图如下:请你结合统计图和平均数、众数和中位数解答下列问题:(结果保留整数)(1)月销售额在哪个值的人最多?月销售额处于中间的是多少?平均月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?请说明理由.(3)如果想让一半左右的营业员都能达到目标而得到奖励,你认为月销售额定为多少合适?请说明理由.24、(10分)如图,一个直角三角形的直角顶点P 在正方形ABCD 的对角线AC 所在的直线上滑动,并使得一条直角边始终经过B 点.(1)如图1,当直角三角形的另一条直角边和边CD 交于Q 点,PQPB= ; (2)如图2,当另一条直角边和边CD 的延长线相交于Q 点时,PQPB= ; (3)如图3或图4,当直角顶点P 运动到AC 或CA 的延长线上时,请你在图3或图4中任选一种情形,求PQPB的值,并说明理由.25、(12分)如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC ⊥BD 于P 点,点A 在y 轴上,点C 、D 在x 轴上. (1)若BC =10,A (0,8),求点D 的坐标; (2)若BC=213,AB+CD=34,求过B 点的反比例函数的解析式;(3)如图,在PD 上有一点Q ,连结CQ ,过P 作PE ⊥CQ 交CQ 于S ,交DC 于E ,在DC 上取EF=DE ,过F 作FH ⊥CQ 交CQ 于T ,交PC 于H ,当Q 在PD 上运动时,(不与P 、D 重合),PHPQ 的值是否发生变化?若变化,求出变化范围;若不变,求出其值.八年级第二学期期末数学测试题评分标准三、解下列各题(本大题共有9小题,共72分)17、解:x +1=4x ……2分 x -4x=-1-3x=-1 ……4分 x=31……5分 检验知:x=31是原方程的解. ……6分18、解:原式=)3)(3(2)333(-+÷+-++x x xx x x ……2分=xx x x x 2)3)(3(32-+∙+ =x -3 ……4分求值正确(x≠0且x≠±3) ……7分19、解:(1)y =x1000(x >0)(不写自变量取值范围的不扣分) ……3分 (2)当X =8时,y =81000=125 ……4分答:可以用125天. ……5分20、解:∠2=68°25′.理由如下: ……1分 由题意知:AB ∥CD ,BC ∥AD ……3分 ∴ 四边形ABCD 是平行四边形(平行四边形的定义) ……5分 ∴ ∠2=∠1(平行四边形的对角相等)又 ∠1=68°25′∴ ∠2=68°25′ ……7分21、解:(1)该问题中的样本容量是10; ……2分 (2)51013.416.429.430.524.515.5=⨯+⨯+⨯+⨯+⨯+⨯ ……6分答:所抽查的西瓜的平均质量为5千克; ……7分 (3)600×5×0.3×2=1800 ……9分 答:这亩地所产西瓜的收入约是1800元. ……10分22、解:(1)图象的另一支在第三象限. ……1分∵ 图象在一、三象限 ∴ 5-2m >0∴ m <25……2分 (2)∵ m <25∴ m -4<m -3<0 ……3分 ∴ b 1 <b 2 ……5分23、解:(1)月销售额在15万元的人最多, ……2分月销售额处于中间的是18万元, ……4分 平均月销售额是20万元. ……6分(2)因为平均数、中位数和众数分别为20万元、18万元和15万元,而平均数最大,所以可以估计月销售额定为每月20万元是一个较高的目标.……8分(3)如果想让一半左右的营业员都能达到目标而得到奖励,月销售额可定为每月18万元(中位数),因为月销售额在18万元以上(含18万元)的人数有16人,占总人数的一半 左右,所以可以估计,月销售额定为18万元,将有一半左右的营业员获得奖励.……10分24、解:(1)1 ……2分(2)1 ……4分(3)如图3,PQPB=1过点P 作PN ⊥AB ,垂足N 在AB 的延长线上,PN 交CQ 于点M ……5分在正方形ABCD 中,AB ∥CD∴∠PMQ =∠N =∠CBN =90° ……6分∴CBNM 是矩形∴CM =BN ……7分易证△CMP 是等腰直角三角形∴PM =CM =BN ……8分又∠1=∠PBN =90°-∠BPN∴△PMQ ≌△BNP(ASA) ……9分∴PQ =PB ∴PQPB =1 ……10分如图4 ,PQPB =1 过点P 作PN ⊥AB ,垂足N 在BA 的延长线上,PN 的延长线交CQ 于点M 在正方形ABCD 中,AB ∥CD∴∠PMC =∠PNB =∠CBN =90° ……6分∴CBNM 是矩形∴CM =BN ……7分易证△CMP 是等腰直角三角形∴PM =CM =BN ……8分又∠1=∠2=90°-∠BPN∴△BNP ≌△PMQ (ASA) …9分∴PB =PQ ∴PQ PB =1 …10分25、解:(1)在等腰梯形ABCD 中,AD =BC =10 ……1分又 A (0,8)∴ OA =8 ……2分 ∴ OD =22810 =6 ……3分 ∴ D (-6,0) ……4分(2)作BH ⊥DE 于H ,过B 点作BE ∥AC 交x 轴于点E∵ AB ∥CE, BE ∥AC∴ ABEC 是平行四边形 ……5分∴ AB =CE ,BE =AC又 AC =BD∴ BE =BD而AC ⊥BD, AB ∥CE∴ ∠DPC =∠DBE =90°∵ BH ⊥DE∴ BH =21DE =21(DC +CE )=21(DC +AB)=21×34=17 ……6分 ∵ BC =213∴ CH =22BH BC =7∴ OH =AB =CE =HE -HC =17-7=10∴ B (10,17) ……7分 ∴ 过B 点的反比例函数的解析式为:y =x170 ……8分 (3)过点D 作DN ∥PC 交PE 的延长线于点M ,交HF 的延长线于点N ,过点M 作MI ∥EF 交BN 于点I易证四边形EFIM 和四边形MNHP 是平行四边形∴MI =EF =DE ,MN =PH ……9分又∵∠EDM=∠IMN ,∠DEM =∠EFI =∠MIN∴△EDM ≌△IMN∴DM =MN ……10分∵∠PDM =∠CPQ =90°,∠DPM =∠QCP =90°-∠SPC由(2)知:∠BDC =45°,而∠DPC =90°,∴PD =PC∴△PDM ≌△CPQ ……11分∴DM =PQ =PH ∴PH PQ =1 ……12分(注:不同的解法参照此标准给分)。
八年级下册数学期末考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, -4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A. 32cmB. 36cmC. 42cmD. 46cm5. 若|a| = 5,则a的值为()A. 5 或 -5B. 5C. -5D. 0二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。
()7. 两个等腰直角三角形的面积一定相等。
