2016-2017年安徽省淮北市濉溪县八年级(下)期中数学试卷(解析版)
- 格式:pdf
- 大小:435.01 KB
- 文档页数:10
淮北市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共14分)1. (2分)下列各式是二次根式的是()A .B .C .D .2. (2分) (2017八下·泰兴期末) 下列运算正确的是()A . - =B . ÷ =4C . =-2D . (- )2=23. (2分) (2019八下·师宗月考) 张大爷离家出门散步,他先向正东走了30 m,接着又向正南走了40 m,此时他离家的距离为()A . 30 mB . 40 mC . 50 mD . 70 m4. (2分) (2016八下·和平期中) 下列命题中,是真命题的是()A . 两条对角线互相平分的四边形是平行四边形B . 两条对角线相等的四边形是矩形C . 两条对角线互相垂直的四边形是菱形D . 两条对角线互相垂直且相等的四边形是正方形5. (2分)△ABC的三边分别是a、b、c,由以下条件不能得出△ABC是直角三角形的是()A . a=1,b= ,c=B . ∠A+∠B=∠CC . a2﹣b2=c2D . ∠A:∠B:∠C=3:4:56. (2分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选一个作为补充条件后,使得四边形ABCD是菱形,现在下列四种选法,其中都正确的是()A . ①或②B . ②或③C . ③或④D . ①或④7. (2分)(2016·河南) 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A . (1,﹣1)B . (﹣1,﹣1)C . (,0)D . (0,﹣)二、填空题 (共7题;共7分)8. (1分) (2017七下·柳州期末) 计算: =________.9. (1分)如图,四边形ABCD中,已知AB=10,CD=12,对角线BD平分∠ABC,∠ADB=45°,∠BCD=90°,则边BC的长度为________ .10. (1分) (2019九上·凤翔期中) 如图,如图,在正方形ABCD中,点P在AB边上,于E点,于F点,若,,则 ________.11. (1分)使式子有意义的最小整数m是________12. (1分) (2018九上·长宁期末) 如图,在Rt ABC中,∠BAC=90°,点G是重心,联结AG,过点G作DG//BC,DG交AB于点D,若AB=6,BC=9,则 ADG的周长等于________.13. (1分) (2016八下·龙湖期中) 如图,在矩形ABCD中,O是对角线的交点,AE⊥BD于E,若OE:OD=1:2,AC=18cm,则AB=________cm.14. (1分) (2019八上·榆树期末) 如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AD=10,AB=6,则FC的长是________.三、解答题 (共10题;共95分)15. (15分) (2016八下·大石桥期中) 计算(1)(﹣2 )× ﹣6(2)( + )÷(3)(﹣2)2015( +2)2016.16. (5分)(2016九下·重庆期中) 已知:x,y为实数,且,化简:.17. (5分) (2016八下·安庆期中) 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC= b2+ ab.又∵S四边形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)∴ b2+ ab= c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2 .18. (15分)(2018·舟山) 已知,△ABC中,∠B=∠C,P是BC边上一点,作∠CPE=∠BPF,分别交边AC,AB于点E,F。
安徽省淮北市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·湛江模拟) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分) (2019八上·武汉月考) 如图,画∠AOB 的角平分线的方法步骤是:①以 O 为圆心,适当长度为半径作弧,交 OA 于 M 点,交 OB 于 N 点.②分别以 M,N 为圆心,以大于 MN 的长为半径作弧,两弧在∠AOB 的内部交于C.③过点 C 作射线 OC,射线 OC 就是∠AOB 的角平分线,这样作角平分线的依据是()A . SSSB . SASC . ASAD . AAS3. (2分) (2020八上·丹江口期末) 在直角坐标系中,点与点关于轴对称,则点的坐标为()A .B .C .D .4. (2分) (2020八上·五常期末) 如图所示,在△ABC中,∠C=90°,AD平分∠BAC ,DE⊥AB于E , DE=4,BC=9,则BD的长为()A . 6B . 5C . 4D . 35. (2分) (2020七下·江苏月考) 若一个多边形的外角和与它的内角和相等,则这个多边形是()A . 三角形B . 四边形C . 五边形D . 六边形6. (2分) (2017八上·衡阳期末) 下列命题是真命题的是()A . 如果 =1,那么a=1;B . 三个内角分别对应相等的两个三角形全等;C . 如果a是有理数,那么a是实数;D . 两边一角对应相等的两个三角形全等。
7. (2分)(2017·嘉兴) 长度分别为,,的三条线段能组成一个三角形,的值可以是()A .B .C .D .8. (2分) (2020七下·金昌期末) 如图,已知AE =AF,那么添加下列一个条件后,仍无法判定AED≌AFD的是()A . ED =FDB . ∠EAD=∠FADC . ∠AED=∠AFD= 90°D . ∠EDA =∠FDA9. (2分)如图,在△ABC中,∠BAD=∠DAE=∠EAF=∠FAC,则()是△ABC的角平分线.A . ADB . AEC . AFD . AC10. (2分)下列图形中具有稳定性的有()A . 2个B . 3个C . 4个D . 5个二、填空题 (共10题;共10分)11. (1分) (2020九上·余姚月考) 有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式________12. (1分) (2020九上·台州月考) 已知抛物线y= x2+bx经过点A(4,0).设点C(1,-3),请在抛物线的对称轴上确定一点D,使得|AD-CD|的值最大,则D点的坐标为________13. (1分) (2020八下·中卫月考) 如图,△ABC中,∠C=90°,∠A=30° ,BD平分∠ABC交AC于D,若CD=2cm,则AC=________.14. (1分) (2020八上·当涂期末) 如图,≌ ,其中,,则________.15. (1分) (2020八上·合肥月考) 一个锐角三角形,所有内角的度数均为正整数,且最小角是最大角的,则这个锐角三角形三个内角的度数为________.16. (1分) (2019七下·城固期末) 如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高,且∠B=40°,∠C=60°,则∠EAD度数是________.17. (1分) (2016八上·萧山期中) 已知等腰三角形的一边等于3cm,别一边等于6cm,则周长为________cm。
