高考数学 6.2 等差数列
- 格式:pptx
- 大小:141.34 KB
- 文档页数:7
专题6.2 等差数列及其前n 项和1.(江西师范大学附属中学2019届高三三模)已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S =( )A .2B .7C .14D .28【答案】C 【解析】5632a a a +=+ 44422a d a d a d ∴++=++-,解得:42a =()177477142a a S a +∴===,本题选C 。
2.(安徽省1号卷A10联盟2019届模拟)等差数列{}n a 的前n 项和为n S ,若2163S =,则31119a a a ++=( )A .12B .9C .6D .3【答案】B【解析】由等差数列性质可知:21112163S a ==,解得:113a =311191139a a a a ∴++==本题选B 。
3.(贵州省贵阳市2019届高三模拟)已知{a n }为递增的等差数列,a 4+a 7=2,a 5•a 6=-8,则公差d=( ) A .6 B .6-C .2-D .4【答案】A【解析】∵{a n }为递增的等差数列,且a 4+a 7=2,a 5•a 6=-8, ∴a 5+a 6=2,∴a 5,a 6是方程22x 80x --=的两个根,且a 5<a 6, ∴a 5=-2,a 6=4, ∴d=a 6-a 5=6, 故选A 。
4.(河北衡水中学2019届高三调研)已知等比数列{}n a 中,若12a =,且1324,,2a a a 成等差数列,则5a =( )A .2B .2或32C .2或-32D .-1【答案】B【解析】设等比数列{}n a 的公比为q (q 0≠),1324,,2a a a 成等差数列, 321224a a a ∴=+,10a ≠, 220q q ∴--=,解得:q=2q=-1或,451a =a q ∴,5a =232或,故选B.5.(浙江省金华十校2019届高三模拟)等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( )A .1-B .0C .2D .3【答案】B【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=,则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0,故选B 。
§6.2等差数列及其前n项和【考点集训】考点一等差数列的定义及通项公式1.(2018陕西咸阳12月模拟,7)《张丘建算经》卷上一题大意为今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布,现在一月(按30天计)共织布390尺,最后一天织布21尺,则该女第一天共织多少布?()A.3尺B.4尺C.5尺D.6尺答案C2.(2017安徽淮南一模,15)已知数列{a n}满足递推关系式a n+1=2a n+2n-1(n∈N*),且为等差数列,则λ的值是.答案-13.(2018河南开封定位考试,17)已知数列{a n}满足a1=,且a n+1=.(1)求证:数列是等差数列;(2)若b n=a n a n+1,求数列{b n}的前n项和S n.解析(1)证明:∵a=,∴=,n+1∴-=.∴数列是以2为首项,为公差的等差数列.(2)由(1)知a n=,∴b n==4-,∴S n=4--…-=4-=.考点二等差数列的性质(2019届湖北宜昌模拟,6)已知数列{a}满足=25·,且a2+a4+a6=9,则lo(a5+a7+a9)=()nA.-3B.3C.-D.答案A考点三等差数列的前n项和1.(2018安徽安庆调研,5)等差数列{a n}中,已知S15=90,那么a8=()A.12B.4C.3D.6答案D2.(2017河南部分重点中学二联,6)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n=()A.6B.7C.10D.9答案B3.(2019届福建龙岩永定区模拟,10)已知等差数列{a n},{b n}的前n项和分别为S n和T n,且=,则=()A.B.C.D.答案 D炼技法 【方法集训】方法1 等差数列的判定与证明的方法(2019届福建三明模拟,17)已知数列{a n }中,a n =2n-1. (1)证明:数列{a n }是等差数列;(2)若数列{a n }的前n 项和S n =25,求n.解析 (1)证明:∵a n+1-a n =2(n+1)-1-(2n-1)=2,a 1=1, ∴数列{a n }是等差数列,首项为1,公差为2. (2)由(1)得数列{a n }的前n 项和S n =n+ -×2=n 2,由S n =25得n 2=25,又n>0,解得n=5.方法2 等差数列前n 项和的最值问题的解决方法1.(2019届江西高安模拟,11)已知数列{a n }是等差数列,其前n 项和为S n ,满足a 1+3a 2=S 6,给出下列结论:(1)a 7=0;(2)S 13=0;(3)S 7最小;(4)S 5=S 8.其中正确结论的个数是( )A.1B.2C.3D.4答案 C2.(2019届福建龙岩新罗区模拟,12)已知等差数列{a n }的公差为-2,前n 项和为S n ,a 3,a 4,a 5为某三角形的三边长,且该三角形有一个内角为120°,若S n ≤S m 对任意的n ∈N *恒成立,则实数m=( ) A.7 B.6 C.5D.4答案 B3.(2019届福建龙岩新罗区模拟,16)等差数列{a n }中,S n 是它的前n 项和,且S 6<S 7,S 6>S 8,给出下列结论: ①数列{a n }的公差d<0;②S 9<S 6;③S 14<0;④S 7一定是S n 中的最大值. 其中正确的是 (填序号). 答案 ①②③④过专题【五年高考】A 组 统一命题·课标卷题组考点一 等差数列的定义及通项公式(2016课标全国Ⅱ,17,12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 解析 (1)设数列{a n }的公差为d,由题意有2a 1+5d=4,a 1+5d=3. 解得a 1=1,d=.(3分) 所以{a n }的通项公式为a n =.(5分) (2)由(1)知,b n =.