()8. 一次函数的图像是一条直线。
()9. 对角线互相垂直的四边形一定是菱形。
()10. 若x² = 9,则x的值只能是3。
()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是_________。
12. 二次函数y = ax² + bx + c的顶点坐标是_________。
13. 若一个等差数列的首项是2,公差是3,则这个数列的第三项是_________。
14. 在直角坐标系中,点(0, b)位于_________。
15. 若一个正方形的对角线长为10cm,则这个正方形的面积是_________。
四、简答题(每题2分,共10分)16. 简述等腰三角形的性质。
17. 解释一次函数图像的斜率代表什么。
18. 什么是二次函数的顶点?如何找到它?19. 描述平行四边形的性质。
20. 什么是等差数列?给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,如果长方形的周长是30cm,求长方形的长和宽。
八年级下册数学期末试卷综合测试(Word 版含答案)(1)一、选择题1.如果二次根式2x -有意义,那么x 的取值范围是( )A .2x >B .2x ≥C .2x ≠D .2x ≤ 2.若ABC 的三边a 、b 、c 满足条件222()()0a b a b c -⋅+-=,则ABC 为( ) A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形3.下列能判定一个四边形是平行四边形的是( )A .对角线相等,且一组对角相等的四边形是平行四边形B .一对邻角的和为180°的四边形是平行四边形C .两条对角线相互垂直的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形4.小君周一至周五的支出分别是(单位:元):7,10,14,7,12则这组数据的平均数是( )A .7B .10C .11D .11.55.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .25B .5C .35D .2 6.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若∠1=129°,则∠2的度数为( )A .49°B .50°C .51°D .52°7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A.3 B.4 C.5 D.68.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A.1个B.2个C.3个D.4个二、填空题9.使式子32xx-+有意义的x的取值范围是______.10.已知菱形的两条对角线长分别为4cm和6cm,则这个菱形的面积为______cm2.11.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.12.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为_______.13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x 之间的函数________.14.如图,在△ABC 中,AD ,CD 分别平分∠BAC 和∠ACB ,AE ∥CD ,CE ∥AD .若从三个条件:①AB=AC ;②AB=BC ;③AC=BC 中,选择一个作为已知条件,则能使四边形ADCE 为菱形的是__(填序号).15.如图,已知点A ,B ,C ,D 的坐标分别为()2,2-,()2,1-,()3,1,()3,2.线段AD 、AB 、BC 组成的图形为图形G ,点P 沿D A B C →→→移动,设点P 移动的距离为S ,直线l :y x b =-+过点P ,且在点P 移动过程中,直线l 随P 运动而运动,当l 过点C 时,S 的值为__________;若直线l 与图形G 有一个交点,直接写出b 的取值范围是__________.16.如图,矩形ABCD 中,6,8AB BC ==,点E 是BC 边上一点,连接AE ,把ABE △沿AE 折叠,使点B 落在点F 处,当CEF △为直角三角形时,CF 的长为________.三、解答题17.计算:(1)2+818(212273-2324 18.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈、尺是长度单位,1丈=10尺,1尺=13米),这段话翻译城现代汉语,即为:如图,有一个水池,水面是一个边长为一丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是多少米?请你用所学知识解答这个问题.19.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AB为一边正方形ABCD,使点C、D在小正方形的顶点上;(2)在图2中画出一个以AB为一边,面积为6的□ABEF,使点E、F均在小正方形的顶点上,并直接写出□ABEF周长.20.如图,已知点E是ABCD中BC边的中点,连接AE并延长交DC的延长线于点F,连接AC,BF,AF BC=.(1)求证:四边形ABFC为矩形;(2)若AFD∆是等边三角形,且边长为6,求四边形ABFC的面积.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.互联网时代,一部手机就可搞定午餐是新零售时代的重要表现形式,打包是最早出现的外卖形式,虽然古老,却延续至今,随着电话、手机、网络的普及,外卖行业得到迅速的发展.某知名外卖平台招聘外卖骑手,并提供了如下两种日工资方案:方案一:每日底薪50元,每完成一单外卖业务再提成3元;方案二:每日底薪80元,外卖业务的前30单没有提成,超过30单的部分,每完成一单提成5元.设骑手每日完成的外卖业务量为x单(x为正整数),方案一、方案二中骑手的日工资分别为y1、y2(单位:元).(1)分别写出y1、y2关于x的函数关系式;(2)若小强是该外卖平台的一名骑手,从日工资收入的角度考虑,他应该选择哪种日工资方案?并说明理由.23.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA 的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.24.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣2,0), 交y轴于点B(0,4),直线y=kx+b经过点B且交x轴正半轴于点C,已知△ABC面积为10.