人教版七年级上册 3.4 一元一次方程解应用题 专题讲义(无答案)
- 格式:doc
- 大小:310.50 KB
- 文档页数:12
新人教版七年级数学上册一元一次方程应用题专题讲解七年级上册应用题专题讲解一、解题思路:审题—设未知数—列等量关系—列方程—解方程—写答语二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,生产、做工等各类问题,等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例如,增长量=原有量×增长率,现在量=原有量+增长量。
例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?二)等积变形问题等积变形是以形状改变而体积不变为前提。
常用等量关系:原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。
例如,圆柱体的体积公式V=底面积×高=S·h=2rh,长方体的体积V=长×宽×高=abc。
例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?三)数字问题1.要搞清数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,≤b≤9,≤c≤9),则这个三位数表示为:100a+10b+c。
3.4 实际问题与一元一次方程——配套问题一、单选题1.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品.某口罩厂有26名工人,每人每天可以生产400个口罩面或500个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下列所列方程正确的是()A.B.C.D.2.某校手工社团30名学生制作纸飞机模型,每人每小时可做20个机身或60个机翼,一个飞机模型要一个机身配两个机翼,为了使每小时制作的成品刚好配套,应该分配多少名学生做机身,多少名学生做机翼?设分配x名学生做机身,则可列方程为()A.B.C.D.3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排名工人生产螺母,则下列方程正确的是()A.B.C.D.4.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有个人,则可列方程是()A.B.C.D.5.用100张白铁皮做罐头盒,每张白铁皮可做盒身15个,或者做盒底45个,一个盒身与两个盒底配成一套罐头盒.设用张白铁皮做盒身,则可列方程为().A.B.C.D.6.某车间56名工人生产螺栓和螺母,螺栓与螺母个数比为1:2刚好配套,每人每天平均生产螺栓24个或螺母36个,求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母.依题意列方程应为( )A.24x=36(56﹣x)B.2×24x=36(56﹣x)C.24×36x=36(56﹣x)D.24x=2×36(56﹣x)7.20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个部件和两个部件组成.在规定时间内,每人可以组装好10个部件或20个部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.1508.服装厂要为某校生产一批某型号校服,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产校服,要使上衣和裤子刚好配套,则共能生产校服( )A.210套B.220套C.230套D.240套二、填空题9.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排________名工人生产螺钉.10.一张方桌由一个桌面、四条桌腿组成,如果1m3木料可以做方桌的桌面40个或做桌腿240条,现有6m3木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿恰好配套?设用x立方米木料做桌面,由题意列方程,得__________.11.某车间有20名工人,生产一种特殊的螺栓和螺母,每人每天能生产螺栓12个或螺母16个.如果分配x名工人生产螺栓,其余的工人生产螺母,且每天生产的螺母恰好是螺栓的2倍.则可列方程为_____.12.某眼镜厂车间有28名工人,每人每天可生产镜架40个或者镜片60片,已知一个镜架配两片镜片,为使每天生产的镜架和镜片刚好配套,应安排生产镜架和镜片的工人各多少名?若安排名工人生产镜片,则可列方程:______.13.现用110立方米木料制作桌子和椅子,已知1张桌子配6把椅子,1立方米木料可做5把椅子或1张桌子.设用x立方米的木料做桌子,则依题意可列方程为_______________.14.某车间每天能制作甲种零件350只,或制作乙种零件150只,甲乙两种零件各一只配成一套产品,现要在30天内制作最多的成套产品,则制作甲零件需要的天数是______.15.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,所有工人全部参与生产,则生产螺钉的工人有______人.16.某糕点厂要制作一批盒装蛋糕,每盒中装2块大蛋糕和4块小蛋糕,制作1块大蛋糕要用0.05kg面粉,1块小蛋糕要用0.02kg面粉.现共有面粉450kg,用_________kg面粉制作大蛋糕,才能生产最多的盒装蛋糕.三、解答题17.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面,或者制作400条桌腿,现在有30立方米木材,应怎样计划用料才能制作尽可能多的桌子?18.某车间有94个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?每天能生产成多少套?19.我市是蔬菜水果生产大县.去年秋季,我市某果树基地安排26名工人将采摘的水果包装成果篮,每个工人每小时可包装200个苹果或者300个梨,每个果篮中放3个苹果和2个梨,为了使包装的水果刚好完整配成果篮,应该安排多少名工人包装苹果,多少名工人包装梨?20.七年级1班共有学生45人,其中男生人数比女生人数少3人.某节课上,老师组织同学们做圆柱形笔筒,每名学生每节课能做筒身30个或筒底90个.(1)七年级1班有男生、女生各多少人?(2)原计划女生负责做筒身,男生做筒底,要求每个筒身匹配2个筒底,那么每节课做出的筒身和筒底配套吗?如果不配套,男生要支援女生几人,才能使筒身和筒底配套?参考答案:1.C2.C3.B4.C5.B6.B7.A8.D9.1010.11.12.60x=2×40(28-x)13.14.9天15.10.16.250 ;17.用25立方米制作桌面,用5立方米制作桌腿18.46人生产甲种零件,48人生产乙种零件,每天生产552套20.(1)男生21人,女生24人(2)不配套;男生要支援女生3人。
实际问题与一元一次方程
基础练习
1.一只签字笔进价0.8元,售价1元,销售这种笔的利润是______%.