2016-2017学年度第二学期期中检测八年级数学试题(全卷共120分,考试时间90分钟)一.选择题(本大题有8个小题,每小题3分,共24分,将正确选项填写在表格中相应位置)1.下列图形中,是中心对称图形的是(▲)A B C D2.下列调查中,适宜采用普查方式的是(▲)A.调查市场上某品牌老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对《徐州夜新闻》的认可情况3.下列调查的样本选取方式,最具有代表性的是(▲)A.在青少年中调查年度最受欢迎的男歌手B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间C.为了了解你所在学校的学生每天的上网时间,向八年级的同学进行调查D.对某市的出租司机进行体检,以此反映该市市民的健康状况4.下列事件中,属于确定事件的是(▲)A.掷一枚硬币,着地时反面向上B.买一张福利彩票中奖了C.投掷3枚骰子,面朝上的三个数字之和为18D.五边形的内角和为540度5.如图,E、F、G、H分别是□ABCD各边的中点,按不同方式连接分别得到图○1、○2中两个不同的阴影部分甲、乙,关于甲、乙两个阴影部分,下列叙述正确的是( ▲ )A .甲和乙都是平行四边形B .甲和乙都不是平行四边形C .甲是平行四边形,乙不是平行四边形D .甲不是平行四边形,乙是平 行四边形6. 如图,在菱形ABCD 中,AC =6,BD =8,则菱形的周长是( ▲ )A .24B .48C .40D .207. 若依次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ▲ )A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形 8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:○1∠BCD =2∠DCF ;○2∠ECF =∠CEF ;○3S △BEC =2S △CEF ;○4∠DFE =3∠AEF ,其中一定正确的是( ▲ )A .○1○2○4B .○1○2○4C .○1○2○3○4D .○2○3○4图(1)图(2)GF E HCDGF E HCDABBA 第5题图CDAB第6题图EFCDBA 第8题图二. 填空题(本大题有8个小题,每小题3分,共24分)9. 如图是某校参加各兴趣小组的学生人数分布扇形统计图,其中“演艺”兴趣小组一项所对应的角度是 ▲ °.10. 一只不透明的袋子里装有1个白球,3个黄球,6个红球,这些球除了颜色外都相同,将球搅匀,从中任意摸出1个球,有下列事件:○1该球是红球,○2该球是黄球,○3该球是白球.它们发生的概率分别记为P 1,P 2,P 3.则P 1,P 2,P 3的大小关系 ▲ .11. 在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在0.2,那么据此估计,袋子里的球的总数大约是 ▲ 个. 12. 在□ABCD 的周长是32cm ,AB =5cm ,那么AD = ▲ cm .13. 如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,AB =4,BC =6,则DE = ▲ . 14. 如图,在□ABCD 中,AD =6,点E 、F 分别是BD 、CD 的中点,则EF = ▲ . 15. 如图,G 为正方形ABCD 的边AD 上的一个动点,AE ⊥BG ,CF ⊥BG ,垂足分别为点E ,F ,已知AD =4,则AE 2+CF 2= ▲ .第9题图第13题图EABCD第14题图EF DABC第15题图FE CDABG16. 如图,在Rt △ABC 中,∠ACB =90,AC =3,BC =4,分别以AB 、AC 、BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则1234S S S S +++= ▲ .三. 解答题(本大题共8小题,共72分)17. (本题8分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题: (1)本次问卷共随机调查了名学生,扇形统计图中m = . (2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?18. (本题8分)为了了解某中学初三年级650名学生升学考试的数学成绩,从中随机抽取了50名学生的数学成绩进行分析,并求得样本的平均成绩是93.5分.下面是根据抽取的学生数学成绩制作的统计表:分组频数累计频数 频率问卷情况条形统计图6168类型人数DCBA2468101214161820第16题图4321S S S S LMDMPQE F CAB60.5~70.5 正3 a70.5~80.5 正正6 0.1280.5~90.5 正正9 0.1890.5~100.5 正正正正17 0.34100.5~110.5 正正b 0.2110.5~120.5正5 0.1 合计501根据题中给出的条件回答下列问题: (1)表中的数据a = ,b = ;(2)在这次抽样调查中,样本是 ;(3)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为 人.19. (本题8分)在如图所示的网格纸中,建立了平面直角坐标系xOy ,点P (1,2),点A (2,5),B (-2,5),C (-2,3).(1) 以点P 为对称中心,画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 关于点P对称,并写出下列点的坐标:B ′ ,C ′ ; yB A(2) 多边形ABCA ′B ′C ′的面积是 .20. (本题8分)如图,在□ABCD 中, AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形. 证明:21. (本题8分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解:22. (本题10分)如图,在平面直角坐标系xOy 中,点A (3,4),B (5,0),C (0,第20题图FEDABCBCA EDF 第22题图-2).在第一象限找一点D ,使四边形AOBD 成为平行四边形, (1) 点D 的坐标是 ;(2) 连接OD ,线段OD 、AB 的关系是 ;(3) 若点P 在线段OD 上,且使PC +PB 最小,求点P 的坐标. 解:23. (本题10分)将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1) 试判断四边形DHBG 为何种特殊的四边形,并说明理由; (2) 若AB =8,AD =4,求四边形DHBG 的面积. 解:(1) (2)xyO AB CEGHFCDAB第23题图24. (本题12分)如图,正方形ABCO 的边OA 、OC 分别在x 、y 轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度a (0°<a <90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG . (1)求证:△CBG ≌△CDG ;(2)求∠HCG 的度数;并判断线段HG 、OH 、BG 之间的数量关系,说明理由;(3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由. (1) 证明:(2)解:(3)解:x yOGHFEDACB第24题图2016-2017学年度第二学期第一次质量抽测八年级数学试题答案四.选择题(本大题有8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A C B D A D C B五.填空题(本大题有8个小题,每小题3分,共24分)9.108.10.P1>P2>P3.11.10.12.11.13.2.14.3.15.16.16.18.六.解答题(本大题共10小题,共72分)17.答案:(1)50,m=32;……4分(2)图略;……6分(3)1000(16%40%)100056%560⨯+=⨯=.答约有560人.……8分18.答案:(1)a=0.06,b=10;……4分(2)50名学生的数学成绩;……6分(3)221.……8分19.解:(1)B′(4,-1),C′(4,1),图, (4)分(其中图2分)(2)28.……8分xyB'C'CA'OB AP20. (本题8分)证明:(1)因为四边形ABCD 是平行四边形,所以AD =BC ,…1分因为AD ∥BC ,所以∠ADE =∠CBF ,……2分 因为AE ⊥BD ,CF ⊥BD ,所以∠AED =∠CFB =90°,…3分所以△ADE ≌△CBF ,……4分 所以AE =CF .