(1)点C的坐标是(,),直线BC的表达式是;(2)如图1,点E为线段AB中点,点D为y轴上一动点,以DE为直角边作等腰直角三角形△EDF,且DE=DF,当点F落在直线BC上时,求点D的坐标;(3)如图2,若G为线段BC上一点,且满足S△ABG=S△ABO,点M为直线AG上一动点,在x轴上是否存在点N,使以点B,C,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,说明理由;25.综合与实践:如图1,在正方形ABCD中,连接对角线AC,点O是AC的中点,点E 是线段OA上任意一点(不与点A,O重合),连接DE,BE.过点E作EF DE⊥交直线BC于点F.(1)试猜想线段DE与EF的数量关系,并说明理由;CE CD CF之间的数量关系,并说明理由;(2)试猜想线段,,(3)如图2,当E在线段CO上时(不与点C,O重合),EF交BC延长线于点F,保持CE CD CF之间的数量关系.其余条件不变,直接写出线段,,【参考答案】一、选择题1.B解析:B【分析】x-≥,据此解题.x-202【详解】x-≥,x-202∴≥,x2故选:B.本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.2.C解析:C【详解】解析:∵222()()0a b a b c -+-=,∴a b =或222+=a b c .当只有a b =成立时,是等腰三角形.当只有222+=a b c 成立时,是直角三角形.当a b =,222+=a b c 同时成立时,是等腰直角三角形.答案:C题型解法:此类题型首先根据题意化简式子,找出隐含条件,然后根据三边的关系判断三角形的形状.当三角形的三边满足勾股定理时,即可判断为直角三角形.3.D解析:D【解析】【分析】分别利用平行四边形的判定方法结合梯形的判定方法分析得出答案.【详解】解:A 、对角线相等,且一组对角相等的四边形无法确定是平行四边形,故此选项不合题意;B 、一对邻角的和为180°的四边形是平行四边形,错误,有可能是梯形,故此选项不合题意;C 、两条对角线相互垂直的四边形无法确定是平行四边形,故此选项不合题意;D 、一组对边平行且相等的四边形是平行四边形,正确,符合题意.故选D .【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.B解析:B【解析】【分析】用这组数据的和除以数据的个数就可计算出这组数据的平均数,据此解答即可.【详解】解:(7+10+14+7+12)÷5=50÷5=10(元),故选:B .【点睛】此题主要考查的是平均数的含义及其计算方法,关键是要熟练掌握平均数的计算方法. 5.B【分析】连接AC 、CF ,如图,根据正方形的性质得∠ACD =45°,∠FCG =45°,AC =2,CF =32,则∠ACF =90°,再利用勾股定理计算出AF =25,然后根据直角三角形斜边上的中线求CH 的长.【详解】连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,∴∠ACD =45°,FCG =45°,AC =2BC =2,CF =2CE =32,∴∠ACF =45°+45°=90°,在Rt △ACF 中,AF =()()22232=25+,∵H 是AF 的中点,∴CH =12AF =5 .故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.6.C解析:C【解析】【分析】根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∠A +∠B +∠C =180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案.【详解】解:根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∵∠A +∠B +∠C =180°,∴∠DOE +∠HOG +∠EOF =180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选:C .【点睛】本题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用.7.C解析:C【解析】【分析】根据折叠前后角相等可知△ABE ≌△C'ED ,利用勾股定理可求出.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,∠C =∠A =90°由折叠的性质可得:C'D =CD =AB ;∠C'=∠C =∠A在△ABE 与△C'ED 中'''C D AB C ED AEB C A =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C'ED (AAS )∴DE=BE设DE =BE =x ,则AE =8-x ,AB =4,在直角三角形ABE 中,()22816x x =-+ 解得x =5故选C .【点睛】本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.8.A解析:A【分析】根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.【详解】解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,①错;从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,②对;汽车用9小时走了280千米,平均速度为:280÷9≠30米/时,③错.汽车自出发后6小时至9小时,图象是直线形式,说明是在匀速前进,④错. 故答案为A.【点睛】本题考查由函数图象的实际意义,理解函数图像所反映的运动过程是解答本题的关键.二、填空题9.3x ≤且2x ≠-【解析】【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 10.12【解析】【分析】根据菱形的面积计算公式计算即可;【详解】解:由已知得,菱形的面积等于两对角线乘积的一半即:4×6÷2=12cm 2.故答案为:12.【点睛】本题主要考查了菱形的面积计算,准确计算是解题的关键.11.A解析:4【解析】【详解】解:解如图所示:在Rt ∆ABC 中,BC=3,AC=5,由勾股定理可得:AB 2+BC 2=AC 2设旗杆顶部距离底部AB=x 米,则有32+x 2=52,解得x=4故答案为:4.【点睛】本题考查勾股定理.12.A解析:35°【分析】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB,代入∠OAB=∠DAB ﹣∠OAD求出即可.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°,故答案为:35°.【点睛】本题考查了矩形的判定和性质,能根据矩形的性质求出∠DAB的度数是解此题的关键.13.y=2x.