2.某工厂6月份的产值是200万元,7月份的产值比6月份减价了10%,该厂7月份的产值是________万元.
3.某种商品的价格为a元,降价10%后又降价10%,销售一下子上升了,商场决定再提价20%,提价后这种商品的价格为( )
A.a元
B.1.08a元
C.0.96a元
D.0.972a元
4.一城市现有42万人口,预计一年后城镇人口增加0.8%,农村人口增加1.1%, 这样全市人口将增加1%,求这个城市的现有城镇人口数和农村人口数.
拓展提高
5.在解一元二次方程时,粗心的甲、乙两位同学分别抄错了同一道题,甲抄错了常数项,得到的两根分别是8和2;乙抄错了一次项系数,得到的两根分别是-9和-1.你能找出正确的原方程吗?若能,请你用配方法求出这个方程的根.
一年期定期储蓄年利率为2.25%,所得利息交纳20%的利息税,已知某储户的一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?
7某公司向银行贷款20万元资金, 约定两年到期时一次性还本付息, 年利率是12%,该公司利用这笔贷款经营,两年到期时除还清贷款的本金和利息外,还盈余6. 4万元,若在经营期间每年比上一年资金增长的百分数相同,试求这个百分数.
8.某开发区2002年人口20万,人均住房面积20m2,预计到2004年底, 该地区人口将比2002年增加2万,为使到2004年底该地区人均住房面积达22m2/人,试求2003年和2003年这两年该地区住房总面积的年平均增长率应达到百分之几?
1。
一元一次方程的应用题(利润问题)1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.2.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)3.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?4.小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?5.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?6.虹远商场原计划以1500元出售甲、乙两种商品,通过调整价格,甲提价20%,乙降价30%后,实际以1600元售出,问甲商品的实际售价是多少元?7.某种商品的进价是215元,标价是258元,现要最低获得14%的利润,这种商品应最低打几折销售?8.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元.如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?9.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.10.在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价×利润率=销售价×打折数﹣让利数﹣进价)11.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?12.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?13.某商店将某种VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台仍获利208元,求进价.14.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.15.某件商品的标价为1100元,若商店按标价的80%降价销售仍可获利10%,求该商品的进价是多少元?16.甲商店将某种超级VCD按进价提高35%定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元.(1)求每台VCD的进价;(2)乙商店出售同类产品,按进价提高40%,然后打出“八折酬宾”的广告,若你想买此种产品,将选择哪家商店?17.某电器销售商为促销产品,将某种电器打折销售,如果按标价的六折出售,每件将亏本36元;如果按标价的八折出售,每件将盈利52元,问:(1)这种电器每件的标价是多少元?(2)为保证盈利不低于10%,最多能打几折?18.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?19.某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?〔销售利润=(销售单价﹣进货单价)×销售数量〕解:设这一商品,每件定价x元.(1)该商品的进货单价为元;(2)定价的85%出售时销售单价是元,出售8件该产品所能获得的利润是元;(3)按定价每件减价35元出售时销售单价是元,出售12件该产品所获利润是元;(4)现在列方程解应用题.20.某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为鼓励客户购买这种零件,决定当一次购买零件数超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(1)当一次购买多少个零件时,销售单价恰为51元?(2)当客户一次购买1000个零件时,该厂获得的利润是多少?(3)当客户一次购买500个零件时,该厂获得的利润是多少?(利润=售价﹣成本)21.商店里有种皮衣,进价500元/件,现在客户以2800元总价购买了若干件皮衣,而商家仍有12%的利润,问客户买了几件皮衣?22.利民商店购进一批电蚊香,原计划每袋按进价加价40%标价出售.但是,按这种标价卖出这批电蚊香的90%时,夏季即将过去.为加快资金周转,商店以打7折(即按标价的70%)的优惠价,把剩余电蚊香全部卖出.(1)剩余的电蚊香以打7折的优惠价卖出,这部分是亏损还是盈利请说明理由.(2)按规定,不论按什么价格出售,卖完这批电蚊香必须交税费300元(税费与购进蚊香用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问利民商店买进这批电蚊香用了多少钱?一元一次方程应用题(利润问题)参考答案1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.考点:二元一次不定方程的应用;一元一次方程的应用。