……5分(2)因为AE ⊥BD ,CF ⊥BD ,所以∠AEF =∠CFE =90°,…6分 所以AE ∥CF ,……7分由(1)得AE =CF ,所以四边形AECF 是平行四边形.……8分 21. 解:因为EF ⊥EC ,所以∠CEF =90°,………………1分 所以∠AEF +∠DEC =90°,………………2分因为四边形ABCD 是矩形,所以∠A =∠D =90°,………………3分 所以∠AFE +∠AEF =90°,所以∠AFE =∠DEC ,………………4分又EF =EC ,所以△AEF ≌△DCE ,………………5分 所以AE =DC ,………………6分因为2(AD +DC )=32,所以2(AE +DE +AE )=32,………………7分 因为DE =4cm ,所以AE =6cm .………………8分第20题图FEDABC22. 解答:(1)(8,4),图.…………2分 (2)OD 与AB 互相垂直平分.图…………4分(3)连接AC 交OD 于点P ,点P 即是所求点.…………5分(有图也可以)设经过点O 、D 的函数表达式为1y k x =,则有方程148k =,所以112k =,所以直线OD 的函数表达式为12y x =.………………6分设过点C 、A 的一次函数表达式为2y k x b =+,则有方程组22,3 4.b k b =-⎧⎨+=⎩解得22,2.b k =-⎧⎨=⎩所以过点C 、A 的一次函数表达式为22y x =-,………………8分解方程组1,22 2.y y x ⎧=⎪⎨⎪=-⎩得4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P (43,23).………………10分xyEPO ADBCEGCD23. (本题10分)解:(1)四边形DHBG 是菱形.………………1分 理由如下:因为四边形ABCD 、FBED 是完全相同的矩形, 所以∠A =∠E =90°,AD =ED , …………2分 所以DA ⊥AB ,DE ⊥BE ,所以∠ABD =∠EBD ,………………3分 因为AB ∥CD ,DF ∥BE ,所以四边形DHBG 是平行四边形,∠HDB =∠EBD ,………………5分 所以∠HDB =∠ABD , 所以DH =BH , 所以□DHBG 是菱形.………………6分 (2)由(1),设DH =BH =x ,则AH =8-x ,在Rt △ADH 中,222AD AH DH +=,即得2224(8)x x +-=, 解得5x =,即BH =5,………………9分所以菱形DHBG 的面积为5420HB AD ??. (10)分24. (本题12分) 解:(1)证明:∵正方形ABCO 绕点C 旋转得到正方形yGFECBCDEF ,∴CD =CB ,∠CDG =∠CBG =90°.………2分在Rt △CDG 和Rt △CBG 中,CD =CB ,CG =CG ,∴△CDG ≌△CBG (HL ).………………3分(2)解:∵△CDG ≌△CBG ,∴∠DCG =∠BCG 12DCB =∠,DG =BG .……………4分在Rt △CHO 和Rt △CHD 中,CH =CH ,CO =CD ,∴△CHO ≌△CHD (HL ).……………5分∴∠OCH =∠DCH 12OCD =∠,OH =DH ,…6分∴∠HCG =∠HCD +∠GCD 11145222OCD DCB OCB =∠+∠=∠=︒,…7分HG =HD +DG =HO +BG .………………8分(3)解:四边形AEBD 可为矩形. 如图,连接BD 、DA 、AE 、EB ,因为四边形AEBD 若为矩形,则四边形AEBD 为平行四边形,且AB =ED ,则有AB 、ED 互相平分,即G 为AB 中点的时候.因为DG =BG ,所以此时同时满足DG =AG =EG =BG ,即平行四边形AEBD 对角线相等,则其为矩形.所以当G 点为AB 中点时,四边形AEBD 为矩形.………………10分 ∵四边形DAEB 为矩形,∴AG =EG =BG =DG . ∵AB =6,∴AG =BG =3.………………11分 设H 点的坐标为(x ,0),则HO =x , ∵OH =DH ,BG =DG ,∴HD =x ,DG =3.在Rt △HGA 中,∵HG =x +3,GA =3,HA =6-x ,∴(x +3)2=32+(6-x )2,∴x =2. ∴H 点的坐标为(2,0).………………12分。
淮北市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若使分式的值为0,则x的取值为()A . 1或-1B . -3或1C . -3D . -3或-12. (2分)﹣4.5×10﹣5表示()A . ﹣0.00045B . ﹣0.000045C . ﹣450000D . ﹣450003. (2分)下列分式变形中,正确的是()A . =a+bB . =﹣1C . =n﹣mD . =4. (2分) (2017八下·民勤期末) 若无解,则m的值是()A . 3B . ﹣3C . ﹣2D . 25. (2分) (2019七下·荔湾期末) 已知点在第二象限且到轴的距离为3,到轴的距离为2,则点坐标为()A .B .C .D .6. (2分)函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A . ①②③B . ②③④C . ①③④D . ①②④7. (2分)函数y= 的图象可能是()A .B .C .D .8. (2分)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A . AB=BEB . DE⊥DCC . ∠ADB=90°D . CE⊥DE9. (2分) (2018八上·重庆期末) 如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作x轴的垂线交于点,过点作y轴的垂线交于点,过点作x轴的垂线交于点,过点作y轴的垂线交于点,依次进行下去,则点的坐标是()A .B .C .D .10. (2分) (2016九上·苏州期末) 下列四个函数图象中,当时,随的增大而增大的是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)化简:÷=________ .12. (1分)如图,一次函数y=kx+b(k>0)的图象与x轴的交点坐标为(﹣2,0),则关于x的不等式kx+b <0的解集是________13. (1分)(2017·枣庄) 如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为________.14. (1分)已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是________15. (1分) (2017八下·大冶期末) 如图,在▱ABCD中,∠ABC的平分线交AD于点E,且AE=3.5,ED=2,则▱ABCD的周长是________.三、解答题 (共8题;共95分)16. (10分)(2017·青岛模拟) 计算题(1)解不等式组:.(2)化简:(x﹣)÷ .17. (5分)先化简,再求值:.其中x为不等式组的整数解.18. (15分) (2019八下·泗洪开学考) 已知点在直线上,(1)直线解析式为________;(2)画出该一次函数的图象;(3)将直线向上平移个单位长度得到直线,与轴的交点的坐标为________;(4)直线与直线相交于点,点坐标为________;(5)三角形ABC的面积为________;(6)由图象可知不等式的解集为________.19. (10分)(2019·中山模拟)图①图②图③(1)【问题提出】如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为________.(2)【问题探究】如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.(3)【问题解决】如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).20. (15分)(2019·南京模拟) 小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为________m,小明步行的速度为________m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.21. (15分) (2017八下·邵阳期末) 随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水,某市的生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y 表示收取的人均月生活用水费(元)。