(6分) 当n=1,2,3时,1≤<2,b n =1; 当n=4,5时,2<<3,b n =2;当n=6,7,8时,3≤<4,bn=3;当n=9,10时,4<<5,bn=4.(10分)所以数列{bn}的前10项和为1×3+2×2+3×3+4×2=24.(12分)考点二等差数列的性质(2015课标Ⅱ,5,5分)设Sn 是等差数列{an}的前n项和.若a1+a3+a5=3,则S5=()A.5B.7C.9D.11答案A考点三等差数列的前n项和1.(2015课标Ⅰ,7,5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=()A. B. C.10 D.12答案B2.(2014课标Ⅱ,5,5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C. D.-答案A3.(2018课标全国Ⅱ,17,12分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解析(1)设{an}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{an}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,Sn取得最小值,最小值为-16.B组自主命题·省(区、市)卷题组考点一等差数列的定义及通项公式1.(2016浙江,8,5分)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*.(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{}是等差数列C.{d n}是等差数列D.{}是等差数列答案A2.(2014辽宁,9,5分)设等差数列{a n}的公差为d.若数列{}为递减数列,则()A.d>0B.d<0C.a1d>0D.a1d<0答案D3.(2015北京,16,13分)已知等差数列{a n}满足a1+a2=10,a4-a3=2.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7.问:b6与数列{a n}的第几项相等?解析(1)设等差数列{an}的公差为d.因为a4-a3=2,所以d=2.又因为a1+a2=10,所以2a1+d=10,故a1=4.所以an=4+2(n-1)=2n+2(n=1,2,…).(2)设等比数列{b n}的公比为q.因为b2=a3=8,b3=a7=16,所以q=2,b1=4.所以b6=4×26-1=128.由128=2n+2得n=63.所以b6与数列{an}的第63项相等.4.(2014浙江,19,14分)已知等差数列{a n}的公差d>0.设{a n}的前n项和为S n,a1=1,S2·S3=36.(1)求d及S n;(2)求m,k(m,k∈N*)的值,使得a m+a m+1+a m+2+…+a m+k=65.解析(1)由题意知(2a1+d)(3a1+3d)=36,将a1=1代入上式解得d=2或d=-5.因为d>0,所以d=2.从而an=2n-1,S n=n2(n∈N*).(2)由(1)得a m+a m+1+a m+2+…+a m+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.由m,k∈N*知2m+k-1≥k+1>1,故-所以考点二等差数列的性质1.(2014重庆,2,5分)在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14答案B2.(2015陕西,13,5分)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为. 答案5考点三等差数列的前n项和1.(2017浙江,6,4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案C2.(2015安徽,13,5分)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.答案27C组教师专用题组考点一等差数列的定义及通项公式1.(2013安徽,7,5分)设S n为等差数列{a n}的前n项和,S8=4a3,a7=-2,则a9=()A.-6B.-4C.-2D.2答案A2.(2014陕西,14,5分)已知f(x)=,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2014(x)的表达式为.答案f2014(x)=3.(2015福建,17,12分)等差数列{a n}中,a2=4,a4+a7=15.(1)求数列{a n}的通项公式;(2)设b n=-+n,求b1+b2+b3+…+b10的值.解析(1)设等差数列{an}的公差为d.由已知得解得所以an=a1+(n-1)d=n+2.(2)由(1)可得b n=2n+n.所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=--+=(211-2)+55=211+53=2101.4.(2013课标Ⅰ,17,12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=-5.(1)求{a n}的通项公式;(2)求数列-的前n项和.解析(1)设{an}的公差为d,则S n=na1+- d.由已知可得-解得a1=1,d=-1.故{an}的通项公式为a n=2-n.(2)由(1)知-=--=---,从而数列-的前n项和为--+-+…+---=-.5.(2013江西,17,12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知sin Asin B+sin Bsin C+cos2B=1.(1)求证:a,b,c成等差数列;(2)若C=,求的值.解析(1)证明:由已知得sin Asin B+sin Bsin C=2sin2B,因为sin B≠0,所以sin A+sin C=2sin B,由正弦定理,有a+c=2b,即a,b,c成等差数列.(2)由C=,c=2b-a及余弦定理得(2b-a)2=a2+b2+ab,即有5ab-3b2=0,所以=.