讲义主题: 一元一次方程的概念与性质 一:课前纠错与课前回顾1、作业检查与知识回顾2、错题分析讲解 (1) (2) (3)二、课程内容讲解与课堂练习 【题模1】:等式的性质、一元一次方程例1.1.1已知231x y -=,用含x 的代数式表示y 正确的是( )A .213y x =-B .312y x +=C .213x y -=D .1233y x=-- 例1.1.2下列等式变形正确的是( ) A .如果x y =,那么22x y -=- B .如果12x -=8,那么4x =-C .如果mx my =,那么x y =D .如果x y =,那么x y =例1.1.3用适当的数或式子填空,使所得结果仍是整式,并说明变形是根据等式的哪一条性质以及怎样变形的?(1)若358x +=,则38x =-_________,这是根据等式基本性质__________,等式两边同时__________(2)若144x -=,则x =_________,这是根据等式基本性质__________,等式两边同时__________(3)若237n m -=,则27n =+_________,这是根据等式基本性质__________,等式两边同时__________(4)若1463x +=,则12x +=_________,这是根据等式基本性质__________,等式两边同时__________例1.1.4运用等式性质进行的变形,正确的是_________(填序号)①如果a b =,那么a c b c +=-;②如果23a a =,那么3a =;③如果a b =,那么a bc c=;④如果a bc c=,那么a b =;⑤如果a c b d +=-,如果a b c d -=+;⑥如果a b =,那么ac bc =;⑦如果ac bc =,那么a b =;⑧如果a b =,那么2211a b c c =++;⑨如果2211a bc c =++,那么a b =. 例1.2.1下列式子是方程的个数有( )①321345+=,②239x +<,③429x -=,④232x-=,⑤32x -A .1个B .2个C .3个D .4个例1.2.2若()2320m m x --=是关于x 的一元一次方程,则m 的值是( ) A .2±B .2-C .2D .4例1.2.3关于x 的方程()230n m x --=是一元一次方程.(1)则m ,n 应满足的条件为:m ___________,n ________________; (2)若此方程的根为正整数,求整数m 的值.【讲透例题】略 【讲透考点】一.等式用等号“=”连接,表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.二.等式的性质1.等式基本性质1:等式两边同时加上(或减去)同一个数(或式子),所得结果仍是等式.用字母表示为:如果a b =,那么a c b c ±=±.2.等式基本性质2:等式两边同时乘以同一个数(或式子),或除以同一个不为零的数(或式子),所得结果仍是等式.3.用字母表示为:如果a b =,那么ac bc =;如果a b =且0c ≠,那么a bc c=. 等式本身还具有一些性质: 对称性:如果a b =,那么b a =. 传递性:如果a b =,b c =,那么a c =. 三.方程1.定义:含有未知数的等式叫做方程.定义中含有两层含义:①方程必定是等式,即是用等号连接而成的式子;②方程中必定有一个(可以是多个)待确定的数,即未知数.二者缺一不可.2.方程的解:使方程左、右两边相等的未知数的值,叫做方程的解.求得方程的解的过程,叫做解方程. 方程中含有的未知数可以不止一个,对于只含有一个未知数的方程,它的解也叫方程的根. 解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.3.方程中的未知数和已知数已知数一般是具体的数值,如50x +=中,5和0是已知数(x 的系数是1,是已知数,但一般不说). 有些情况下,方程的已知数需要用字母表示,习惯上常用a b c m n 、、、、等表示,这时a b c m n 、、、、等字母叫做参数.未知数是指要求的数,习惯上常用x y z 、、等字母表示.为了指明未知数x ,我们一般把方程2x a =称为“关于x 的方程”,其中a 是参数.四.一元一次方程只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程.这里的“元”是指未知数的个数,“次”是指含未知数的项的最高次数.一元一次方程的标准形式:0ax b +=(0a ≠,a ,b 是已知数).一元一次方程的最简形式:ax b =(0a ≠,a ,b 是已知数).【相似题练习】随练1.1若a b =,则下列变形中不一定成立的是( )A .11a b -=-B .3322a b +=+ C .1133a b-=- D .5115a b --=--随练1.2给出下面四个方程及其变形:①480x +=变形为20x +=;②753x x +=-变形为42x =-; ③235x =变形为215x =;④42x =-变形为2x =-; 其中变形正确的是( ) A .①③④ B .①②③ C .②③④ D .①②④ 随练1.3利用等式的性质,在括号内填上适当的数或式子(1)如果235x -=-,则2x =_____________,x =_____________ (2)如果5224x x +=-,则3x =_____________,x =_____________(3)如果1233x x =-,则53x -=_____________,x =_____________随练1.4下列式子是方程的个数有( )①0x =,②23x >,③220x x +-=,④20yx+=,⑤32x -,⑥1x x =-,⑦0x y -=,⑧1xy =A .3个B .4个C .5个D .6个 随练1.5若关于x 的方程22(3)x ax bx -+=是一元一次方程,则,a b 满足()A .00a b =≠且B .10a b =-≠且C .02a b =≠且D .12a b =≠且随练1.6已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值及方程的解.