安徽省淮北市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·长春模拟) 使二次根式有意义的x的取值范围是()A . x>2B . x≥2C . x<2D . x>﹣22. (2分) (2018八上·张家港期中) 下列各组数中,不能构成直角三角形的一组是()A . 1,2,B . 1,2,C . 3,4,5D . 6,8,123. (2分) (2015八下·福清期中) 下列各式属于最简二次根式是()A .B .C .D .4. (2分)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB,AC于点E,D,DF是半圆O的切线,过点F 作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A . 4B . 3C . 6D . 25. (2分) (2016八下·凉州期中) 等腰梯形的两底之差等于腰长,则腰与下底的夹角为()A . 120°B . 60°C . 45°D . 135°6. (2分)如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB,BC,CA的中点,若CD=5cm,则EF为()A . 5B . 10C . 15D . 207. (2分) (2019八下·北京期末) 函数中,自变量的取值范围是()A .B .C .D .8. (2分)过平面上A,B,C三点中的任意两点作直线,可作()A . 1条B . 3条C . 1条或3条D . 无数条9. (2分) (2019八下·绍兴期中) 如图,DE,EF是△ABC的中位线,AB+BC=10,则四边形BFED的周长是()A . 5B . 10C . 15D . 2010. (2分)(2017·洛阳模拟) 如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A . (2017,0)B . (2017 ,)C . (2018,)D . (2018,0)11. (2分)如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的最小值为()A . 4B . +2C . +1D . 212. (2分) (2017八下·磴口期中) 如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A . 4B . 6C . 16D . 55二、填空题 (共8题;共8分)13. (1分)在实数范围内分解因式:x3-3x=________.14. (1分)(2017·孝感模拟) 如图,矩形OABC的边OA,OC分别在坐标轴上,OA=4,OC=8,把△ABC沿着AC折叠.点B落在点B′处,AB′交y轴于点D,则点D的坐标是________.15. (1分)如图,在△ABC中,已知E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是________就可以证明这个多边形是菱形.16. (1分) (2020八上·张店期末) 如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B 点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了________cm.17. (1分) (2019九上·南开月考) )如图,Rt△ABC中,C= 90o ,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6 ,则另一直角边BC的长为________.18. (1分)等边三角形的一边上的高线长为,那么这个等边三角形的中位线长为________.19. (1分)如图所示,一个圆柱体高20cm,底面半径为5cm,在圆柱体下底面的A点处有一只蚂蚁,想吃到与A点相对的上底面B处的一只已被粘住的苍蝇,这只蚂蚁从A点出发沿着圆柱形的侧面爬到B点,则最短路程是________.(结果用根号表示)20. (1分)观察下列运算过程:……请运用上面的运算方法计算:=________.三、解答题 (共6题;共56分)21. (10分) (2018八上·茂名期中) 计算(1);(2) .22. (5分) (2017八下·文安期中) 如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?23. (5分)如图,矩形的长与宽分别为a和b,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a和b要满足什么数量关系?24. (10分) (2019八上·萧山期末) 已知是等边三角形,点D是BC边上一动点,连结AD(1)如图1,若,,求AD的长;(2)如图2,以AD为边作,分别交AB,AC于点E,F.小明通过观察、实验,提出猜想:在点D运动的过程中,始终有,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD是的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD是的角平分线,构造的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明一种方法即可小聪在小明的基础上继续进行思考,发现:四边形AEDF的面积与AD长存在很好的关系若用S表示四边形AEDF的面积,x表示AD的长,请你直接写出S与x之间的关系式.25. (15分)(2020·长宁模拟) 如图,在平面直角坐标系中,已知抛物线经过点,对称轴是直线,顶点为点,抛物线与轴交于点.(1)求抛物线的表达式和点的坐标;(2)将上述抛物线向下平移个单位,平移后的抛物线与轴正半轴交于点,求的面积;(3)如果点在原抛物线上,且在对称轴的右侧,联结交线段于点,,求点的坐标.26. (11分) (2018九上·宁都期中) 如图 1,在Rt△ABC 中,∠A=90°,AB=AC,点 D、E 分别在边 AB、AC 上,AD=AE,连接DC,点 M、P、N 分别为 DE、DC、BC 的中点,(1)观察猜想:如图 1 中,△PMN 是________三角形;(2)探究证明:把△ADE 绕点 A 逆时针方向旋转到图 2 的位置,连接 MN,BD, CE.判断△PMN 的形状,并说明理由;(3)拓展延伸:将△ADE 绕点 A 在平面内自由旋转,若 AD=4,AB=10,请求△PMN 面积的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共56分)21-1、21-2、22-1、23-1、24-1、25-1、25-2、25-3、26-1、26-2、26-3、。
