2018年北京市中考数学一模代几综合汇编试题
- 格式:docx
- 大小:867.81 KB
- 文档页数:14
28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的附点”,直接写出b 的取值范围.x28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (,则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线y x = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28. P是⊙C外一点,若射线..PC交⊙C于点A,B两点,则给出如下定义:若0<PA PB≤3,则点P为⊙C的“特征点”.(1)当⊙O的半径为1时.①在点P1(2,0)、P2(0,2)、P3(4,0)中,⊙O的“特征点”是;②点P在直线y=x+b上,若点P为⊙O的“特征点”.求b的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=x+1与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是...⊙C的“特征点”,直接写出点C的横坐标的取值范围.28.在平面直角坐标系xOy 中,对于点P 和⊙C ,给出如下定义:若⊙C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在⊙C 上,则称P 为⊙C 的反射点.下图为⊙C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),⊙A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,⊙A 的反射点是____________; ②点P 在直线y x =-上,若P 为⊙A 的反射点,求点P 的横坐标的取值范围; (2)⊙C 的圆心在x 轴上,半径为2,y 轴上存在点P 是⊙C 的反射点,直接写出圆心C 的横坐标x 的取值范围.28. 对于平面直角坐标系xOy中的点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为线段AB的伴随点.(1)当t=-3时,①在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是;②在直线y=2x+b上存在线段AB的伴随点M、N,且MN=b的取值范围;(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针旋转30°得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围.28.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,22N ⎛- ⎝⎭.在A (1,0),B (1,1),)C 三点中,是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线23y x =-+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.28. 在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”. (1)已知⊙O 的半径为1. ①在点E (1,1),F (-22 ,-22),M (-2,-2)中,⊙O 的“梦之点”为 ; ②若点P 位于⊙O 内部,且为双曲线ky x=(k ≠0)的“梦之点”,求k 的取值范围. (2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11Ax ,y ,()22B x ,y ,且122x x -=,求二次函数图象的顶点坐标.28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图...直接..写出半径r 的取值范围.备用图1 备用图22018大兴一模28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.1如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N . (1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.图22018顺义一模28.如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.2L 1图22018通州一模28.在平面直角坐标系xOy 中有不重合的两个点()11,y x Q 与()22y x P ,.若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和定义为点Q 与点P 之间的“直距PQ D ”.例如在下图中,点()1,1P ,()3,2Q ,则该直角三角形的两条直角边长为1和2,此时点Q 与点P 之间的“直距”=3PQ D .特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”.(1)①已知O 为坐标原点,点()2,1A -,()2,0B -,则_______=AO D ,_______=BO D ;② 点C 在直线3y x =-+上,请你求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点;点F 是直线24y x =+上一动点.请你直接写出点E 与点F 之间“直距EF D ”的最小值.2018燕山一模27.如图,抛物线)0(2>++=a c bx ax y 的顶点为M ,直线y=m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是 (2)抛物线221x y =对应的准蝶形必经过B (m ,m ),则m = ,对应的碟宽AB 是 (3)抛物线)0(3542>--=a a ax y 对应的碟宽在x 轴上,且AB =6. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (p x ,p y ),使得∠APB 为锐角,若有,请求出p y 的取值范围.若没有,请说明理由.,备用图准蝶形AMB A BM。
北京市各区2018届中考一模数学试卷精选汇编目录北京市各区2018届中考一模数学试卷精选汇编:解不等式组(含答案)北京市各区2018届中考一模数学试卷精选汇编:计算题(含答案)北京市各区2018届中考一模数学试卷精选汇编:解四边形(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何证明(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:统计(含答案)解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分① ②18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分① ②18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ·········································································1 解不等式②,得 x >-1. ·······································································3 ∴原不等式组的解集为12x -<≤. ························································4 ∴适合原不等式组的整数解为0,1,2. ·······················································5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =217.