【题模2】:一元一次方程的解法例2.1.1已知方程2(1)3132x x x --+=-,去分母得() A .4(1)13(3)x x x +-=-- B .4(1)63(3)x x x +-=--C .62(1)63(3)x x x +-=--D .64(1)63(3)x x x +-=--例2.1.2当x =_____________时,代数式1(12)3x -与代数式2(31)7x +的值相等例2.1.3解下列方程: 111246819753x ⎧⎫⎡+⎤⎛⎫+++=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭【讲透例题】略 【讲透考点】一.一元一次方程的解法解一元一次方程的一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1. 注意:这五个步骤在解一元一次方程中,有时可能用不到,有时可能需重复用,使用时不一定严格按从(1)到(5)的顺序进行,要根据方程的特点灵活运用.【相似题练习】随练2.1解方程321126x x -+-=,下列去分母正确的是( ) A .3(3)(21)1x x --+= B .3(3)211x x --+= C .3(3)216x x --+= D .3(3)(21)6x x --+=随练2.2若6x --与17互为倒数,则x =______________.随练2.3解关于x 的方程(1)1+=32x-;(2)()38382x x x --+=+;(3)132134x x x --=+-;(4)0.50.02 3.60.20.03x x +-=;变形名称具体做法依据注意事项去分母在方程两边同乘以各分母的最小公倍数等式性质2①不含分母的项不要漏乘②注意分数线有括号作用,去掉分母后,如果分子是多项式,要加括号去括号由内向外去括号,即先去小括号,再去中括号,最后去大括号 分配律,去括号法则①运用分配律去括号时,不要漏乘括号内的项②如果括号前是“-”号,去括号时,括号内各项要变号移项把含未知数的项都移到方程的一边(通常是左边),不含未知数的项都移到方程的另一边 等式性质1①移项必须变号②一般把含未知数的项移到左边,其他项移到右边合并同类项把方程两边同类项分别合并,把方程化为()0ax b a =≠的形式 合并同类项法则合并同类项是同类项的系数相加,字母及其指数不变未知数系数化1在方程两边同除以未知数系数a ,得到方程的解bx a =看不清楚解,不会调整等式性质2 应注意系数a 不能等于0(5)ax b =随练2.42]214)141(23[32+=--x x【题模3】:含有参数的方程例1.1.1已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是____. 例1.2.1若x=2是关于x 的方程2x+3m-1=0的解,则m 的值为( ) A .-1B .0C .1D .13例1.2.2若关于x 的方程3x +3k=2的解是正数,则k 的值为( )A .32>k B .32<k C .k 为任何数 D .以上都不对例1.2.3解下列关于x 的方程:(1)12x a -=(2)()362x x a +=- (3)()()12112x x a -=--+ 例1.2.4已知a 为正整数,关于x 的方程5814225x a x -=+的解为整数,求a 的最小值.例1.3.1解关于x 的方程:(1)2421m x mx -=+ (2)x a x b bb a a---=,其中0a b -≠(3)()()1234m x n x m -=+.例1.3.2已知2x =-是方程(1)410a x a ++-=的解,则a 的值是( )A .2-B .32C .0D .23例1.3.3已知方程2ax x b -=+,问a 、b 分别满足什么条件时: (1)方程有唯一解? (2)方程无解?(3)方程有无穷多个解?例1.3.4关于x 的方程kx-1=2x 的解为正实数,则k 的取值范围是____.例1.4.1如果关于x 的方程372x x a -=+的解与方程437x +=的解相同,那么a 的值为____.例1.4.2已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,求a 的值.例1.4.3如果方程42832x x -+-=-的解与关于x 的方程()431621x a x a -+=+-的解相同,求1a a-的值.例1.5.1已知关于x 的方程()22mx m x +=-的解满足1102x --=,则m 的值是( ) 例1.5.2若|x+1|=2,则x 的值是() A .1 B .-3 C .1或3D .1或-3例1.5.3解下列方程: (1)331x -= (2)120x +-= (3)6232x -+= (4)()311x x -=+ (5)132132x --= (6)()121133x -+=【讲透例题】略 【讲透考点】一.参数有的方程中除了未知数外,还会含有一些其他的字母,它们代表已经确定的数字,只是我们不知道它们具体是多少,这种字母称为“参数”,即“参与运算的数”.虽然都是字母,但未知数与参数各自的地位和含义是不相同的.比如方程ax b =,理论上来讲,如果题目没有说明,里面的每一个字母都可以当做未知数.但是一般情况下,当a b c 、、与x y z 、、同时出现在一个方程时,我们会约定俗成地认为,x y z 、、是未知数,a b c 、、是(已知数)参数.因此,我们通常会说关于x 的方程ax b =,这样比较严谨,就不会出现纠结谁是未知数的问题.二.常数项含参数的一次方程对未知数系数不含参数,常数项含参数的方程,在运算中就把参数当成普通的数字来对待,带着参数完成解方程的过程.如解关于x 的一元一次方程()12x a b c -+=,则()2x c b a =-+.