2016---2017学年度下期期中考试八年级数 学 试 卷一、选择题 (每小题3分,共24分)1.下列各组数中,能够组成直角三角形的是 【 】 A .3,4,5 B .4,5,6 C .5,6,7 D .6,7,8 2-1有意义,则x 的取值范围是 【 】 A .x ≥12 B .x ≤12 C .x =12D .以上答案都不对3【 】 A .① ② B .③ ④ C .① ③ D .① ④42,则此三角形的面积为 【 】 A.2BC.2 D .5.如图所示,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上, 连接BD ,则BD 的长为【 】 A B . C . D .6.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为E , 若∠ADC =130°,则∠AOE 的大小为 【 】A .75°B .65°C .55°D .50°7.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形CODE 的周长是 【 】A . 4B . 6C . 8D .10第5题图ABD E第6题图O E AB C D第7题图ABC OE D y x第8题图8.如图,是4个全等的直角三角形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x ,y 表示直角三角形的两条直角边(x > y ),请观察图案,指出下列关系式不正确...的是 【 】A .2249x y +=B .2x y -=C .2449xy +=D .13x y +=二、填空题( 每小题3分,共21分) 9.若x ,y 为实数,且∣x +2∣+3y -=0,则(x +y )2017的值为.10 .11. 实数a ,b 在数轴上的对应点如图所示,则∣a -b = .12.若x =27+x 2+(2x = .13.如图,在平面直角坐标系中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0), (2,0),点D 在y 轴上,则点C 的坐标是 .14.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D ,B 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF = .15.如图,R t △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在斜边AC 上,与点B '重合,AE 为折痕,则E B '= .三、解答题:(本大题共8个小题,满分75分) 16.(每小题4分 共8分)计算:(101)2++; (2)a 532.第11题图0baB 'A BC E aA B C D E F第13题图第14题图第15题图17.(8分)x 的取值范围是什么?18.(9分)如图,每个小正方形的边长都是1, (1)求四边形ABCD 的周长和面积(2)∠BCD 是直角吗?19.(9分)如图所示,在□ABCD 中,点E ,F 分别在边BC 和AD 上,且CE =AF ,(1)求证:△ABE ≌ △CDF ;(2)求证:四边形AECF 是平行四边形.第18题图AB第19题图ABCDE F20.(10分) 如图所示,在菱形ABCD 中,点E ,F 分别是边BC ,AD 的中点,(1)求证:△ABE ≌ △CDF ;(2)若∠B =60°,AB =4,求线段AE 的长.21.(10分)如图所示,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE ,过点C 作CF∥BD 交线段OE 的延长线于点F ,连接DF .求证: (1)OD =CF ; (2)四边形ODFC 是菱形.22.(10分)如图所示,矩形ABCD 的对角线相交于点O ,OF ⊥AD 于点F ,OF =2cm ,AE ⊥BD 于点E ,且BE ﹕BD =1﹕4,求AC 的长.第20题图AB C DFE第21题图A B C D F E OA B OED F C 第22题图23.(11分)在平面内,正方形ABCD 与正方形CEFH 如图放置,连接DE ,BH ,两线交于M ,求证:(1)BH =DE ;(2)BH ⊥DE .HM A BF EC D 第23题图2016-2017学年度八年级(下)期中数学参考答案16.(1)1(4分) (2)7a 4分) 17.a =5; ……………………3分 5≤x ≤10 ……………………8分18.(1……………………3分面积14.5 ……………………6分(2)是……………………7分,证明:略.……………………9分 19.(1)略 5分 (2)略 9分20.(1)略 5分 (2)证出AE 是高 8分,AE = 10分 21.证明:(1)∵CF ∥BD ∴∠DOE =∠CFE ,∵E 是CD 的中点,∴CE =DE在△ODE 和△FCE 中,DOE CFE CE DE DEO CEFì??ïïï=íïï??ïïî,∴△ODE ≌△FCE (ASA )∴OD =CF .……………………6分(2)由(1)知OD =CF ,∵CF ∥BD ,∴四边形ODFC 是平行四边形在矩形ABCD 中,OC =OD ,∴四边形ODFC 是菱形.……………………10分22.解法一:∵四边形ABCD 为矩形,∴∠BAD =90°,OB =OD ,AC =BD ,又∵OF ⊥AD ,∴OF ∥AB ,又∵OB =OD ,∴ AB =2OF =4cm ,∵BE ︰BD =1︰4,∴BE ︰ED =1︰3 ……………………3分 设BE =x ,ED =3 x ,则BD =4 x ,∵AE ⊥BD 于点E∴22222AE AB BE AD ED =-=-,∴16-x 2=AD 2-9x 2………………6分 又∵AD 2=BD 2-AB 2=16 x 2-16 ,∴16-x 2=16 x 2-16-9x 2,8 x 2=32∴x 2=4,∴x =2 ……………………9分 ∴BD =2×4 =8(cm ),∴AC =8 cm . ……………………10分解法二:在矩形ABCD 中,BO =OD =12BD ,∵BE ︰BD =1︰4,∴BE ︰BO =1︰2, 即E 是BO 的中点 ……………………3分 又AE ⊥BO ,∴AB =A O ,由矩形的对角线互相平分且相等,∴AO =BO ……………………5分 ∴△ABO 是正三角形,∴∠BAO=60°,∴∠OAD=90°-60°=30°……………………8分在Rt△AOF中,AO=2OF=4,∴AC=2AO=8 ……………………10分23.(1)提示:证明:△BCH≌△DCE(SAS)……………………6分(2)由(1)知△BCH≌△DCE∴∠CBH=∠EDC设BH,CD交于点N,则∠BNC=∠DNH∴∠CBH+∠BNC=∠EDC+∠DNH=90°∴∠DMN=180°-90°=90°∴BH⊥DE.……………………11分。
安徽省淮北市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018八上·大田期中) 下列各组数据中,不是勾股数的是A . 3,4,5B . 7,24,25C . 8,15,17D . 5,7,92. (2分) (2018八上·大田期中) 如图,射线l是下列哪个函数的图象A .B .C .D .3. (2分) (2019九上·玉田期中) 如图,在平面直角坐标系中,点的坐标为,那么的值是()A .B .C .D .4. (2分)正方形具有而矩形不一定具有的性质是()A . 对角线相等B . 对角线互相平分C . 对边平行且相等D . 对角线互相垂直平分5. (2分)下面所给点的坐标满足y=﹣2x的是()A . (2,﹣1)B . (﹣1,2)C . (1,2)D . (2,1)6. (2分)(2020·嘉兴模拟) 如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A . 3B . 4C . 5D . 67. (2分)(2019·行唐模拟) 如图矩形ABCD中,AB=3,BC=3 ,点P是BC边上的动点,现将△PCD 沿直线PD折叠,使点C落在点C1处,则点B到点C1的最短距离为()A . 5B . 4C . 3D . 28. (2分) (2019八下·泉港期末) 如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A . 100°B . 105°C . 110°D . 115°9. (2分) (2019八上·织金期中) 菱形具有而平行四边形不一定具有的性质是()A . 对角线平分一组对角B . 对角线互相平分C . 对边相等D . 对角相等10. (2分)如图,在某中学生耐力测试比赛中,甲、乙两学生测试的路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OABC和线段OD,下列说法正确的是()A . 乙比甲先到终点;B . 乙测试的速度随时间增加而增大;C . 比赛进行到29.4秒时,两人出发后第一次相遇;D . 比赛全程甲的测试速度始终比乙的测试速度快。