考点二 等差数列的性质(2013辽宁,4,5分)下面是关于公差d>0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列; p 3:数列是递增数列; p 4:数列{a n +3nd}是递增数列.其中的真命题为( ) A.p 1,p 2 B.p 3,p 4 C.p 2,p 3 D.p 1,p 4 答案 D考点三 等差数列的前n 项和1.(2014天津,5,5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A.2B.-2C.D.-答案 D2.(2014重庆,16,13分)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q+S 4=0.求{b n }的通项公式及其前n 项和T n . 解析 (1)因为{a n }是首项a 1=1,公差d=2的等差数列,所以a n =a 1+(n-1)d=2n-1. 故S n =1+3+…+(2n-1)== -=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q+S 4=0,即q 2-8q+16=0,所以(q-4)2=0,从而q=4. 又因为b 1=2,{b n }是公比q=4的等比数列,所以b n =b 1q n-1=2×4n-1=22n-1. 从而{b n }的前n 项和T n =- -= (4n-1). 3.(2013浙江,19,14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |.解析 (1)由题意得5a 3·a 1=(2a 2+2)2,即d 2-3d-4=0.故d=-1或d=4.所以a n =-n+11,n ∈N *或a n =4n+6,n ∈N *.(2)设数列{a n }的前n 项和为S n .因为d<0,由(1)得d=-1,a n =-n+11,所以当n ≤11时, |a 1|+|a 2|+|a 3|+…+|a n |=S n =-n 2+n.当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=n 2-n+110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n | = --【三年模拟】时间:45分钟 分值:60分一、选择题(每小题5分,共35分)1.(2018河南开封定位考试,5)等差数列{a n }的前n 项和为S n ,且a 1+a 5=10,S 4=16,则数列{a n }的公差为( ) A.1 B.2 C.3 D.4 答案 B2.(2017辽宁六校协作体期中,8)已知等差数列{a n},{b n}的前n项和分别为S n,T n,若对于任意的正整数n,都有=-,则-+=()A. B. C. D.答案A3.(2018云南玉溪模拟,9)若{a n}是等差数列,公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n}的前n项和S n>0成立的最大正整数n是()A.4027B.4026C.4025D.4024答案D4.(2017广东惠州二调,7)设S n是等差数列{a n}的前n项和,若=,则=()A.1B.-1C.2D.答案A5.(2019届河北唐山模拟,8)已知数列{a n}的前n项和S n=2+λa n,且a1=1,则S5=()A.27B.C.D.31答案C6.(2019届浙江温州模拟,9)已知{a n},{b n}均为等差数列,且a2=4,a4=6,b3=3,b7=9,由{a n},{b n}的公共项组成新数列{c n},则c10=()A.18B.24C.30D.36答案C7.(2019届河北唐山模拟,6)设{a n}是任意等差数列,它的前n项和、前2n项和与前4n项和分别为X,Y,Z,则下列等式中恒成立的是()A.2X+Z=3YB.4X+Z=4YC.2X+3Z=7YD.8X+Z=6Y答案D二、填空题(共5分)8.(2018四川德阳一模,7)我国古代数学名著《张邱建算经》中有“分钱问题”:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第三人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是.答案195三、解答题(共20分)9.(2018广东惠州一调,17)已知等差数列{a n}的公差不为0,前n项和为S n(n∈N*),S5=25,且S1,S2,S4成等比数列.(1)求a n与S n;(2)设b n=,求证:b1+b2+b3+…+b n<1.解析(1)设等差数列{a}的公差为d(d≠0),n则由S=25可得a3=5,即a1+2d=5①,5又S,S2,S4成等比数列,且S1=a1,S2=2a1+d,S4=4a1+6d,1所以(2a+d)2=a1(4a1+6d),整理得2a1d=d2,1因为d≠0,所以d=2a②,1联立①②,解得a=1,d=2,1所以a=1+2(n-1)=2n-1,S n=-=n2.n(2)证明:由(1)得b n==-,所以b1+b2+b3+…+b n=-+-+…+-=1-.又∵n∈N*,∴1-<1.∴b1+b2+b3+…+b n<1.10.(2019届河北曲周模拟,17)等差数列{a n}中,公差d<0,a2+a6=-8,a3a5=7.(1)求{a n}的通项公式;(2)记T n为数列{b n}前n项的和,其中b n=|a n|,n∈N*,若T n≥1464,求n的最小值.解析(1)∵等差数列{an}中,公差d<0,a2+a6=-8,∴a2+a6=a3+a5=-8,又∵a3a5=7,∴a3,a5是一元二次方程x2+8x+7=0的两个根,且a3>a5,解方程x2+8x+7=0,得a3=-1,a5=-7,∴--解得a1=5,d=-3.∴a n=5+(n-1)×(-3)=-3n+8.(2)由(1)知{a n}的前n项和S n=5n+-×(-3)=-n2+n.∵b n=|a n|,∴b1=5,b2=2,b3=|-1|=1,b4=|-4|=4,当n≥3时,bn=|a n|=3n-8.当n<3时,T1=5,T2=7;当n≥3时,Tn=-S n+2S2=-+14.∵T n≥1464,∴T n=-+14≥1464,即(3n-100)(n+29)≥0,解得n≥,∴n的最小值为34.。
