氧化锌避雷器阻性电流测试
- 格式:pptx
- 大小:9.51 MB
- 文档页数:38
关于避雷器阻性电流测量方法改进的研究【关键词】避雷器试验实际相角法阻性电流1 避雷器阻性电流测量原理与特性1.1 氧化锌避雷器原理结构与工作特性1.2 测量原理当氧化锌避雷器老化或损坏时,往往会发生其阻性电流增大的现象。
所以在实际的运行工作中,测试人员常常根据用电设备在正常电压工作的条件下阻性电流的变化趋势来对氧化锌避雷器的性能进行评估。
由于RCD-4型阻性电流测量仪测量回路中输入的电流阻抗相对而言较小,把电流测量仪用于测量的探头连接在放电计数器两端就可以测量出总电流信号I1,这种测量方法十分简便且具有唯一性。
测量电压信号U1的方法大致分为三种:(1)从标准电压(220V)的电源上测得电压信号U1,这种方法称之为电源法。
(2)在测量现场测得一个感应电压U1,称之为感应法1.3 三次谐波法的分析及实现因为在线测试当中,一般要在PT上引用电压的信号作为参考,导致测试试验的结果容易因为PT角差而产生误差。
三次谐波法无需引入PT上的电压信号作参考,而且试验方法较为简单便捷,但是三次谐波法也有明显的缺点,使三次谐波法没有得到普遍的应用,主要的缺点:a.不同氧化锌避雷器的阀片,它的阻性电流最大值和三次分量相互间的函数关系互有差异,哪怕相同的阀片在不同的使用阶段也会发生变化,所以测试中结果的准确程度难以得到保证。
b.如果母线中也含有三次谐波的分量,这种方法就无法消除这些三次谐波分量对测试的干扰,最终也影响了结果的准确性。
在当前条件下,产生的解决这种问题的方法是三次谐波补偿法,新增了更多的电场探头,使得电网中的三次谐波对于试验结果造成的误差得到了补偿,测试方法也十分的便捷。
2 传统阻性电流测量方法的弊端传统阻性电流测量方法主要存在的问题主要是两个方面:2.1 传统阻性电流测试方法无法直接依据理论进行判断工作状态正常的氧化锌避雷器阻性泄露电流应当占到总电流的百分之十至百分之二十,当阻性泄露电流占总电流的比例增加并且超出这一范围时,可以判断出该避雷器的工作状态出现了故障。
无间隙金属氧化物避雷器试验避雷针的接地电阻不应大于10欧姆。
避雷针对建筑物的防雷电保护角是小于或等于45度。
一、试验工程1、绝缘电阻;2、直流1mA电压U1mA,及下的泄漏电流;3、运行电压下的交流泄漏电流;4、工频参考电流下的工频参考电压;5、底座绝缘电阻;6、放电计数器动作检查。
二、试验方法及步骤1〕使用2500V及以上兆欧表。
1、使用2500V及以上兆欧表,摇测避雷器的两极绝缘电阻,1min,记录绝缘电阻值。
2、用接地线对避雷器的两极充分放电注意;无间隙金属氧化物避雷器:35kV以上,绝缘电阻不低于2500MΩ;35kV 及以下,绝缘电阻不低于1000MΩ。
2〕直流1mA电压U1mA,及下的泄漏电流测量1、将避雷器瓷套外表擦拭干净。
2、采用高压直流发生器进展试验接线〔选用的试验设备额定电压应高于被试避雷器的直流1mA电压〕,泄漏电流应在高压侧读表,测量电流的导线应使用屏蔽线。
3、升压。
在直流泄漏电流超过200μA时,此时电压升高一点,电流将会急剧增大,所以应放慢升压速度,在电流到达1mA时,读取电压值U1mA后,降压至零。
4、计算0.75倍U1mA值。
5、升压至,测量泄漏电流大小。
6、降压至零,断开试验电流。
7、待电压表指示根本为零时,用放电杆对避雷器放电,挂接地线,拆试验接线。
8、记录环境温度。
判断方法;避雷器直流1mA电压的数值不应该低于GB11032中的规定数值,且U1mA实测值与初始值或制造厂规定值比拟变化不应超过土5%,0.75 U1mA 下的泄漏电流不得大于50μA,且与初始值相比拟不应有明显变化。
如试验数据虽未超过标准要求,但是与初始数据出现比拟明显变化时应加强分析,并且在确认数据无误的情况下加强监视,如增加带电测试的次数等。
考前须知1、由于无间隙金属氧化物避雷器外表的泄漏原因,在试验时应尽可能地将避雷器瓷套外表擦拭干净。