2016~2017 学年度第二学期期中质量检测八年级数学试卷满分120 分,考试时间100 分钟命题人:朱春荣审核人:周华军一.选择题(共8 小题,每小题 2 分,满分16 分)1.下列图形中既是轴对称图形又是中心对称图形的是()A. B.C. D.A,B,C,点A 的对应点A,落在AB 边上,则∠BCA'的度数为()A.20°B.25°C.30°D.35°8.定义:[a,b]为反比例函数(ab≠0,a,b 为实数)的“关联数”.反比例函数的“关联数”为[m,m+2],反比例函数的“关联数”为[m+1,m+3],若m>0,则()A.k1=k2B.k1>k2C.k1<k2D.无法比较二.填空题(共 10 小题,每小题 3 分,满分 30 分)12.若代数式在x 3实数范围内有意义,则实数x 的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=33.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9 环C.明天会下雨D.度量三角形的内角和,结果是3604.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1 或﹣2 5.能判定四边形ABCD 为平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD6.如图,四边形ABCD 中,AC=BD,E,F,G,H 分别为AB,BC,CD,DA 的中点,则四边形EFGH 是()A.平行四边形B.菱形C.矩形D.正方形(第6 题图)(第7 题图)(第12 题图)7.如图,△ABC 中,∠A=75°,∠B=50°,将△ABC 绕点C 按逆时针方向旋转,得到△9.约分:=.10.化简的结果是11.若分式方程有增根,则m=.12.如图,菱形ABCD 的对角线AC、BD 相交于点O,E 为AD 的中点,若OE=3,则菱形ABCD 的周长为.13.若反比例函数的图象过点(﹣1,2),则这个函数图象位于第象限.14.袋子里有5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出1 只球,是红球的可能性(选填“大于”“小于”或“等于”)是白球的可能性.15.如图,A、B 两地间有一池塘阻隔,为测量A、B 两地的距离,在地面上选一点C,连接CA、CB 的中点D、E.若DE 的长度为30m,则A、B 两地的距离为m.16.如图,点A 在函数y=(x>0)的图象上,且OA=4,过点A 作AB⊥x 轴于点B,则△ABO 的周长为.17.点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a 的范围是.18.如图,矩形ABCD 中,AB=8,BC=6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP,PE 与CD 相交于点O,且OE=OD,则AP 的长为.三.解答题(共 10 小题,每小题 3 分,满分 74 分)19计算(每小题5 分,满分10 分):(1)(a+1﹣)÷()(2)解方程:=+2;20.(满分6 分)化简:,然后在不等式x≤2 的非负整数解中选择一个适当的数代入求值.21.(满分6 分)若关于x 的方程﹣2=的解为正数,求m 的取值范围.22.(满分12 分)某区对即将参加中考的 5000 名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)本次调查的样本为,样本容量为;(2)在频数分布表中,a=,b=,并将频数分布直方图补充完整;(3)若视力在 4.6 以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?23.(满分8 分)如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处.(1)求证:四边形AECF 是平行四边形;(2)若AB=6,AC=10,求四边形AECF 的面积.24.(满分10 分)已知:如图,在矩形 ABCD 中,M,N 分别是边 AD,BC 的中点,E,F 分别是线段BM,CM 的中点.(1)求证:△ABM≌△DCM;(2)判断四边形 MENF 是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF 是正方形(只写结论,不需证明).25.(满分10 分)如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB,BD,BC 于点E,F,G,连接ED,DG.(1)请判断四边形EBGD 的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2 ,点H 是BD 上的一个动点,求HG+HC 的最小值.26.(满分12 分)顺风车行经营的A 型车去年6 月份销售总额为3.2 万元,今年经过改造升级后A 型车每辆销售价比去年增加400 元,若今年6 月份与去年6 月份卖出的A 型车数量相同,则今年6 月份A 型车销售总额将比去年6 月份销售总额增加25%.(1)求今年6 月份A 型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7 月份新进一批A 型车和B 型车共50 辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?最大利润是多少?A、B 两种型号车的进货和销售价格如表:A 型车B 型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格2400故答案是:m>﹣6 且m≠﹣3.22 解:(1)20÷0.1=200(人),参考答案1 2 3 4 5 6 7 8A C D C CB B C9 --10 x 11 2 12 24 13 二四14 大于15 60 16 2+4 17 ﹣1<a<1 18 4.819 (1) a(a﹣2)(2) 3 是增根,方程无解20解:原式====∵不等式x≤2 的非负整数解是0,1,2∵(x+1)(x﹣1)≠0,x+2≠0,∴x≠±1,x≠﹣2,∴把x=0 代入.21 解:去分母,得x﹣2(x﹣3)=﹣m,解得:x=m+6,根据题意得:m+6﹣3≠0 且m+6>0,解得:m>﹣6 且m≠﹣3.所以本次调查的样本为 200 名初中毕业生的视力情况,样本容量为 200;(2)a=200×0.3=60,b=10÷200=0.05;故答案为 200 名初中毕业生的视力情况,200;60,0.05;(2)5000×(0.35+0.3+0.05)=3500(人),估计全区初中毕业生中视力正常的学生有 3500 人.23 (1)证明:由折叠可知,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD 为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF 和△CME 中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF 是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在R t△C EM 中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF 的面积的面积为:EC•AB=5×6=30.24(1)证明:∵四边形 ABCD 是矩形,∴AB=CD,∠A=∠D=90°,又∵M 是 AD 的中点,∴AM=DM.