第02节 等差数列及其前n 项和【考纲解读】【知识清单】一.等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥.2.等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列.3.等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,其中2a bA +=. a ,A ,b 成等差数列⇔2a bA +=. 4.等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 5.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.6.注意区分等差数列定义中同一个常数与常数的区别. 对点练习:【2017届某某省某某市二模】在等差数列中,若,则_______.【答案】二、等差数列的前n 项和等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 对点练习:【2018届某某省“七彩阳光”联盟高三上期初联考】已知等差数列{}n a 的前n 项和为n S ,若14k S -=,9k S =,则k a =__________,1a 的最大值为__________.【答案】 54.【解析】15k k k a S S -=-=,因为()1592k k a S +==,又k 的最小值为2,可知1a 的最大值为4.三、等差数列的相关性质 1.等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列, 如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+,特殊地,2m p q =+时,则2m p q a a a =+,m a 是p q a a 、的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即232,,n n n n n S S S S S --成等差数列. (6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.2.设数列{}n a 是等差数列,且公差为d ,(Ⅰ)若项数为偶数,设共有2n 项,则①-S S nd =奇偶; ②1n n S a S a +=奇偶;(Ⅱ)若项数为奇数,设共有21n -项,则①S S -偶奇n a a ==中(中间项);②1S nS n =-奇偶. 3.(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.4.如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.5.若{}n a 与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a S b S --=. 6.等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值. 对点练习:1.在等差数列{}n a 中,已知3810a a +=,则753a a += ( ) A .10 B .18 C .20 D .28 【答案】C2.已知等差数列}{n a 的前n 项和为n S ,满足95S S =,且01>a ,则n S 中最大的是( ) A .6S B .7S C .8S D .15S 【答案】B【解析】由95S S =,得()67897820a a a a a a +++=+=,由01>a 知,0,087<>a a ,所以7S 最大,故B 正确.【考点深度剖析】等差数列的性质、通项公式和前n 项和公式构成等差数列的重要内容,在历届高考中必考,既有独立考查的情况,也有与等比数列等其它知识内容综合考查的情况.选择题、填空题、解答题多种题型加以考查.【重点难点突破】考点1 等差数列的定义、通项公式、基本运算【1-1】【2017全国卷1(理)】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,68S =,则{}n a 的公 差为( ). A .1B .2C .4D .8【答案】C【1-2】【2017全国卷2(理))】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 【答案】21nn + 【解析】设{}n a 首项为1a ,公差为d .则3123a a d =+=, 414610S a d =+=,求得11a =,1d =,则n a n =,()12n n n S +=,()()112222122311nk kS n n n n ==++++⨯⨯-+∑11111112122311n n n n ⎛⎫=-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-=⎪++⎝⎭.【1-3】【2017届某某市耀华中学二模】已知等差数列{}n a 的前项和为n S ,且2142S =,若记2119132aa a nb --=,则数列{}n b ( )A. 是等差数列但不是等比数列B. 是等比数列但不是等差数列C. 既是等差数列又是等比数列D. 既不是等差数列又不是等比数列 【答案】C【领悟技法】1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔{}n a 是等差数列; (4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔{}n a 是等差数列; (5){}n a 是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 2.活用方程思想和化归思想在解有关等差数列的问题时可以考虑化归为1a 和d 等基本量,通过建立方程(组)获得解.即等差数列的通项公式1(1)n a a n d =+-及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++.这对已知和,求数列各项,运算很方便.4.若判断一个数列既不是等差数列又不是等比数列,只需用123,,a a a 验证即可. 5.