三.系数含参的一次方程的解法对于未知数系数含参数的方程,其方程的解与参数的取值有很大关系,需要对参数进行分类讨论. 求解一个系数含参数的一元一次方程,依然采用常规的五步法,其中去分母、去括号、移项、合并同类项这四步带着参数一起运算即可,在最后一步未知数系数化为1时要对参数进行讨论.因为此时系数是否为0会对方程的解有很大的影响,即对关于x 的方程ax b =(a b 、为参数),有:(1)当0a ≠时方程有唯一解bx a=; (2)当0a =时,方程的解仍不能确定,需要对b 再进行分类讨论: ①当0b ≠时,方程为0x b =,无解;②当0b =时,方程为00x =,任意数字均为方程的解. 也就是说,此时方程的解有三类情况,需要逐个说明.四.绝对值方程1.x a =解的讨论:①当0a >时,方程有两个解x a =±.如3x =,则3x =±; ②当0a =时,方程有唯一解0x =.如0x =,则0x =; ③当0a <时,方程无解.如3x =-,则方程无解. 2.ax b c +=型方程:①当0c >时,原方程等价于方程ax b c +=或ax b c +=-.如方程211x +=,等价于211x +=或211x +=-;②当0c =时,原方程等价于方程0ax b +=.如方程210x +=,等价于210x +=; ③当0c <时,原方程无解.3.利用分类讨论解ax b cx d +=+型的方程:我们已经学过,一个数x 的绝对值x 的定义是:当0x ≥时,x x =;当0x <时,x x =-. 这个定义说明只要我们知道绝对值内的数或代数式的正负,就可以按照定义去掉绝对值号了.所以我们可以先分类讨论绝对值内部部分的正负,然后化作一般方程求解.注意:最终的解一定要符合其所对应的分类前提,否则就要舍去.例如,解关于x 的方程25x x =+: 绝对值内部为x ,我们对x 分类讨论.①当0x ≥时,x x =,原方程化为25x x =+,解得5x =-.但是由于5x =-不满足0x ≥的前提要求,所以舍去;②当0x <时,x x =-,原方程化为25x x -=+,解得53x =-.检验53x =-满足0x <的前提要求,所以53x =-是原方程的解.【相似题练习】随练1.1某同学在解方程5a -x=13(x 为未知数)时,误将-x 看作+x ,得方程的解为x=-2,则原方程的解为( ) A .x=2 B .x=1 C .x=0 D .x=-3 随练1.2已知关于x 的方程2x+4=m-x 的解为负数,则m 的取值范围是( )A .m <43B .m >43C .m <4D .m >4随练1.3已知关于x 的方程()210a b x +-=无解,则ab 的值是( ) A .负数 B .正数 C .非负数 D .非正数 随练1.4关于x 的方程36x a +=的解是自然数,则非负整数a =__________.随练1.5关于x 的一元一次方程(1)30m x --=的根为整数,则m 的整数值为____________.随练1.6解下列关于x 的方程:()112323x x a x b -+=+⎡⎤⎢⎥⎣⎦随练1.7解下列关于x 的方程:235x a x bx b -++=+随练1.8解关于x 的方程:()2a x b a x ab +-=+.随练1.9解关于x 的方程1mx nx -=.随练1.10已知关于x 的方程()16326a x a x x +=--,问当a 取何值时:(1)方程无解?(2)方程有无穷多解?随练1.11若关于x 的方程32x k =+与方程251x +=的解相同,则k =____ 随练1.12若关于x 的()40k m x ++=和()210k m x --=是关于x 的同解方程,则2km-的值是________ 随练1.13解下列方程:(1)214x x -+= (2)()1311232xx x ---=+ (3)421x x +--=随练1.14若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m 、n 、k 的大小关系是( )A .m k n >>B .n k m >>C .k m n >>D .m n k >>三、课后练习(写出各题的主要解答过程。
一元一次方程应用题专题练习一、年龄问题1.小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的14倍?解:设x 年后小明的年龄是爷爷的14倍,根据题意得方程为 :二、数字问题2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?如果把个位数字和十位数字对调,新的两位数可以表示为什么?(添表格并完成解答过程) 解:设这个数的十位数字是x ,根据题意得解方程得: 答3.两个连续奇数的和为156,求这两个奇数,设最小的数为x ,列方程得4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
5.将连续的奇数1,3,5,7,9…,排成如下的数表:(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.三、日历时钟问题6、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗? 如果能,求出这四天分别是几号?如果不能,请说明理由.7、在6点和7点间,时钟分针和时针重合?个位 十位 表示为 原数对调后的新数39373533312927252321191715131197531四、几何等量变化问题(等周长变化,等体积变化)常用公式:三角形面积= ,正方形面积 圆的面积 , 梯形面积 矩形面积 柱体体积椎体体积 球体体积8、已知一个用铁丝折成的长方形,它的长为9cm ,宽为6cm ,把它重新折成一个宽为5cm 的长方形, 则新的长方形的宽是多少?设新长方形长为xcm ,列方程为9、将棱长为20cm 的正方体铁块没入盛水量筒中,已知量筒底面积为12cm 2,问量筒中水面升高了多少cm ?10、如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm 2,求重叠部分面积。