在△ABM 和△DCM 中,,∴△ABM≌△DCM(SAS).(2)解:四边形 MENF 是菱形.证明如下:∵E,F,N 分别是 BM,CM,CB 的中点,∴NE∥MF,NE=MF.∴四边形 MENF 是平行四边形.由(1),得 BM=CM,∴ME=MF.∴四边形 MENF 是菱形.(3)解:当AD:AB=2:1 时,四边形 MENF 是正方形.理由:∵M 为 AD 中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形 MENF 是菱形,∴菱形 MENF 是正方形.故答案为:2:1.25解:(1)四边形 EBGD 是菱形.理由:∵EG 垂直平分 BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD 和△GFB 中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形 EBGD 是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接 EC 交BD 于点H,此时 HG+HC 最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE= ,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在RT△DNC 中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在RT△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC 的最小值为 10.26(1) 今年6 月份A 型车每辆销售价2000 元(2) A 型车17 辆,B 型车33 辆时获利最多。
安徽省淮北市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·嘉兴期中) 二次根式中,字母的取值范围是()A .B .C .D .2. (2分) (2016九上·市中区期末) 如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A . 0.75B .C . 0.6D . 0.83. (2分) (2019七上·苍南期中) 下列选项中的计算,不正确的是()A .B .C .D .4. (2分) (2018九上·浙江月考) 下列命题是真命题的是()A . 平分弦的直径垂直于弦;B . 弧相等,所对的圆周角相等;C . 弦相等,所对的圆心角相等;D . 圆心角相等,所对的弦相等5. (2分) (2018九上·温州开学考) 菱形的两条对角线长分别为3和4,那么这个菱形的面积为()A . 12B . 6C . 5D . 76. (2分)以下列各组线段为边长,能构成直角三角形的是()A . 1,1,B . 3,4,5C . 5,10,13D . 2,3,47. (2分)下列说法中,正确的个数有()①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5.A . 1个B . 2个C . 3个D . 4个8. (2分) (2020八下·江岸期中) 如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺A . 10B . 12C . 13D . 149. (2分) (2018八上·栾城期末) 如图,三个正方形围成如图所示的图形,已知两个正方形的面积分别是25和169,则字母B所代表的正方形的面积是()A . 125B . 135C . 144D . 16010. (2分)(2013·桂林) 下列运算正确的是()A . 52•53=56B . (52)3=55C . 52÷53=5D . ()2=5二、填空题 (共6题;共7分)11. (1分)(2018·建湖模拟) 已知实数a在数轴上的位置如图所示,化简的结果是 ________.12. (1分)(2018·扬州) 如图,已知的半径为2,内接于,,则________.13. (1分)(2019·德惠模拟) 如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是________.14. (2分)(2020·盐城模拟) 如图,在四边形ABCG中,AG∥BC,BC>AG,∠B=90°,AB=BC=12,E是AB上一点,且∠GCE=45°,BE=4,则GE=________.15. (1分) (2020九上·沈阳月考) 等边三角形的两条中线所夹的锐角的度数为________16. (1分) (2019八下·钦州期末) 正方形,,,…按如图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,则点的坐标是________.三、解答题 (共9题;共54分)17. (10分) (2017七下·马龙期末) 计算18. (5分)(2017·许昌模拟) 先化简,再求值:(﹣)÷ ,其中实数a,b满足(a ﹣2)2+|b﹣2a|=0.19. (5分)如图,直径是50cm圆柱形油槽装入油后,油深CD为15cm,求油面宽度AB。
2016-2017学年安徽省淮北市濉溪县八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列式子中,一定是二次根式的是()A.﹣B.C.D.x2.(3分)下列根式中,最简二次根式是()A.B.C.D.3.(3分)以下方程中,一定是一元二次方程的是()A.x2﹣2y﹣3=0B.x3﹣x+4=0C.(m+1)x2+3x+1=0D.2x2=04.(3分)下列方程中,没有实数根的是()A.2x2﹣5x﹣4=0B.7t2﹣5t+2=0C.x(x+1)=3D.3y2+25=10y5.(3分)一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.106.(3分)下列各数中,与的积为有理数的是()A.B.3C.2D.2﹣7.(3分)若a=2+3,b=2﹣3,则下列等式成立的是()A.ab=1B.ab=﹣1C.a=b D.a=﹣b8.(3分)在Rt△ABC中,∠C=90°,BC=12,AC=16,则斜边AB边上的高CD的长是()A.20B.10C.9.6D.89.(3分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是()A.x2+5x+6=0B.x2﹣5x+6=0C.x2﹣5x﹣6=0D.x2+5x﹣6=0 10.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.0二、填空题(本小题共5小题,每小题4分,共20分)11.(4分)化简:=.12.(4分)当x为时,代数式3x2+6x﹣8和2x2﹣1的相等.13.(4分)在△ABC中,∠C=90°,如果AC=1,∠B=30°,那么AB=,BC=.14.(4分)化简:(﹣)﹣﹣|﹣3|=.15.(4分)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为.三、本题满分10分,每小题5分16.(5分)计算:(﹣)﹣÷.17.(5分)已知a=+2,b=﹣2,试求﹣的值.四、本题满分12分,每小题6分18.(6分)已知关于x的二次方程x2+mx+2m﹣n=0有两个相等的实数根2,求m,n的值.19.(6分)设x1,x2是方程2x2+4x﹣3=0的两个根,不解方程,求下列各式的值.(1)(x1﹣1)(x2﹣1);(2)+.五、本题满分12分,每小题6分20.(6分)如图,在△ABC中,AB=26,BC=28,AC=30,求BC边上的高AD.21.(6分)一个QQ群里有若干个好友,每个好友都分别给群里其他好友发送了一条消息,这样共有870条消息,求该群共有多少个好友.六、本题满分8分22.