等差数列的前n 项和公式若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a ,公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 【触类旁通】【变式一】【2018届某某省某某市西北师X 大学附属中学高三一调】在《X 丘建算经》有一道题:“今有女子不善织布,逐日所织的布同数递减,初日织五尺,末一日织一尺,计织三十日,问共织布几何?” ( ) A.尺 B. 尺 C.尺 D.尺【答案】C【变式二】【2018届某某省某某市高三调研性检测】数列{}n a 满足1111,021n n n a a a a ++=+=-.(Ⅰ)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ)若数列{}n b 满足1122,1n nn n b a b b a +==+,求{}n b 的前n 项和n S . 【答案】(Ⅰ)证明见解析 (Ⅱ)()12326n n S n +=-⋅+【解析】试题分析:(1)先依据题设条件将11021n n n a a a +++=-变形为1112n na a +-=,进而借助等差数列的定义证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(2)借助(1)的结论可求得()112121n n n a =+-=-,进而依据112n n n n b a b a ++=⋅求得1222n nn n a b -=⨯= 从而求得()212n n b n =-⋅,然后与运用错位相减法求得()12326n n S n +=-⋅+:解:(Ⅰ)若10n a +=,则0n a =,这与11a =矛盾, ∴10n a +≠,由已知得1120n n n n a a a a ++-+=,∴1112n na a +-=, 故数列{}n a 是以111a =为首项,2为公差的等差数列. (Ⅱ)由(Ⅰ)可知,()1112121n n a =+-=-, 由112n n n n b ab a ++=⋅可知112n n n n a b a b ++=.又112a b = ∴1222n nn n a b -=⨯= ∴()212n n b n =-⋅,∴()123123252212n n S n =⋅+⋅+⋅++-⋅, 则()23412123252212n n S n +=⋅+⋅+⋅++-⋅,∴()()231122222222123226n n n n S n n ++-=+⋅+⋅++⋅--⋅=-⋅-,∴()12326n n S n +=-⋅+考点2 等差数列的性质【2-1】【某某省武邑中学2018届高三上学期第二次调研数学(理)】数列{}n a 满足112n n n a a a -+=+()2n ≥,且1359a a a ++=, 24612a a a ++=,则345a a a ++=( ) A. 9 B. 10 C. 11 D. 12 【答案】D【2-2】【某某省某某一中2018届高三第二次月考】在数列{}n a 中, 28a =, 52a =,且122n n n a a a ++-=(*n N ∈),则1210a a a +++的值是( )A. -10B. 10C. 50D. 70【答案】C【解析】由122n n n a a a ++-=得122n n n a a a ++=+,即数列{}n a 是等差数列,由2582a a ==,,可得1102a d ==-,,,所以212n a n =-+,,当1n 6≤≤时, 0n a ≥,当7n ≥时, 0n a <,所以1210610250a a a S S +++=-=,选C .【2-3】 【2017届某某某某市第三中学高三三模】已知函数()f x 在()1,-+∞上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则{}n a 的前100项的和为( )A. 200-B. 100-C. 0D. 50- 【答案】B【领悟技法】1. 等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.等差数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用, 故应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.3.应用等差数列的性质要注意结合其通项公式、前n 项和公式.4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向、形成解题策略. 【触类旁通】【变式一】【2017届某某省某某市高三下第二次联考】设等差数列{}n a 的前n 项和为n S ,已知()355134a a -+=, ()388132a a -+=,则下列选项正确的是( )A. 1212S =, 58a a >B. 1224S =, 58a a >C. 1212S =, 58a a <D. 1224S =, 58a a < 【答案】A【解析】由()355134a a -+=, ()388132a a -+=可得:()()33558813(1)1,13(1)1a a a a -+-=-+-=-,构造函数3()f x x x =+,显然函数是奇函数且为增函数,所以5858(1)11(1)11f a f a a a -=>-=-⇒->-, 58a a >,又58(1)(1)0f a f a -+-=所以58(1)(1)a a -=--所以582a a +=,故112125812()6()122a a S a a +==+=【变式二】【”超级全能生”2018届高考全国卷26省9月联考乙卷】已知数列{}{},n n a b 满足1211,2,1a a b ===-,且对任意的正整数m,n,p,q ,当m n p q +=+时,都有m n p q a b a b -=-,则()2018112018i i i a b =∑-的值是__________. 【答案】2019【解析】由题意可得2112a b a b -=-, 22b =-, 3122,a b a b -=-得33a =,又11n n n n a b a b ++-=-,11110n n n n a b a b a b +++=+==+=,即,2n n n n n a b a b a =--=,原式可化为当m+n=p+q 时m n p q a a a a +=+,即{}n a 为等差列, n a n =, ()2018112018i i i a b =∑-=()20181122018i i a =∑=2019,填2019.