如果仍然试验直流1mA电压不合格,应在避雷器瓷套外表装一个屏蔽环,让外表泄漏电流不通过测量仪器,而直接流入地中。
氧化锌避雷器带电测试原理、方法和试验标准(傅祺,成都铁路局供电处工程师 37883张丕富,成都铁路局多元工程师)摘要避雷器是保证牵引供电系统安全运行的重要设备之一,接触网线路上使用的避雷器均需在雷雨季节来临前进行一次预防性试验以证明避雷器的电气性能良好,可以正常运行,能保证供电系统安全运行。
由于电气化铁路运行的特殊性,常规避雷器预防性试验受天窗时间和现场条件限制,很难开展,氧化锌避雷器带电测试的研制使用为解决这一难题提供了新的途径。
关键词:接触网;避雷器;预防性试验;1引言避雷器是保证电力系统安全运行的重要设备之一,主要用于限制由线路传来的雷电过电压或操作引起的内部过电压。
为保证金属氧化物避雷器的安全运行,必须定期测试避雷器的电气性能。
接触网线路的雷电过电压保护基本上采用避雷器来完成,检测避雷器的主要手段仍然是周期性停电预试项目,这样既耗费了人力、物力,还常因停电原因不能完成避雷器预试项目。
据统计,各线每年均有避雷器因自身原因发生击穿而造成停电的事故发生。
可见,避雷器运行状态是否良好、能否得到较好的监控,与铁路供电质量的稳定可靠有密切关系。
这就需要我们尽快找到一种能解决该问题的方案。
2现状按照《电力设备预防性试验规程》要求:变电所和接触网线路上使用的避雷器均需在雷雨季节来临前进行一次预防性试验以证明避雷器的电气性能良好,可以正常运行,能保证供电系统安全运行。
由于电气化铁路运行的特殊性,避雷器预防性试验目前存在很多问题:目前牵引供电系统氧化锌避雷器预防性试验的方法是直流耐压试验:即测试直流1mA 电压(U1mA)及(U1mA)下的泄漏电流。
这种测试方法需要停电进行,测试结果受空气湿度和气温的影响较大。
每台避雷器测试时间需要40分钟左右的天窗时间。
受馈线天窗影响,如天窗时间短、天窗时间多数为夜间、繁忙区段天窗时间无法保证等因素(特别是高铁区段,馈线天窗几乎不可能安排在天气晴朗的白天),造成变电所馈线避雷器及接触网线路避雷器每年的预防性试验无法正常进行,给供电设备运行带来了很大的安全隐患,近年来多次发生接触网避雷器炸裂导致供电中断的事故。
氧化锌避雷器工作原理与带电测试方法有关氧化锌避雷器工作原理与带电测试方法,在电力线上如安装氧化锌避雷器后,当雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电源线上的电压掌控在安全范围内,从而保护了电器设备的安全。
氧化锌避雷器原理与带电测试方法一、氧化锌避雷器的工作原理氧化锌ZnO避雷器是20世纪70时代进展起来的一种新型避雷器, 它重要由氧化锌压敏电阻构成。
每一块压敏电阻从制成时就有它的肯定开关电压(叫压敏电阻),在正常的工作电压下(即小于压敏电压)压敏电阻值很大,相当于绝缘状态,但在冲击电压作用下(大于压敏电压),压敏电阻呈低值被击穿, 相当于短路状态。
然而,压敏电阻被击状态,是可以恢复的;当高于压敏电压的电压撤销后,它又恢复了高阻状态。
因此,在电力线上如安装氧化锌避雷器后,当雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电源线上的电压掌控在安全范围内,从而保护了电器设备的安全。
二、氧化锌避雷器带电测试的理论依据1.氧化锌避雷器带电测试的紧要性氧化锌避雷器在运行中由于其阀片老化、受潮等原因,简单引起故障,这将导致主设备得不到保护,严重时可能发生爆炸,影响系统的安全运行。
而氧化锌避雷器预试必需停运主设备,会影响设备的运行牢靠性, 而且有时受运行方式的限制无法停运主设备,导致避雷器不能按时预试。
因此,氧化锌避雷器的带电测试与在线监测显得尤为紧要。
2.氧化锌避雷器带电测试的目的利用氧化锌避雷器的带电测量,测得避雷器阻性电流与总泄露电流的比值,即氧化锌避雷器的阻性电流重量,来判定避雷器的受潮及老化情形。
因氧化锌避雷器在阀片老化以及经受热和冲击破坏以及内部受潮时,氧化锌避雷器的有功损耗加剧,也即避雷器泄露电流中的阻性电流重量会明显增大,从而在氧化锌避雷器内部产生热量,使得氧化锌避雷器阀片进一步老化,产生恶性循环,破坏氧化锌避雷器内部稳定性。