解:原式分分西城区17114sin 3015-⎛⎫+︒- ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+=. 海淀区17.计算:11()3tan 302|3-︒+. 17.解:原式=3323-⨯+- ………………4分=5- ………………5分丰台区1702cos 45(3π)|1-︒+-+-.1702cos 45(3π)|1︒+-+.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3--++° 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(1013132sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(1013132sin 603-⎛⎫-+--︒ ⎪⎝⎭π=331312-- ···········································································4 =1 ····································································································5 怀柔区17.计算:102130tan 3)3(31-︒⎪⎭⎫ ⎝⎛-+---π. 17.解:原式331132=--+ …………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan 301(2)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3 ……5分顺义区17.计算:()01312sin 452π--︒+-.17.解:()01312sin 452π--︒+-112132=-⨯+ (4)分13= ……………………………………………………………………………… 5分4=-解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC . 根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4.∴Rt △AEG 中,EG=23.∴ED=43. ………………………5分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,210BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;(2)若tan 3D =,求AB 的长.BA CE D21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴10210CD x ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区23. 如图,在△ABC 错误!未找到引用源。
2018西城一模26.在平面直角坐标系xOy 中,抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C ,抛物线G 的顶点为D ,直线l :1(0)y mx m m =+-≠.(1)当1m =时,画出直线l 和抛物线G ,并直接写出直线l 被抛物线G 截得的线段长. (2)随着m 取值的变化,判断点C ,D 是否都在直线l 上并说明理由.(3)若直线l 被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.x2018石景山一模26.在平面直角坐标系xOy 中,将抛物线21G y mx =+:(0m ≠)向右平移位长度后得到抛物线2G ,点A 是抛物线2G 的顶点.(1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点. ①当=90BAC ∠°时,求抛物线2G 的表达式;②若60120BAC <∠<°°,直接写出m 的取值范围.26.在平面直角坐标系xOy 中,抛物线223y x bx =-+-的对称轴为直线x =2.(1)求b 的值;(2)在y 轴上有一动点P (0,m ),过点P 作垂直y 轴的直线交抛物线于点A (x 1,y 1),B (x 2 ,y 2),其中 12x x <.①当213x x -=时,结合函数图象,求出m 的值;②把直线PB 下方的函数图象,沿直线PB 向上翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在0≤x ≤5 时,44y -≤≤,求m 的取值范围.26.在平面直角坐标系xOy 中,抛物线y=nx 2-4nx+4n-1(n ≠0),与x 轴交于点C ,D(点C 在点D 的左侧),与y 轴交于点A .(1)求抛物线顶点M 的坐标;(2)若点A 的坐标为(0,3),AB ∥x 轴,交抛物线于点B ,求点B 的坐标;(3)在(2)的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线m x y +=21与图象G 有一个交点,结合函数的图象,求m 的取值范围.26.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在 x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点.(1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程;(2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值范围是 .26. 在平面直角坐标系xOy 中,抛物线()2440y ax ax a =--≠与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)若方程有两个不相等的实数根,且两根都在1,3之间(包括1,3),结合函数的图象,求a 的取值范围.()244=00ax ax a --≠26.在平面直角坐标系xOy中,抛物线()02342≠-+-=aaaxaxy与x轴交于A,B两点(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4时,求实数a的取值范围.26.在平面直角坐标系xOy 中,抛物线243y ax ax a =-+的最高点的纵坐标是2.(1)求抛物线的对称轴及抛物线的表达式;(2)将抛物线在1≤x ≤4之间的部分记为图象G 1,将图象G 1沿直线x = 1翻折,翻折后的图象记为G 2,图象G 1和G 2组成图象G .过(0,b )作与y 轴垂直的直线l ,当直线l 和图象G 只有两个公共点时,将这两个公共点分别记为P 1(x 1,y 1),P 2(x 2,y 2),求b 的取值范围和x 1 + x 2的值.26.抛物线2y ax bx =+x 轴于点A (-1,0),C (3,0),交y 轴于点B ,抛物线的对称轴与x 轴相交于点D . 点P 为线段OB 上的点,点E 为线段AB 上的点,且PE ⊥AB.(1)求抛物线的表达式;(2)计算PE PB的值; (3)请直接写出12PB +PD 的最小值为 .26.