考点3 等差数列的前n 项和公式的综合应用【3-1】【2017届某某省黄陵中学高三(重点班)模拟一】若数列{}n a 满足115a =且1332n n a a +=-,则使10k k a a +⋅<的k 的值为( )A. 21B. 22C. 23D. 24 【答案】C【3-2】【2017届某某某某市高三上基础测试】设等差数列{}n a 的前n 项和为n S ,已知316a =,610a =,则公差d =;n S 为最大值时的n =.【答案】2d =-10n =或11【解析】63(63),10163,2a a d d d =+-∴=+∴=-,因为31(31)a a d =+-,1162(2)a ∴=+⨯-,120a ∴=,221n S n n ∴=-+,当212(1)n =-⨯-,由n ∈Z 得10n =或11时,n S 为最大值.【3-3】【2017届某某省池州市东至县高三12月联考】已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a >,其中正确命题的个数为( ) A. 2 B. 3 C. 4 D. 5 【答案】B【领悟技法】求等差数列前n 项和的最值,常用的方法:1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足100n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设n a 为最大项,则有11n n nn a a a a -+≥⎧⎨≥⎩;求最小项的方法:设n a 为最小项,则有11n n n n a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用. 【触类旁通】【变式一】【2017某某卷6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【变式二】【2018届某某省某某市部分学校新高三起点调研】设等差数列{}n a 满足3736a a +=,46275a a =,且1n n a a +有最小值,则这个最小值为__________.【答案】-12【解析】因为数列{}n a 是等差数列,且3736a a +=,所以4636a a +=,4646275,,a a a a =∴是一元二次方程2362750t t -+=的二根,由2362750t t -+=得()()25110t t --=, 125t ∴=或211t =,当4625,11a a ==时, 6411257642a a d --===--, ()44753n a a n d n ∴=+-=-+,当10,0n n a a +><时, 1n n a a +取得最小值,由()7530{71530n n -+>-++<解得465377n <<, 7n ∴=时, 1n n a a +取得最小值,此时()781min 4,3,12n n a a a a +==-=-,当4611,25a a ==时, 6425117642a a d --===-, ()44717n a a n d n ∴=+-=-,当10,0n n a a +时, 1n n a a +取得最小值,由()7170{71170n n -<+->解得101777n <<, 2n ∴=时, 1n n a a +取得最小值,此时()231min 3,4,12n n a a a a +=-==-, 故答案为12-. 【易错试题常警惕】易错典例:在等差数列{}n a 中,已知a 1=20,前n 项和为n S ,且S 10=S 15,求当n 取何值时,n S 有最大值,并求出它的最大值.【错解一】 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142 d.得d =-53,a n =20-(n -1)·53.当a n >0时,20-(n -1)·53>0,∴n<13.∴n=12时,S n 最大,S 12=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.当n =12时,S n 有最大值S 12=130.【错解二】 由a 1=20,S 10=S 15,解得公差d =-53,令⎩⎪⎨⎪⎧20+(n -1)⎝ ⎛⎭⎪⎫-53>0, ①20+n ⎝ ⎛⎭⎪⎫-53≤0, ② 由①得n <13,由②得n≥12,∴n=12时,S n 有最大值S 12=130.易错分析: 错解一中仅解不等式a n >0不能保证S n 最大,也可能a n +1>0,应有a n ≥0且a n +1≤0. 错解二中仅解a n +1≤0也不能保证S n 最大,也可能a n ≤0,应保证a n ≥0才行. 正确解析: 解法一:∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142 d.∴d=-53. ∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653.∴a 13=0.即当n≤12时,a n >0,n≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.解法二:同解法一,求得d =-53,∴S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.解法三:同解法一,求得d =-53,又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0,∴5a 13=0,即a 13=0.又a 1>0,∴a 1,a 2,…,a 12均为正数.而a 14及以后各项均为负数, ∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.温馨提醒:1.解决等差数列前n 项和最值问题时一般利用通项不等式组法,即①当a 1>0,d <0时,S n 最大⇔100n n a a +≥⎧⎨≤⎩;②当a 1<0,d >0时,S n 最小⇔10n n a a +≤⎧⎨≥⎩.2.