【详解】试题解析:每瓶的售价是4824=2(元/瓶),则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x.考点:根据实际问题列一次函数关系式.14.A解析:②【解析】【分析】根据②作条件,先证明四边形ADCE是平行四边形,再利用邻边相等,得到四边形ADCE 是菱形.【详解】解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ADCE是菱形.【点睛】本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质.15.1或11 或【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S=1;②点P 位于点C 时,S=11;求出l 过临界点D 、E 、B 即求出直线与图形有一个交点时b 的取值范围.【详解解析:1或11 45b <≤或1b =-【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S =1;②点P 位于点C 时,S =11;求出l 过临界点D 、E 、B 即求出直线l 与图形G 有一个交点时b 的取值范围.【详解】解:∵点A 、B 、C 、D 的坐标分别为(-2,2),(-2,1),(3,1),(3,2) ∴AD =BC =5,AB =1当直线l 过点C (3,1)时,1=-3+b ,即b =4∴直线的解析式为y =-x +4.∴42y x y =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩,即直线1与AD 的交点E 为(2,2) ∴DE =1.∴如图:当l 过点C 时,点P 位于点E 或点C①当l 过点C 时,点P 位于点E 时,S =DE =1;②当l 过点C 时,点P 位于点C 时,S =AD +AB +BC =5+1+5=11..∴当1过点C 时,S 的值为1或11;当直线l 过点D 时,b =5;当直线1过点C 时,b =4;当直线1过点B 时,将B (-2,1)代入y =-x +b 得1=2+b ,即b =-1∴当45b <≤或1b =-时,直线l 与图形G 有一个交点.故填1或11,45b <≤或1b =-.【点睛】本题主要考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征,根据题意求出临界值成为解答本题的关键.16.4或【分析】当为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A 、F 、C 共线,即沿折叠,使点解析:4或【分析】当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,先利用勾股定理计算出10AC =,根据折叠的性质得90AFE B ∠=∠=︒,而当CEF △为直角三角形时,只能得到90EFC ∠=︒,所以点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,则,6EB EF AB AF ===,可计算出CF ;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,根据勾股定理计算出CF .【详解】解:当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,在Rt ABC 中,6,8AB BC ==,∴10AC =,∵B 沿AE 折叠,使点B 落在点F 处,∴90AFE B ∠=∠=︒,当CEF △为直角三角形时,只能得到90EFC ∠=︒,∴点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,∴,6EB EF AB AF ===,∴1064CF =-=;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,∴6,862BE AB CE ===-=,∴CF =综上所述,CF 的长为4或故答案为:4或【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解.三、解答题17.(1)4-;(2)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)解析:(1)422)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可; (2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)2+81828818162232=42232=42==+(212273-23241227224333=2-3+4=3=⨯【点睛】此题考查了二次根式的加减乘法运算,解题的关键是熟练掌握二次根式的加减乘法运算法则.18.4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,米答:水池里水的深度是4米.【点睛】本题考查解析:4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,1∴⨯=米1243答:水池里水的深度是4米.【点睛】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.19.(1)见解析;(2)见解析;周长为4+2.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)解析:(1)见解析;(2)见解析;周长为.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)如图1,将AB 绕点A 逆时针旋转90︒得AD ,将AB 绕点B 顺时针旋转90︒得BC ,连接DC ,正方形ABCD 即为所求.(2)如图2所示,2AF BE ==∴S ▱ABEF 236=⨯= 由题意可知:221310AB =+=平行四边形ABEF 即为所求.周长为2()2(210)410AB BE +=⨯=+【点睛】本题考查作图、勾股定理、正方形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题.20.(1)见解析;(2)四边形的面积.【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,,再利用勾股定理求解,从而可得答案.【详解】(1)证明解析:(1)见解析;(2)四边形ABFC 的面积93=【分析】(1)利用平行四边形的性质先证明ABE FCE ∆≅∆,可得,AB FC =再证明四边形ABFC 是平行四边形,从而可得结论;(2)先求解6AF DF ==,132CF DF ==,再利用勾股定理求解2233AC AF CF -=而可得答案.