数字图像处理 第6章 图像分割技术
- 格式:ppt
- 大小:3.10 MB
- 文档页数:49
实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。
实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。
3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。
通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。
2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2. 数字图像处理可以理解为两个方面的操作:一是从图像到图像的处理,如图像增强等;二是从图像到非图像的一种表示,如图像测量等。
5. 数字图像处理包含很多方面的研究内容。
其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
如傅利叶变换等。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
5. 简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。
比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
比如傅里叶变换、小波变换等。
第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。
2. 采样频率是指一秒钟内的采样次数。
3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。
3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。
人工智能图像识别技术指南第1章引言 (3)1.1 图像识别技术概述 (3)1.2 人工智能与图像识别的关系 (3)1.3 图像识别技术的应用领域 (3)第2章图像处理基础 (4)2.1 数字图像处理概述 (4)2.2 图像变换 (4)2.3 图像滤波与增强 (4)2.4 边缘检测与分割 (4)第3章特征提取与表示 (4)3.1 特征提取方法 (4)3.2 特征表示与度量 (4)3.3 常用特征提取算法 (4)3.4 特征选择与优化 (4)第4章深度学习基础 (4)4.1 神经网络简介 (4)4.2 卷积神经网络(CNN) (4)4.3 深度学习训练技巧 (4)4.4 深度学习框架介绍 (4)第5章目标检测技术 (4)5.1 目标检测概述 (4)5.2 基于候选框的目标检测方法 (4)5.3 基于深度学习的目标检测算法 (4)5.4 目标检测数据集与评估指标 (4)第6章图像分类技术 (4)6.1 图像分类概述 (4)6.2 传统图像分类算法 (4)6.3 深度学习图像分类算法 (4)6.4 数据不平衡与过拟合问题 (4)第7章场景识别与分割 (4)7.1 场景识别概述 (4)7.2 基于特征的场景识别方法 (4)7.3 深度学习场景识别算法 (4)7.4 图像分割技术 (5)第8章人体姿态估计 (5)8.1 人体姿态估计概述 (5)8.2 基于传统方法的姿态估计 (5)8.3 基于深度学习的姿态估计 (5)8.4 人体姿态估计的应用场景 (5)第9章人脸识别技术 (5)9.1 人脸识别概述 (5)9.3 深度学习人脸识别算法 (5)9.4 人脸识别中的挑战与解决方案 (5)第10章视频分析与行为识别 (5)10.1 视频分析概述 (5)10.2 目标跟踪技术 (5)10.3 行为识别方法 (5)10.4 深度学习在视频分析中的应用 (5)第11章医学图像识别 (5)11.1 医学图像概述 (5)11.2 医学图像预处理与增强 (5)11.3 医学图像分割与标注 (5)11.4 深度学习在医学图像诊断中的应用 (5)第12章图像识别技术的挑战与展望 (5)12.1 数据安全与隐私保护 (5)12.2 算法可解释性与可靠性 (5)12.3 通用性与自适应学习 (5)12.4 未来发展趋势与展望 (5)第1章引言 (5)1.1 图像识别技术概述 (5)1.2 人工智能与图像识别的关系 (6)1.3 图像识别技术的应用领域 (6)第2章图像处理基础 (6)2.1 数字图像处理概述 (7)2.2 图像变换 (7)2.3 图像滤波与增强 (7)2.4 边缘检测与分割 (7)第3章特征提取与表示 (7)3.1 特征提取方法 (7)3.2 特征表示与度量 (8)3.3 常用特征提取算法 (8)3.4 特征选择与优化 (9)第4章深度学习基础 (9)4.1 神经网络简介 (9)4.2 卷积神经网络(CNN) (9)4.3 深度学习训练技巧 (10)4.4 深度学习框架介绍 (10)第5章目标检测技术 (11)5.1 目标检测概述 (11)5.2 基于候选框的目标检测方法 (11)5.3 基于深度学习的目标检测算法 (11)5.4 目标检测数据集与评估指标 (11)第6章图像分类技术 (12)6.1 图像分类概述 (12)6.3 深度学习图像分类算法 (12)6.4 数据不平衡与过拟合问题 (12)第7章场景识别与分割 (13)7.1 场景识别概述 (13)7.2 基于特征的场景识别方法 (13)7.3 深度学习场景识别算法 (13)7.4 图像分割技术 (14)第8章人体姿态估计 (14)8.1 人体姿态估计概述 (14)8.2 基于传统方法的姿态估计 (14)8.3 基于深度学习的姿态估计 (14)8.4 人体姿态估计的应用场景 (15)第9章人脸识别技术 (15)9.1 人脸识别概述 (15)9.2 基于特征的人脸识别方法 (15)9.3 深度学习人脸识别算法 (16)9.4 人脸识别中的挑战与解决方案 (16)第10章视频分析与行为识别 (17)10.1 视频分析概述 (17)10.2 目标跟踪技术 (17)10.3 行为识别方法 (17)10.4 深度学习在视频分析中的应用 (17)第11章医学图像识别 (17)11.1 医学图像概述 (18)11.2 医学图像预处理与增强 (18)11.3 医学图像分割与标注 (18)11.4 深度学习在医学图像诊断中的应用 (18)第12章图像识别技术的挑战与展望 (19)12.1 数据安全与隐私保护 (19)12.2 算法可解释性与可靠性 (19)12.3 通用性与自适应学习 (19)12.4 未来发展趋势与展望 (20)好的,以下是一份关于人工智能图像识别技术指南的目录:第1章引言1.1 图像识别技术概述1.2 人工智能与图像识别的关系1.3 图像识别技术的应用领域第2章图像处理基础2.1 数字图像处理概述2.2 图像变换2.3 图像滤波与增强2.4 边缘检测与分割第3章特征提取与表示3.1 特征提取方法3.2 特征表示与度量3.3 常用特征提取算法3.4 特征选择与优化第4章深度学习基础4.1 神经网络简介4.2 卷积神经网络(CNN)4.3 深度学习训练技巧4.4 深度学习框架介绍第5章目标检测技术5.1 目标检测概述5.2 基于候选框的目标检测方法5.3 基于深度学习的目标检测算法5.4 目标检测数据集与评估指标第6章图像分类技术6.1 图像分类概述6.2 传统图像分类算法6.3 深度学习图像分类算法6.4 数据不平衡与过拟合问题第7章场景识别与分割7.1 场景识别概述7.2 基于特征的场景识别方法7.3 深度学习场景识别算法7.4 图像分割技术第8章人体姿态估计8.1 人体姿态估计概述8.2 基于传统方法的姿态估计8.3 基于深度学习的姿态估计8.4 人体姿态估计的应用场景第9章人脸识别技术9.1 人脸识别概述9.2 基于特征的人脸识别方法9.3 深度学习人脸识别算法9.4 人脸识别中的挑战与解决方案第10章视频分析与行为识别10.1 视频分析概述10.2 目标跟踪技术10.3 行为识别方法10.4 深度学习在视频分析中的应用第11章医学图像识别11.1 医学图像概述11.2 医学图像预处理与增强11.3 医学图像分割与标注11.4 深度学习在医学图像诊断中的应用第12章图像识别技术的挑战与展望12.1 数据安全与隐私保护12.2 算法可解释性与可靠性12.3 通用性与自适应学习12.4 未来发展趋势与展望第1章引言1.1 图像识别技术概述图像识别技术作为人工智能领域的一个重要分支,主要研究如何让计算机实现对图像的自动识别和处理。
数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。