在关于正整数n 的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.3.等差数列的基本运算中,容易出现的问题主要有两个方面:一是忽视题中的条件限制,如公差与公比的符号、大小等,导致增解;二是不能灵活利用等差(比)数列的基本性质转化已知条件,导致列出的方程或方程组较为复杂,增大运算量.【学科素养提升之思想方法篇】----函数思想在数列求最值问题中的应用数列是特殊的函数关系,因此常利用函数的思想解决数列中最值问题 1.等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为1(1)2n n n S na d -=+可变形为S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,令A =d 2,B =a 1-d 2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题. 2.等差数列前n 项和的最值(1)若等差数列的首项a 1>0,公差d <0,则等差数列是递减数列,正数项有限,前n 项和有最大值,且满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0.(2)若等差数列的首项a 1<0,公差d >0,则等差数列是递增数列,负数项有限,前n 项和有最小值,且满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0.3.求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *. (2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a n ≥0,a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.【典例】【2018届某某省某某市五十五中开学考试】已知数列{}n a 是一个等差数列,且21a =,55a =-. (Ⅰ)求{}n a 的通项n a ;(Ⅱ)求{}n a 前n 项和n S 的最大值.【答案】(1)25n a n =-+;(2)n S 的最大值为4. 【解析】方得()224n S n =--+,根据二次函数图象及性质可知,当2n =时,前n 项和取得最大值,最大值为4.等差数列前n 项和22n S An Bn =+,因此可以看出二次函数或一次函数(0d =时)来求最值,考查数列与函数.试题解析:(1)525125252a a d ---===---, 所以()()()2212225n a a n d n n =+-=+-⨯-=-+; (2)13a =,()()213242n n n S n n n -=+⨯-=-+ 当2n =时,前n 项和取得最大值,最大值为4。
题组层级快练 6.2等差数列一、单项选择题1.(2021·河北辛集中学月考)已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于()A .1B.53C .2D .32.(2017·课标全国Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为()A .1B .2C .4D .83.(2021·南昌市一模)已知{a n }为等差数列,若a 2=2a 3+1,a 4=2a 3+7,则a 5=()A .1B .2C .3D .64.(2020·西安四校联考)在等差数列{a n }中,a 2=5,a 7=3,在该数列中的任何两项之间插入一个数,使之仍为等差数列,则这个新等差数列的公差为()A .-25B .-45C .-15D .-355.(2020·安徽合肥二模)a 1=1,a 4=4,则a 10=()A .-45B .-54C.413D.1346.(2021·合肥市一检)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),a 5+a 7-a 62=0,则S 11的值为()A .11B .12C .20D .227.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=()A.310B.13C.18D.198.(2021·福建高三质检)设等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 8+a 13=2π21,则tanS 14=()A .-33B.33C .-3D.39.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为()A .4B .5C .6D .4或510.(2021·沈阳二中模拟)《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌”就是其中一首:“一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.”这首歌诀的大意是:“一位老公公有九个儿子,九个儿子从大到小排列,相邻两人的年龄差三岁,并且儿子们的年龄之和为207岁,请问大儿子多少岁,其他几个儿子年龄如何推算.”在这个问题中,记这位公公的第n 个儿子的年龄为a n ,则a 3=()A .17B .29C .23D .3511.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10二、多项选择题12.已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有()A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0三、填空题与解答题13.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且S n T n =3n -12n +3,则a 10b 10=________.14.(2020·沈阳市模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2019,则m =________.15.设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a n 2和a n 的等差中项.