【详解】(1)证明:四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,BAE CFE ∴∠=∠,点E 是ABCD 中BC 边的中点,BE CE ∴=,AEB FEC ∠=∠,()ABE FCE AAS ∴∆≅∆,,AB FC ∴=//AB FC ,∴四边形ABFC 是平行四边形,又AF BC =,∴平行四边形ABFC 为矩形;(2)解:由(1)得:四边形ABFC 为矩形,90ACF ∴∠=︒, AFD 是等边三角形,6AF DF ∴==,132CF DF ==,AC ∴∴四边形ABFC 的面积3AC CF =⨯==.【点睛】本题考查的是等边三角形的性质,勾股定理的应用,平行四边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.21.(1)﹣i ,1,;(2)﹣i ﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i ,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i ,1,20221i i i--;(2)﹣i ﹣6;(325.【解析】【分析】(1)根据题目所给条件可得i 3=i 2•i ,i 4=i 2•i 2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a +bi =4+3i ,求出a 、b ,即可得出答案.【详解】(1)i 3=i 2•i =﹣1×i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,设S =i +i 2+i 3+…+i 2021,iS =i 2+i 3+…+i 2021+i 2022,∴(1﹣i )S =i ﹣i 2022,∴S =20221i i i--,故答案为﹣i,1,20221i ii--;(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)=3﹣4i+3i﹣4i2﹣(4﹣9i2)=3﹣i+4﹣4﹣9=﹣i﹣6;(3)a+bi=2543i-=25(43)(43)(43)ii i+-+=10075169i++=4+3i,∴a=4,b=3,x,0)到点A(0,4),B(24,3)的最小距离,∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离,∴A'B25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0解析:(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0<x<30范围内,令y1=y2,求x的值,可得y1>y2时x的取值范围,在x≥30时,令y1=y2可得x的值,即可得y1>y2时可得x的取值范围.【详解】解:(1)由题意得:y1=50+3x,当0<x<30且x为整数时,y2=80,当x≥30时且x为整数时,y2=80+5(x-30)=5x-70;(2)当0<x<30且x为整数时,当50+3x=80时,解得x=10,即10<x<30时,y1>y2,0<x<10时,y1<y2,当x≥30且x为整数时,50+3x=5x-70时,解得x=60,即x>60时,y2>y1,30≤x<60时,y2<y1,∴从日工资收入的角度考虑,①当0<x<10或x>60时,y2>y1,他应该选择方案二;②当10<x<60时,y1>y2,他应该选择方案一;③当x=10或x=60时,y1=y2,他选择两个方案均可.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三解析:(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点B的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三种情况:①当时,②当时,③当时分别讨论计算即可.【详解】解:如图1,过C作于E,过B作于F,四边形是平行四边形,,,,C的坐标分别为,,,,,;(2)设点P运动秒时,四边形是平行四边形,由题意得:,点D是的中点,,四边形是平行四边形,,即,,当秒时,四边形是平行四边形;(3)如图2,①当时,过作于E,则,,,又,C的坐标分别为,,∴,即有,当点P与点C重合时,,;②当时,过作于G,则,,;③当时,过作于F,则,,,;综上所述:当是等腰三角形时,点P的坐标为,,,,.【点睛】本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键.24.(1),;(2)或;(3)存在,或或【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx+b ,解二元一次方程组可求y =﹣x+4;(2)当D 点在E解析:(1)(3,0)C ,443y x =-+;(2)23(0,)7或(0,1)-;(3)存在,19(,0)3或31(,0)3-或1(,0)3- 【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx +b ,解二元一次方程组可求y =﹣43x +4; (2)当D 点在E 上方时,过点D 作MN ⊥y 轴,过E 、F 分别作ME 、FN 垂直与x 轴,与MN 交于点M 、N ,由△EDF 是等腰直角三角形,可证得△MED ≌△NDF (AAS ),设D(0,y ),F (m ,﹣43m +4),E (﹣1,2),由ME =y ﹣2,MD =1,DN =y ﹣2,NF =1,得到m =y ﹣2,y =1+(﹣43m +4)=5﹣43m ,求出D (0,237);当点D 在点E 下方时,过点D 作PQ ⊥y 轴,过P 、Q 分别作PE 、FQ 垂直与x 轴,与PQ 交于点P 、Q ,同理可证△PED ≌△QDF (AAS ),设D (0,y ),F (m ,﹣43m +4),得到PE =2﹣y ,PD =1,DQ =2﹣y ,QF =1,所以m =2﹣y ,1=﹣43m +4﹣y ,求得D (0,﹣1); (3)连接OG ,由S △ABG =S △ABO ,可得OG ∥AB ,求出AB 的解析式为y =2x +4,所以OG 的解析式为y =2x ,可求出G (65 ,125),进而能求出AG 的解析式为y =34x +32,设M (t ,34t +32),N (n ,0),①当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34),求得N (﹣13,0);②当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0),求得N (﹣313,0);③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34),求得N (193,0). 