(8分)某中学开展植树活动,连续四年共植树1999棵.已知第一年植树344棵,第二年植树500棵.如果第三年和第四年植树棵树的增长率相同,那么该校第三年和第四年各植树多少棵?七、本题满分8分23.(8分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?2016-2017学年安徽省淮北市濉溪县八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列式子中,一定是二次根式的是()A.﹣B.C.D.x【解答】解:(B)根指数为3,故B不是二次根式;(C)x=4时,此时原式=2,故C不是二次根式;(D)x=4时,此时4不是二次根式,故D不是二次根式,故选:A.2.(3分)下列根式中,最简二次根式是()A.B.C.D.【解答】解:A、是最简二次根式,故本选项符合题意;B、=2,不是最简二次根式,故本选项不符合题意;C、=x,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:A.3.(3分)以下方程中,一定是一元二次方程的是()A.x2﹣2y﹣3=0B.x3﹣x+4=0C.(m+1)x2+3x+1=0D.2x2=0【解答】解:A、是二元二次方程,故A不符合题意;B、是一元三次方程,故B不符合题意;C、m=﹣1时是一元一次方程,故C不符合题意;D、是一元二次方程,故D符合题意;故选:D.4.(3分)下列方程中,没有实数根的是()A.2x2﹣5x﹣4=0B.7t2﹣5t+2=0C.x(x+1)=3D.3y2+25=10y【解答】解:A、∵在方程2x2﹣5x﹣4=0中,△=(﹣5)2﹣4×2×(﹣4)=57>0,∴方程2x2﹣5x﹣4=0有两个不相等的实数根;B、∵在方程7t2﹣5t+2=0中,△=(﹣5)2﹣4×7×2=﹣31<0,∴方程7t2﹣5t+2=0没有实数根.C、原方程可变形为x2+x﹣3=0,∵△=12﹣4×1×(﹣3)=13>0,∴方程x(x+1)=3有两个不相等的实数根;D、原方程整理得:3y2﹣10y+25=0,∵△=﹣4×3×25=0,∴方程3y2+25=10y有两个相等的实数根.故选:B.5.(3分)一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.10【解答】解;由一个直角三角形的两条直角边分别是5和12,利用勾股定理得斜边长为=13.故选:A.6.(3分)下列各数中,与的积为有理数的是()A.B.3C.2D.2﹣【解答】解:A、×=,故A错误;B、×3=3,故B错误;C、×2=6,故C正确;D、×(2﹣)=2﹣3,故D错误.故选:C.7.(3分)若a=2+3,b=2﹣3,则下列等式成立的是()A.ab=1B.ab=﹣1C.a=b D.a=﹣b【解答】解:∵a=2+3,b=2﹣3,∴ab=(2+3)×(2﹣3)=8﹣9=﹣1,a≠b,﹣b=﹣(2﹣3)=3﹣2≠2+3,即只有选项B正确,选项A、C、D都错误;故选:B.8.(3分)在Rt△ABC中,∠C=90°,BC=12,AC=16,则斜边AB边上的高CD的长是()A.20B.10C.9.6D.8【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,AC=16,BC=12,∴根据勾股定理,得AB=20.又∵CD⊥AB,∴CD==9.6.故CD的长是9.6.故选:C.9.(3分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是()A.x2+5x+6=0B.x2﹣5x+6=0C.x2﹣5x﹣6=0D.x2+5x﹣6=0【解答】解:∵所求一元二次方程的两根是α、β,且α、β满足α+β=5、αβ=6.∴这个方程的系数应满足两根之和是=5,两根之积是=6.当二次项系数a=1时,一次项系数b=﹣5,常数项c=6.故选B10.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.0【解答】解:根据题意将x=0代入方程可得:a2﹣1=0,解得:a=1或a=﹣1,∵a﹣1≠0,即a≠1,∴a=﹣1,故选:B.二、填空题(本小题共5小题,每小题4分,共20分)11.(4分)化简:=π﹣3.【解答】解:==π﹣3.故答案是:π﹣3.12.(4分)当x为1或﹣7时,代数式3x2+6x﹣8和2x2﹣1的相等.【解答】解:根据题意得:3x2+6x﹣8=2x2﹣1,整理得:x2+6x﹣7=0,分解因式得:(x﹣1)(x+7)=0,解得:x=1或x=﹣7,故答案为:1或﹣7.13.(4分)在△ABC中,∠C=90°,如果AC=1,∠B=30°,那么AB=2,BC=.【解答】解:∵在△ABC中,∠C=90°,AC=1,∠B=30°,∴AB=2AC=2,由勾股定理得:BC==,故答案为:2,.14.(4分)化简:(﹣)﹣﹣|﹣3|=﹣6.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.15.(4分)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为±4.【解答】解:∵(2a+2b+1)(2a+2b﹣1)=63,∴(2a+2b)2﹣12=63,∴(2a+2b)2=64,2a+2b=±8,两边同时除以2得,a+b=±4.三、本题满分10分,每小题5分16.(5分)计算:(﹣)﹣÷.【解答】解:原式=(2﹣5)﹣÷3,=,=.17.(5分)已知a=+2,b=﹣2,试求﹣的值.【解答】解:∵,a﹣b=4,a•b=﹣1,∴.四、本题满分12分,每小题6分18.(6分)已知关于x的二次方程x2+mx+2m﹣n=0有两个相等的实数根2,求m,n的值.【解答】解:∵2是方程x2+mx+2m﹣n=0的根,∴22+2m+2m﹣n=0,即n=4m+4.又∵方程x2+mx+2m﹣n=0有两个相等的实数根,∴△=m2﹣4(2m﹣n)=0,即m2﹣8m+4n=0.将n=4m+4代入m2﹣8m+4n=0得:m2+8m+16=0.解得:m=﹣4,∴n=4m+4=﹣12.19.(6分)设x1,x2是方程2x2+4x﹣3=0的两个根,不解方程,求下列各式的值.(1)(x1﹣1)(x2﹣1);(2)+.【解答】解:根据题意得x1+x2=﹣2,x1x2=﹣.(1)原式=x1x2﹣(x1+x2)+1=﹣﹣(﹣2)+1=;(2)原式===.五、本题满分12分,每小题6分20.(6分)如图,在△ABC中,AB=26,BC=28,AC=30,求BC边上的高AD.【解答】解:设DC=x,则BD=28﹣x,在Rt△ABD和Rt△ACD中,根据勾股定理得:AB2﹣BD2=AD2=AC2﹣CD2,即262﹣(28﹣x)2=302﹣x2,解得:x=18,则AD===24.21.(6分)一个QQ群里有若干个好友,每个好友都分别给群里其他好友发送了一条消息,这样共有870条消息,求该群共有多少个好友.【解答】解:设这个QQ群里有x个好友,每个人发送了(x﹣1)条消息,共发送了x(x﹣1)条消息,由此得方程x(x﹣1)=870,解得x1=30,x2=﹣29(不合题意,舍去).答:该群共有30个好友.六、本题满分8分22.(8分)某中学开展植树活动,连续四年共植树1999棵.已知第一年植树344棵,第二年植树500棵.如果第三年和第四年植树棵树的增长率相同,那么该校第三年和第四年各植树多少棵?【解答】解:设后年植树棵树的年增长率为x,依题意,得第三年植树500(1+x)棵,第四年植树500(1+x)2棵,∴四年累计种树为:344+500+500(1+x)+500(1+x)2=1999,整理,得:100x2+300x﹣31=0,解得x1=0.1=10%,x2=﹣3.1(不合题意舍去);第三年植树500×1.1=550棵;第四年植树500×1.21=605棵;答:第三年和第四年应植树550棵和605棵.七、本题满分8分23.(8分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,的x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株或者5株.。