(1)证明:数列{a n }为等差数列;(2)若b n =-n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值.16.已知A n ={x|2n <x<2n +1且x =7m +1,m ,n ∈N },则A 6中各元素的和为________.9个数构成一个首项为71,公差为7的等差数列.∴71+78+…+127=71×9+9×82×7=891.17.(2019·课标全国Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.6.2等差数列参考答案1.答案C解析由已知得S 3=3a 2=12,即a 2=4,∴d =a 3-a 2=6-4=2.2.答案C解析设等差数列{a n }的公差为d ,1+3d +a 1+4d =24,1+6×52d =48,1=-2,=4,故选C.3.答案B解析设数列{a n }的公差为d ,将题中两式相减可得2d =6,所以d =3,所以a 2=2(a 2+3)+1,解得a 2=-7,所以a 5=a 2+(5-2)d =-7+9=2.故选B.4.答案C解析∵{a n }的公差d =3-57-2=-25,∴新等差数列的公差d×12=-15.故选C.5.答案A解析由题意,得1a 1=1,1a 4=14,d =1a 4-1a 13=-14,由此可得1a n=1+(n -1)=-n 4+54,因此1a 10=-54,所以a 10=-45.故选A.6.答案D解析方法一:设等差数列的公差为d(d >0),则由(a 1+4d)+(a 1+6d)-(a 1+5d)2=0,得(a 1+5d)(a 1+5d -2)=0,所以a 1+5d =0或a 1+5d =2,又a 1>0,所以a 1+5d >0,则a 1+5d =2,则S 11=11a 1+11×102d =11(a 1+5d)=11×2=22.故选D.方法二:因为{a n }为正项等差数列,所以由等差数列的性质,并结合a 5+a 7-a 62=0,得2a 6-a 62=0,a 6=2,则S 11=11(a 1+a 11)2=11×2a 62=11a 6=22.故选D.7.答案A解析令S 3=1,则S 6=3,∴S 9=1+2+3=6.S 12=S 9+4=10,∴S 6S 12=310.故选A.8.答案D 9.答案B解析由{a n }为等差数列,设公差为d ,有S 99-S55=a 5-a 3=2d =-4,即d =-2,又a 1=9,所以a n =-2n+11,由a n =-2n +11<0,得n>112,所以S n 取最大值时n 为5.故选B.10.答案B解析依题意{a n }为等差数列,且d =-3,S 9=9(a 1+a 9)2=9a 5=207,∴a 5=23,∴a 3=a 5-2d =29.故选B.11.答案A解析因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,所以a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180.又因为a 1+a n =a 2+a n -1=a 3+a n -2,所以3(a 1+a n )=180,从而a 1+a n =60.所以S n =n (a 1+a n )2=n·602=390,即n =13.12.答案AC解析根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8,即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d ,又由a n =a 1+(n -1)d =(n -10)d ,则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确;又由S n =na 1+n (n -1)d 2=-9nd +n (n -1)d 2=d2×(n 2-19n),则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d ,∵d ≠0,∴S 20≠0,则D 不正确.13.答案5641解析在等差数列中,S 19=19a 10,T 19=19b 10,因此a 10b 10=S 19T 19=3×19-12×19+3=5641.14.答案1010解析设公差为d ,由题知S 3=a 5,即3a 1+3d =a 1+4d ,得d =2a 1,又a 1=1,故d =2.于是a n =1+2(n -1)=2n -1,再由2m -1=2019,得m =1010.15.答案(1)证明见解析(2)当n=2或n=3时,{a n·b n}的最大值为6解析(1)证明:由已知可得2S n=a n2+a n,且a n>0,当n=1时,2a1=a12+a1,解得a1=1.当n≥2时,有2S n-1=a n-12+a n-1,所以2a n=2S n-2S n-1=a n2-a n-12+a n-a n-1,所以a n2-a n-12=a n+a n-1,即(a n+a n-1)(a n-a n-1)=a n+a n-1,因为a n+a n-1>0,所以a n-a n-1=1(n≥2).故数列{a n}是首项为1,公差为1的等差数列.(2)由(1)可知a n=n,设c n=a n·b n,则c n=n(-n+5)=-n2+5n+254,因为n∈N*,所以n=2或3,c2=c3=6,因此当n=2或n=3时,{a n·b n}取最大项,且最大项的值为6. 16.答案891解析∵A6={x|26<x<27且x=7m+1,m∈N},∴A6的元素有9个:71,78,85,92,99,106,113,120,127,9个数构成一个首项为71,公差为7的等差数列.∴71+78+…+127=71×9+9×82×7=891.17.答案(1)a n=10-2n(2){n|1≤n≤10,n∈N}解析(1)设{a n}的公差为d.由S9=-a5得a1+4d=0.由a3=4得a1+2d=4.于是a1=8,d=-2.因此{a n}的通项公式为a n=10-2n.(2)由(1)得a1=-4d,故a n=(n-5)d,S n=n(n-9)d2.由a1>0知d<0,故S n≥a n等价于n2-11n+10≤0,解得1≤n≤10.所以n的取值范围是{n|1≤n≤10,n∈N}.。