第3章第2节移项与合并4. 已知关于x 的方程x -m=1与方程2x -3=-1的解互为相反数,则m=( )A. 2B. -2C. 0D. 1 5. 解方程:(1)-y -7y+4y=16; (2)6x+9=11x -6; (3)2372x x -=+(4)x x 21423=- (5)2x +6 = 1; (6) 3x +3 = 2x +7.(7)35132x x --= (8)92132x x +-=- (9)0.10.2130.020.5x x -+-=6. 已知52-=x A ,33+=x B ,求A 比B 大7时的x 的值.7. 已知(|a|-1)x 2-(a+1)x+8=0是关于x 的一元一次方程。
(1)求a 的值,并解出上述一元一次方程;(2)若上述方程的解比方程5x -2k=2x 的解大2,求k 的值。
练习1. 下列方程变形正确的是( )A. 由3+x=5得x=5+3B. 由7x=-4得x=-47C. 由21y=0得y=2D. 由3=x -2得x=2+32. 解下面的方程时,既要移含未知数的项,又要移常数项的是( )A. 3x=7-2xB. 3x -5=2x+1C. 3x -3-2x=1D. x+15=113. 下列四组变形中,属于移项变形的是( )A. 由5x+10=0,得5x=-10B. 由3x =4,得x=12 C. 由3y=-4,得y =−34 D. 由2x -(3-x )=6,得2x -3+x=6 4. 已知关于x 的方程x -m=1与方程2x -3=-1的解互为相反数,则m=_____。
5. 已知a+2=b−2=2c =2001,且a+b+c=2001k ,那么k 的值为________。
6. 把方程3y -6=y +8变形为3y -y =8+6,这种变形叫做________,依据是______________.7. 解方程(1) 3x+7=32-2x (2)7x+1.37=15x -0.23 (3)1233+=-x x1. 对于有理数a ,b ,规定运算①的意义是a ①b =a +2b ,则方程3x ①x =2-x 的解是 ( )A. x =21B. x =31C. x =41D. x =51 2. 小李在解关于x 的方程3ax -x +4x =12时,误将+4x 看成+4+x ,得方程的解为x =38,则原方程的解为 ( )A. x =-3B. x =0C. x =2D. x =13.王林同学在解关于x 的方程3m+2x=4时,不小心将+2x 看作了﹣2x ,得到方程的解是x=1,那么原方程正确的解是( )A .x=2B .x=﹣1C .x=23D .x=5 4.当x=4时,式子5(x+b )﹣10与bx+4的值相等,则b 的值为( )A .﹣6B .﹣7C .6D .75.若2m ﹣6和5﹣m 互为相反数,则m 的值是( )A .1B .13C .113D .116.关于x 的一元一次方程的一个解是0,则a 的值为A. 1B.C. 1 或D. 27.对于非零的两个实数a 、b ,规定,若,则x 的值为 A. B. 1 C. D. 08.海旭同学在解方程时,把“ ”处的数字看错了,解得,则该同学把“ ”看成了A. 3B.C.D. 8 9.已知x=3是关于x 的方程x+m=2x -1的解,则(m+1)2的值是A.1B.9C.0D.410.关于x 的方程ax+3=4x+1的解为正整数, 则整数a 的值为( )A.2B.3C.1或2D.2或311.当x= ________时,代数式3x -5与1+2x 的值相等12.方程:的解是________.13. 单项式41a x+1b 4与9a 2x -1b 4是同类项,则x = . 14. 小明根据方程5x +2=6x -8编写了一道应用题,请你把空缺的部分补充完整.教师节快到了,某手工小组计划做一批手工品赠给老师,如果每人做5个,那么就比计划少做2个; .请问该手工小组有几人?15.定义新运算:对于任意有理数a 、b 都有a ⊗b=a (a ﹣b )+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2﹣5)+1=2×(3)+1=6+1=5.则4⊗x=13,则x= . 16.对于任意有理数a ,b ,c ,d ,规定一种运算:=ad ﹣bc ,例如 =5×(﹣3)﹣1×2=﹣17.如果=2,那么m= . 17.若关于x 的方程的解是非负数,则k 的取值范围为______ . 18.已知不等式组的解集是,则关于x 的方程的解为______. 19.已知关于y 的方程的解y=3,则的值为_________。
实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x 公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x 名学生,根据题意得:3x+24=4x -26解得:x =50所以3x+24=3×50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【点评】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km. 3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得:x=24答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆风问题)5.(武昌区联考)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(千米)(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米. 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x 千米/时,则最快的人的速度为x 千米/时, 由题意得:x×-x×=20 解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x -65x =3×902707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m ) 此时乙在AD 边上 类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==. 