【详解】解:(1)∵△ABC 面积为10, ∴12×AC ×OB =12×AC ×4=10,∴AC =5,∵A (﹣2,0),∴C(3,0),将点B与C代入y=kx+b,可得4 30bk b=⎧⎨+=⎩,∴434kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+4,故答案为(3,0),y=﹣43x+4;(2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠MDE+∠NDF=∠MDE+∠MED=90°,∴∠NDF=∠MED,∴△MED≌△NDF(AAS),∴ME=DN,MD=FN,设D(0,y),F(m,﹣43m+4),∵E是AB的中点,∴E(﹣1,2),∴ME=y﹣2,MD=1,∴DN=y﹣2,NF=1,∴m=y﹣2,y=1+(﹣43m+4)=5﹣43m,∴m=97,∴D(0,237);当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ 交于点P、Q,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠PDE+∠QDF=∠PDE+∠PED=90°,∴∠QDF=∠PED,∴△PED≌△QDF(AAS),∴PE=DQ,PD=FQ,设D(0,y),F(m,﹣43m+4)∵E是AB的中点,∴E(﹣1,2),∴PE=2﹣y,PD=1,∴DQ=2﹣y,QF=1,∴m=2﹣y,1=﹣43m+4﹣y,∴m=3,∴D(0,﹣1);综上所述:D点坐标为(0,﹣1)或(0,237);(3)连接OG,∵S△ABG=S△ABO,∴OG∥AB,设AB的解析式为y=kx+b,将点A(﹣2,0),B(0,4)代入,得420bk b=⎧⎨-+=⎩,解得24k b =⎧⎨=⎩, ∴y =2x +4,∴OG 的解析式为y =2x ,∴2x =﹣43x +4, ∴x =65, ∴G (65 ,125), 设AG 的解析式为y =k 1x +b 1,将点A 、G 代入可得11112061255k b k b -+=⎧⎪⎨+=⎪⎩, 解得113422k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴y =34x +32, ∵点M 为直线AG 上动点,点N 在x 轴上,则可设M (t ,34t +32),N (n ,0), 当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =﹣13, ∴N (﹣13,0); 当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0), ∴322n t +=,38t +114=0, ∴t =﹣223,n =﹣313, ∴N (﹣313,0); ③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =193, ∴N (193,0); 综上所述:以点B ,C ,M ,N 为顶点的四边形为平行四边形时,N 点坐标为19(,0)3或31(,0)3-或1(,0)3-. 【点睛】本题考查一次函数的综合应用,(2)中注意D 点的位置有两种情况,避免丢解,同时解题时要构造K 字型全等,将D 点、F 点坐标联系起来,(3)中利用平行四边形对角线互相平分的性质,借助中点坐标公式解题,能简便运算,快速求解.25.(1),理由见解析;(2),理由见解析;(3),理由见解析【分析】(1)先根据正方形的性质可证得,由此可得,,再根据同角的补角相等证得,等量代换可得,由此可得,再等量代换即可得证;(2)过点E解析:(1)DE EF =,理由见解析;(2CD CF =+,理由见解析;(3)CD CF =-,理由见解析【分析】(1)先根据正方形的性质可证得BCE DCE ≌,由此可得CBE CDE ∠=∠,BE DE =,再根据同角的补角相等证得CDE EFB ∠=∠,等量代换可得CBE EFB ∠=∠,由此可得BE EF =,再等量代换即可得证;(2)过点E 作EG EC ⊥交CB 的延长线于点G ,先证明EG EC =,利用勾股定理可得CG ,再证明EGF ECB △≌△,由此可得GF CB CD ==,最后再等量代换即可得证;(3)仿照(1)和(2CD CF =-.【详解】解:(1)DE EF =,理由如下:∵四边形ABCD 是正方形,∴BC CD AD ==,90BCD ADC ∠=∠=︒, ∴180452ADC DAC DCA ︒-∠∠=∠==︒, ∴45BCE BCD DCA ∠=∠-∠=︒,∴BCE DCE ∠=∠,在BCE 与DCE 中,BC DC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩∴()BCE DCE SAS ≌,∴CBE CDE ∠=∠,BE DE =,∵EF DE ⊥,∴90FED ∠=︒,∵360EFC BCD CDE FED ∠+∠+∠+∠=︒,∴180CDE EFC ∠+∠=︒,∵180EFC EFB ∠+∠=︒,∴CDE EFB ∠=∠,∴CBE EFB ∠=∠,∴BE EF =,∴DE EF =;(2)2CE CD CF =+,理由如下:如图,过点E 作EG EC ⊥交CB 的延长线于点G ,∴90CEG ∠=︒,由(1)知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒, ∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,在EGF △与ECB 中,EGF ECB EFG EBC EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =+=+, ∴2CE CD CF =+;(32CE CD CF =-,理由如下:如图,过点E 作EG EC ⊥交BC 于点G ,设CD 与EF 的交点为点P ,∴90CEG ∠=︒,由(1)可知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒,∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,∵EF DE ⊥,∴90FED ∠=︒,∴90CDE EPD ∠+∠=︒,∵18090DCF BCD ∠=︒-∠=︒,∴90CFE CPF ∠+∠=︒,又∵EPD CPF ∠=∠,∴CDE CFE ∠=∠,由(1)可知:CBE CDE ∠=∠,∴CBE CFE ∠=∠,在EGF △与ECB 中,EGF ECB EFG EBC EG EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =-=-, ∴2CE CD CF =-.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的判定与性质以及勾股定理的应用,作出正确的辅助线并能灵活运用相关图形的性质是解决本题的关键.。