通过氧化性避雷器带电测量有功重量,适时发觉有问题的氧化锌避雷器,将设备故障杜绝在萌芽状态。
1、氧化锌避雷器原理氧化锌避雷器中的氧化物电阻片相当于一个电阻和电容组成的混联电路。
氧化物避雷器通常由多个氧化物电阻片串联而成(根据通流容量的要求也可选择多柱并联),并通过一定的连接方式使它固定在避雷器的瓷套中。
在正常运行电压下,通过避雷器的电流很小,只有几十至数百微安,这个电流称做运行电压下的交流泄漏电流。
它大致可分为三部分:1通过固定电阻片的绝缘材料的电流;2通过氧化物电阻片的电流;3通过避雷器瓷套的电流。
当避雷器正常状态时,通过电阻片的电流是泄漏电流的主要成分,也可以认为通过电阻片的电流就是避雷器的总泄漏电流(全电流)。
氧化物避雷器的总泄漏电流(全电流)中包含着阻性电流(有功分量)和容性电流(无功分量)。
在正常运行情况下,通过避雷器的电流主要是容性电流,而阻性电流占很小一部分,约为10%~20%左右。
2、测量运行中的MOA被测量的MOA的总电流信号是取自该相MOA的放电计数器。
2.1从电压互感器(PT、CVT)取信号测量接线见图1图12.2测量运行中避雷器(MOA)的阻性电流的基本原理,是取被测相MOA的总泄露电流(全电流)信号,再取一个与被测相MOA两端电压同相的电压信号;总电流Ix基波矢量I1在电压基波矢量U1上的投影,即为MOA阻性电流IR1(如图2)。
总电流Ix测量由电缆的两个探头分别与放电计数器两端连接即可;电压信号取自PT端子箱电压互感器(PT或CVT)二次绕组。
举例说明,测量B相MOA的阻性电流,取B相MOA的总电流Ix、B相PT二次的相电压U,送入测量仪器。
仪器会显示电压基波值U1,总电流Ix,并按公式:图2IR1p=I1×√2×cos(φu-I+φ0)计算出阻性电流基波峰值IR1p,此时校正角φ0=0,仪器显示IR1p、φu-I及I1。
依据长治站MOA各设备厂家给出判断在持续电流PT取电压下测量其阻性电流标准要求(标准如下),视为运行正常,不必加强监视采集密度,不做MOA劣化判断。
金属氧化锌避雷器全电流测试方法及数据分析0引言金属氧化锌避雷器是保证变电设备安全平稳运行的重要保护设备之一,它在运行中发生受潮、老化以及受热冲击破坏后发生故障从而导致严重事故,影响铁路安全供电。
通过对运行避雷器全电流及阻性电流的在线监测的数据分析,可以有效发现避雷器内部缺陷,大大提高避雷器的运行可靠性,及检修试验人员的工作效率。
一、避雷器全电流测试应用情况避雷器带电测试可以不停电测试,通过对数据的分析判断,了解氧化锌避雷器的运行状况,是对氧化锌避雷器有效的一种检测手段,且《检规》第九十四条、一百一十九条,分别鼓励和明确,避雷器进行全电流及阻性电流合格后,可不再进行绝缘、直流泄漏等项目。
二、全电流测试方法(一)试验接线避雷器带电测试时测量方法较多,特别是电压的采集,为保证试验数据的准确性,我段采用常规的3PT或单PT模式进行,参考电压信号线一端插入参考电压插座,另一端接被测相PT二次端子箱输出端。
电流信号线连接至被测避雷器放电计数器上端。
(二)试验步骤1.开工准备:(1)根据工作计划安排,提前办理第三种工作票手续,并在作业前检查确认安全劳保及试验仪器等用品。
(2)在工作领导人交待作业任务、安全注意事项,并分别在工作票签字。
2.电源检查:(1)试验电源应带有漏电保护器。
(2)试验电源线不应小于2.5mm2.(3)检修电源箱接取。
(4)电源必须有试验人员接取,其他人不应随时操作。
(5)确认电源电压等级。
3.分工调查:(1)根据试验性质,明确具体试验项目和分工。
(2)了解被试设备运行情况和历史试验数据,出厂试验数据。
4.开始作业:(1)检测前正确安装仪器各配件。
(2)开始检测前应自检仪器工作是否完好后再进行检测。
(3)启动设备,进行必要的软件设置。
5.收工结束:(1)拆除试验临时电源接线。
(2)检查被试设备上有无遗留工器具和试验线。