答:打开丙管后4213小时可把水放满. 【点评】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1.举一反三:【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积.【答案】解:设这块水稻田的面积为x 亩,由题意得:21331144142x x x =++⨯ 解得:36x =.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m 3或运土3 m 3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x 人挖土,则运土的有(120-x )人,依题意得:5x =3(120-x ),解得x =45.120-45=75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一) 388410 配制问题】【变式】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.。
2019年秋四川省泸县五中七年级一元一次方程解应用题专题讲义一.简单应用问题1.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t;如用新工艺,则废水排量比环保限制的最大量少100t.新、阳旧工艺的废水排量之比为2:5,问两种工艺的废水排量各是多少?2.(2017·荆州)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元;若此次小慧同学不买卡直接购书,则她需付款多少元?3.某单位中秋节给员工发苹果,如果每人分2箱,则剩余20箱;如果每人分3箱,则还缺20箱.问苹果共有多少箱?1.配套问题例1:某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个;甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,要在30天内生产出最多的成套产品,问甲、乙、丙三种零件各应生产多少天?跟踪训练1.某种仪器由1个A部件和1个B部件配套构成,每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?2.一个车间有工人70人,每人平均每天加工轴杆15根或轴承12个,问应怎样分配工人,才能使所生产的轴杆和轴承刚好配套?(一个轴杆、两个轴承才可配成一套)3.某车间共有75名工人生产A,B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套,设车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?4.前进车间共有技术工人86人,若每名工人平均每天可以加工甲种部件15个,或乙种部件12个,或丙种部件9个,应如何安排加工甲种部件、乙种部件和丙种部件的人数,才能使加工后的3个甲种部件、2个乙种部件和1个丙种部件恰好配套?5.某工厂现有15m'木料,准备制作名种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿. (1)已知一张圆桌由一个桌面和一条桌腿组成,如果1m木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少立方米;(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题:①如果1m木料可制作50个桌面或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套?②如果3m木料可制作20个桌面或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子?工程问题题型一例1:一项工作,甲单独做20h完成,乙单独做12h完成.现在先由甲单独做4h,剰下部分由甲、乙一起做.剰下部分需要几小时完成?跟踪训练1.整理一批图书,由一个人单独做要花60 h,现先由一部分人用1h整理,随后增加15人和他们一起又做了2h,恰好完成了整理工作。
假设每个人的工作效率相同,那么先安排整理图书的人员有多少人?题型二例2:某地为打造河道风光带,现有一段长为180m的河道整治任务由甲、乙两个工程队先后接力完成;已知甲工程队每天整治12m,乙工程队每天整治8m,共用时20天;求甲、乙两个工程队分别整治河道多少米?1.食堂有煤若干吨,原来每天烧煤3吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.2.某配件厂原计划每天生产60件产品,改进技术后,工作效率提高20%,这样不仅提前5天完成了生产任务,并且比原计划多生产了48件产品,求原计划要生产多少件产品?3.(2019·安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路;其中一段长为146米的山体隧道贯穿工程由甲、乙两个工程队负责施工;甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米;已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲、乙两个工程队还需联合工作多少天?4.中共中央关于建设新农村政策田台后,全国各地都纷纷行动,其中修硬化水泥路面是其中的一项硬指标,某村要修建一条公路,若由甲工程队单独修要8天完成,由乙工程队单独修要12天完成,由丙工程队单独修要24天.现由甲、乙两队合修4天后,乙工程队被调往另一工地,又派内工程队与甲工程队合修才将这条公路修完,问修完这条公路共用了多少天?5.