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
新人教版八年级数学(下册)期末试卷及答案(一套) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.分解因式:22a4a2-+=__________.3.若m+1m=3,则m2+21m=________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =.3.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、D7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、()22a 1-3、74、10.5、36、6三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3x3、8k ≥-且0k ≠.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、CD 的长为3cm.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
新人教版八年级数学下册期末测试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、D6、C7、C8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、(3,7)或(3,-3)3、如果两个角互为对顶角,那么这两个角相等4、x>3.5、96、20三、解答题(本大题共6小题,共72分)1、x=32、11a ,1.3、(1)1;(2)m>2;(3)-2<2m-3n<184、略(2)∠EBC=25°5、(1)略;(2)112.5°.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
CDBA八年级下学期期末测试题(含答案)一、选择题(每小题3分,共24分)1、计算的结果是-1的式子是()A、1--B、0)1(-C、)1(--D、11-2、函数xy1=与xy=的图象在同一平面直角坐标系内的交点的个数是()A、1个B、2个C、3个D、03、方程111-=-xxx()A、解为x=1B、无解C、解为任何实数D、解为x≠1的任何实数4、函数xky=的图象经过点(1,-2),则函数1+=kxy的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限5、在直角坐标系中,点P(2,-3)到原点的距离是()A、5B、11C、13D、26、数据0,1,2,3,x的平均数是2,则这组数据的方差是()A、2B、2C、10D、107、把多项式aaxax22--分解因式,下列结果正确的是()A.)1)(2(+-xxa B. )1)(2(-+xxaC.2)1(-xa D. )1)(2(+-axax8、当k<0,反比例函数xky=和一次函数kkxy+=的图象大致是()二、填空题(每小题3分,共21分)9.不改变分式的值,使分子、分母的第一项系数都是正数,则________=--+-yxyx.10.已知a1 -b1 =5,则babababa---2232+ 的值是.11、已知反比例函数22(1)my m x-=-,则m= ,12、如下图,已知AB=AD,要使△ABC≌△ADC,可增加条件,理由是定理。
13、等腰三角形的一个角是40°,则另外两个角是14、如图所示,设A为反比例函数xky=图象上一点,且矩形ABOC的面积为3,则这个反比例函数解析式为.15、函数y中,自变量x的取值范围是三、解答题(共55分)16.计算:(共6分,每小题3分)(1)2011011(1)()2---+(2)()33296422+∙+-÷++-aaaaaa17.解方程(6分,每小题3分)(1)313221x x+=--(2)482222-=-+-+xxxxx18、(4分)先化简,再求值:(abba22++2)÷baba--22,其中2=a,21-=b19、(4分)已知一次函数的图像经过点(—2,-2)和点(2,4),(1)求这个函数的解析式。
八年级下学期数学期末试卷
一、选择题
1、在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是( )
A.20米
B.18米
C.16米
D.15米 2、下列说法正确的是( )
A .所有的等腰三角形都相似 B.所有的直角三角形都相似
C.所有的等腰直角三角形都相似
D.有一个角相等的两个等腰三角形都相似
3、如图所示,D 、E 分别是ΔABC 的边AB 、AC 上的点,DE ∥BC ,并且AD ∶BD=2,那么S ΔADE ∶S 四边形DBCE =( )
(A)32 (B)43 (C)54 (D)94
4、某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格那么你估计该厂这20万件产品中合格品约为( ) A .1万件 B .19万件 C .15万件 D .20万件
5、已知04
3
2
≠==c b a ,则c
b a +的值为( )
A.5
4 B.4
5 C.2 D.2
1
6、如图是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( ) A.0.36πm 2 B.0.81πm 2 C.2πm 2 D.3.24πm 2
二、填空题
7、妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于 .(填普查或抽样调查)
8、甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22
S S <乙
甲,则成绩较稳定的同学是 .(填“甲”或“乙”)
9、两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积之和为130cm 2,那么较小的多边形的面积是 cm 2.
10、化简:22
22
444m mn n m n -+-= .
11、不等式5(1)31x x -<+的解集是 .
12、如图,DE 与BC 不平行,当
AC
AB
= 时,ΔABC 与ΔADE 相似.
13、如图,AD=DF=FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ= .
14、如图,正方形ABCD 的边长为2,AE=EB ,MN=1,线段MN 的两端在CB 、CD 上滑动,当CM= 时,ΔAED 与N ,M ,C 为顶点的三角形相似.