(3)清点工具,清理试验现场,拆除试验临时安全围栏。
(4)向运行人员报告被试设备试验结果。
氧化锌避雷器是电力系统的重要保护设备,被称为电力系统的"保护神"。
由于氧化锌避雷器长期在运行电压和过电压作用下,保护神也有健康欠佳的时候,因此,定期对氧化锌避雷器进行绝缘电阻及泄露电流测试,对保护氧化锌避雷器,延长使用寿命很有必要。
一试验目的1.掌握测量绝缘电阻及吸收比的原理和操作方法;2.掌握测量泄漏电流的原理及操作方法;3.分析设备绝缘状况。
二试验内容1.用兆欧表(摇表)测量试品(三相电缆及氧化锌避雷器)的绝缘电阻和吸收比;2.测量高压直流下的试品泄漏电流。
三试验装置及接线图1.使用兆欧表测量试品绝缘电阻和吸收比的接线图图1 兆欧表测量绝缘电阻图中:R1、R2:串联电阻;E:摇表接地电极;G:摇表屏蔽电极;L:摇表高压电极;A、B、C:三相电缆的三个单相端头。
2.测量泄漏电流的装置及线路图如下:图2 测量三相电缆的泄漏电流图中:T1:调压器;T2:高压试验变压器;D:高压整流硅堆;R:保护电阻;C:滤波电容;V2:静电电压表;R2:测量电阻;V1:电压表;T、O:试品四试验步骤1.检验摇表,不接试品,摇动手柄指针指向“∞”;短接L,E两端缓缓摇动手柄指针应指零。
2.按图1接线,经检查无误之后,以每分钟120转的速度摇动摇表手柄。
3.读取15秒及60秒时的读数,即为R15及R604.对电容较大的试品,在试验快结束时候,应设法在摇表仍处于额定转速时断开L 或者E引线,以免摇表停止转动时,试品向摇表放电而冲击指针,造成摇表指针的损坏。
5.摇表停转后,对试品进行放电,然后分别将B相和C相作为被试对象,重复步骤2、3。
6.按图2接线,经检查无误后,合闸平稳升压,当电压升至试验电压时,保持1分钟,再读取微安表读数。
7.将调压器退至零位,断开电源,对A相放电后,再分别对B、C两相进行上述步骤6。
五试验数据处理1.根据绝缘电阻值求取试品的吸收比,判断电缆是否受潮。
吸收比是指设备绝缘60秒时的绝缘电阻与15秒时的绝缘电阻的比值。
氧化锌避雷器带电测试原理及误差分析发表时间:2018-10-17T10:33:53.310Z 来源:《电力设备》2018年第19期作者:程英哲[导读] 摘要:近年来随着电网规模的增大,避雷器带电测试的应用已经成为变电站运维不可或缺的一项技术,但由于试验方法及现场干扰的影响,测试的数据往往不能反映设备运行的真实工况,本文通过对避雷器带电测试的基本原理及补偿技术的分析,对测试结果的偏差的问题进行了探讨。
(国网福建省电力有限公司检修分公司福建省福州市 350000)摘要:近年来随着电网规模的增大,避雷器带电测试的应用已经成为变电站运维不可或缺的一项技术,但由于试验方法及现场干扰的影响,测试的数据往往不能反映设备运行的真实工况,本文通过对避雷器带电测试的基本原理及补偿技术的分析,对测试结果的偏差的问题进行了探讨。
关键词:氧化锌避雷器;相角差;阻性电流 1概述金属氧化物避雷器是用于限制电气设备雷电过电压和操作过电压损害的重要设备。
为保证避雷器的安全运行,必须通过试验的方法来检测避雷器的性能。
早先检测避雷器的主要手段仍然是周期性停电预试项目为主。
随着电网建设规模的增大,停电检测耗费人力、物力,因停电时间等原因不能完成避雷器预试的弊端日渐突出,因此目前电网系统中普遍推行通过带电测试手段检测避雷器的性能。
2相角差的概念氧化锌避雷器在电路上等效于一个电阻和电容并联的无源阻抗,由于相电压对地的作用,避雷器会产生由容性电流和阻性电流组成的泄露电流。
氧化锌避雷器阀片的特性决定了在正常运行中其电容电流占了泄露电流的主要组成部分(约80~90%),当氧化锌避雷器受潮或老化时,阻性电流增大,全电流也随之增大,电阻电流的变化幅度比电容电流的变化更为明显。
分析电阻电流的目的是消除电容电流的干扰,提高检测的灵敏度。
通过对氧化锌避雷器带电有功分量的测量,能够及时发现氧化锌避雷器存在的问题,将设备故障扼杀在萌芽状态,这与高压设备测量绝缘电阻与介质损耗角来判断设备状况的原理也是相似的。