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(I)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?6.一棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a 元的标准支付雇工工资,雇工每天工作8小时. 问题解决:(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a 的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍;张家雇人手工采摘,王家所雇的人中有32的人自带采棉机采摘,31的人手工采摘;两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?行程问题例1:一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头到甲码头逆流而行,用了2.5h. 已知水流速度是3km/h,求船在静水中的平均速度.1.某天,一架飞机在A,B 两城之间飞行,从A 城到B 城是顺风飞行,返回时是逆风飞行.已知风速为24千米/时,顺风飞行需要2小时50分,逆风飞行需要3小时,求A,B 两城之间的航程.2.小明步行的速度是5 千米/小时,有一天他从家到学校,走了全程的31后,改乘速度为20千米/小时的公共汽车到校,比全部步行的时间快了15分钟,问小明家距学校多远?3.A,B两地相距200千米.甲乙7两人骑摩托车同时从两地相向而行,甲的速度是60千米/时,乙的速度是40千米/时,经过几小时,两人相距40千米?4.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10km/h,乙步行,行走速度为6 km/h.当甲到达B地时,乙距B地还有8km。
甲走了多长时间?A,B两地的路程是多少?5.在一条直的长河中有一条船,由A地顺流而下,到B地时,接到通知,需返回到C地执行任务。
已知船在静水中的速度是每小时7.5km,水流的速度是2.5 km/h,A,C两地间的距离为10km,如果该船由A地经B地再到达C地共用了4h;求A,B两地之间的距离.6.如图,一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发,步行者比汽车提前1h 出发,这辆汽车到达目的地后,再回头接步行这部分人。
出发地到目的地的距离是60 km;问:步行者在出发后经多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)?第3课时销售中的盈亏问题题型一打折与利润问题例1一种衣服按成本价提高50%后标价出售,后由于季节、市场需求量等因素,按标价的7折售出,每件获利5元,求这种衣服每件的成本价。
1.聪聪到希望书店买书,售货员主动告诉他,如果用20元钱办“希望书店会员卡”,将享受八折优惠,请问在这次买书中,聪聪在买标价共计为多少元的书时,办会员卡与不办会员卡一样? 当聪聪买标价共200元的书时,怎么买合算,能省多少钱?2.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?4.已知A,B两件服装的成本共500元,“鑫洋”服装店老板分别以30%和20%的利润率定价后进行销售,该服装店这两件服装共获利130元,问A,B两件服装的成本各是多少元?5.一个商店以每3盘16元的价格购进一批录音带,又从另外一处以每4盘21元的价格购进比前一批数量加倍的录音带;如果两批合在一起以每3盘k元的价格全部出售可得到所投资的20%的收益,则k的值为多少:6.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲乙两种商(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍.甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售的?7.某企业生产一种产品,每件成本价是400元,销售价是510元,本季度销售了m件;为进一步扩大市场该企业决定在降低销售价的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润与本季度保持不变,该产品每件的成本价应降低多少元?8.某品牌空调每台进价1800无,杯价2250元,在“国庆”期间搞促销活动,要求按利润率不低于5%的售价打折出售。
则此商品最多可打几折出售?9.在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.10.(长春中考)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72 套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.11.商场出售两种冰箱:A型冰箱每台售价2190元,每日耗电量为1千瓦/时;B型冰箱每台的售价比A型冰箱高出10%,每日耗电量为0.55千瓦/时;现将A型冰箱打八五折出售(两种冰箱的使用期都为10年,每年都按365天计算),已知每千瓦/时的电费为0.40元,那么买A型冰箱合算吗?若不合算,A型冰箱至少打几折才合算?类型三:设辅助参数列方程解应用题1.某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.2.某公司生产一种产品,每件成本价是400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该公司决定在降低销售价的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%后,销售量将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本应降低多少元?图表信息问题题型一:比赛积分问题例1某校七年级(1)班与(2)班决定进行乒乓球比赛。