15、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与ΔAOB 相似(写出1个满足条件的点的坐标).
三、计算题(共75分)
16. (8分)先化简,再求值:x x x
x x x x ÷--++--221
2122
2其中21=x
17、(8分)解不等式组⎩⎨⎧>+<-0635
12x x ,并把解集在数轴上表示出来。
18、(9分)解分式方程(注意要检验哦):
)
1(5
16++=
+x x x x 19、(10分)如图,四边形ABCD 、CDEF 、EFGH 都是正方形. (1)⊿ACF 与⊿ACG 相似吗?说说你的理由. (2)求∠1+∠2的度数. 20、(9分)美国NBA 职业篮球赛的火箭队和湖人队在本赛季已进行了5场比寒.将比赛成绩进行统计后,绘制成统计图(如图10-1).请完成以下四个问题:
(1)在图10-2中画出折线表示两队这5场比赛成绩的变化情况;
(2)已知火箭队五场比赛的平均得分90x =火,请你计算湖人队五场比赛成绩的平均得分 (3)就这5场比赛,分别计算两队成绩的极差;
(4)根据上述统计情况,试从平均得分、折线的走势、获胜场次和极差四个方面分别进行简要分析,请预测下一场比赛哪个队更能取得好成绩?
/场
图10-
2 场次/场
图10-1
21、(10分)王明同学为了测量河对岸树AB的高度.他在河岸边放一面平面镜MN,他站在C处通过平面镜看到树的顶端A.如图l-4-33,然后他量得B、P间的距离是56米,C、P 间距离是 12米,他的身高是1.74米.
⑴他这种测量的方法应用了物理学科的什么知识?请简要说明;
⑵请你帮他计算出树AB的高度.
22、(10分)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计
划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼
(1)满足条件的方案共有几种?写出解答过程.
(2)通过计算判断,哪种建造方案最省钱.
23、(11分)在ΔABC中,AB=4如图(1)所示,DE∥BC,DE把ΔABC分成面积相等的两部分,即S
Ⅰ=S
Ⅱ
,求AD的长.
如图(2)所示,DE∥FG∥BC,DE、FG把ΔABC分成面积相等的三部分,即S
Ⅰ=S
Ⅱ
=S
Ⅲ
,求AD的长.
如图(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把ΔABC分成面积相等的n部分,SⅠ=SⅡ=S Ⅲ
=…,请直接写出AD的长.
八年级月考答案
一选择题
1.B
2.C
3.C
4.B
5.B
6.B 二.填空题
7. 抽样调查 8. 甲 9. 40 10. (m-2n)÷(m+2n)
11. x <3 12. AE ÷AD 13. 1:3:5 14. 55
2
或5 15. (1,0)(答案不唯一) 三计算与证明 16. 解: 原式=
1)
1()
1)(1(2
+-+-x x x 当x=21时原式=-3+1= -2 =
1)
1()
1(+-+x x 17. 解:由(1)可得:x <3 由(2)可得:x >-2
∴原不等式的解集是-2<x <3
把次解集表示在数轴,如下图: 18.解:
)1(516++=+x x x x
5)
1()
1(6+=++x x x x
6x=x+5
X=1
经检验x=1满足方程符合题意不是增根
∴原方程的解就是x=1
19.解:(1)略
(2)(110+90+83+87+80) ÷5=90 (3) 火箭的极差 98-80=18 湖人的极差 110-80=30
(4)综上所述:火箭队发挥平稳 获胜的机率大 20. 解:(1)∵
2
2
==AC CF CG AC ,∠C 是⊿ACF 与⊿GCA 的公共角 ∴⊿ACF 与⊿GCA 相似
(2)∵AC 是正方形ABCD 的对角线 ∴∠ACB=45° ∵⊿ACF ∽⊿GCA
又∵∠ACB 是⊿ACF 与⊿GCA 的外角 ∴∠1﹢∠2=∠ACB ∴∠1﹢∠2=45° 21. 解:(1)平面镜反射图像入射角等于反射角 (2)∵∠DCP=∠ABP ∠DPC=∠APB ∴⊿DCP ∽⊿ABP
∴
AB DC
BP CP = ∴AB
74.15612= AB=8.12 ∴树高8.12米。
22. 解:(1)造A 型沼气池X 个,B 型的(20-X )个
得方程组:⎩⎨⎧≥-+≤-+492
)20(3018365)20(2015x x x x
解方程组得79≤≤x x 是整数所以x=7,8,9 所以有3种方案
(2)当x=7时,7×2+(20-7)×3=53万元 当x=8时,8×2+(20-8)×3=52万元 当x=9时,9×2+(20-9)×3=51万元 51<52<53
∴x=9时花钱最少
∴建A 型9个,B 型11个最省钱
23.(1) (2)
(3)
n
16
222212112
1==∴=∴=∴=AB AD AB AD SABC S S S 解: 33
4
33
1
3
1
1321==∴=∴=∴==AB AD AB AD SABC S S S S 解:。