有一个二次函数满足以下条件: ①函数图象与x 轴的交点坐标分别为(1,0)A ,22(,)B x y (点B 在点A 的右侧); ②对称轴是3x =;③该函数有最小值是-2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象2x x >的部分图象向下翻折与原图象未翻折的部分组成图象“G ”,平行于x 轴的直线与图象“G ”相交于点33(,)C x y 、44(,)D x y 、55(,)E x y (345x x x <<),结合画出的函数图象求345x x x ++的取值范围.2018大兴一模26. 在平面直角坐标系xOy 中,抛物线22(31)2(0)y x m x m m m =-+++>,与y 轴交于点C ,与x 轴交于点A 1(,0)x ,B 2(,0)x ,且12x x <.(1)求1223-+x x 的值;(2)当m=1223-+x x 时,将此抛物线沿对称轴向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边),求n 的取值范围(直接写出答案即可).2018顺义一模26.在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是-1,且与y 轴交于点B (0,-1),点P 为抛物线上一点.(1)求抛物线的表达式;(2)若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q .如果OP =OQ ,求点Q 的坐标.2018通州一模26. 在平面直角坐标系xOy 中,点C 是二次函数2441y mx mx m =+++的图象的顶点,一次函数4+=x y 的图象与x 轴、y 轴分别交于点A ,B .(1)请你求出点A ,B ,C 的坐标;(2)若二次函数2441y mx mx m =+++与线段AB 恰有一个公共点,求m 的取值范围.。
解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分丰台区18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分① ②∴ 原不等式组的解集为521<<x . …………………………………5分燕山区18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x-1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x<5……………………….5′门头沟区18. 解不等式组:1031+1.xx x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2并写出它的所有整数解.17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分由②,得2<x . …………………………………………………………2分①②∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分平谷区18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ······················· 1 解不等式②,得 x >-1. ······················· 3 ∴原不等式组的解集为12x -<≤. ·················· 4 ∴适合原不等式组的整数解为0,1,2. ················· 5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分顺义区18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分。
代数综合2018西城一模26.在平面直角坐标系xOy 中,抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C ,抛物线G 的顶点为D ,直线l :1(0)y mx m m =+-≠.(1)当1m =时,画出直线l 和抛物线G ,并直接写出直线l 被抛物线G 截得的线段长. (2)随着m 取值的变化,判断点C ,D 是否都在直线l 上并说明理由.(3)若直线l 被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.x2018石景山一模26.在平面直角坐标系xOy 中,将抛物线21G y mx =+:(0m ≠个单位长度后得到抛物线2G ,点A 是抛物线2G 的顶点. (1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点.①当=90BAC ∠°时,求抛物线2G 的表达式; ②若60120BAC <∠<°°,直接写出m 的取值范围.26.在平面直角坐标系xOy 中,抛物线223y x bx =-+-的对称轴为直线x =2.(1)求b 的值;(2)在y 轴上有一动点P (0,m ),过点P 作垂直y 轴的直线交抛物线于点A (x 1,y 1),B (x 2 ,y 2),其中 12x x <.①当213x x -=时,结合函数图象,求出m 的值;②把直线PB 下方的函数图象,沿直线PB 向上翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在0≤x ≤5 时,44y -≤≤,求m 的取值范围.126.在平面直角坐标系xOy 中,抛物线y=nx 2-4nx+4n-1(n ≠0),与x 轴交于点C ,D(点C 在点D 的左侧),与y 轴交于点A .(1)求抛物线顶点M 的坐标; (2)若点A 的坐标为(0,3),AB ∥x 轴,交抛物线于点B ,求点B 的坐标;(3)在(2)的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线m x y +=21与图象G 有一个交点,结合函数的图象,求m 的取值范围.26.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在 x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点. (1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程; (2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值范围是 .26. 在平面直角坐标系xOy 中,抛物线()2440y ax ax a =--≠与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)若方程()244=00ax ax a --≠有两个不相等的实数根,且两根都在1,3之间(包括1,3),结合函数的图象,求a 的取值范围.26.在平面直角坐标系xOy中,抛物线()02342≠-+-=aaaxaxy与x轴交于A,B两点(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4时,求实数a的取值范围.26.在平面直角坐标系xOy 中,抛物线243y ax ax a =-+的最高点的纵坐标是2.(1)求抛物线的对称轴及抛物线的表达式;(2)将抛物线在1≤x ≤4之间的部分记为图象G 1,将图象G 1沿直线x = 1翻折,翻折后的图象记为G 2,图象G 1和G 2组成图象G .过(0,b )作与y 轴垂直的直线l ,当直线l 和图象G 只有两个公共点时,将这两个公共点分别记为P 1(x 1,y 1),P 2(x 2,y 2),求b 的取值范围和x 1 + x 2的值.26.抛物线2y ax bx =+-x 轴于点A (-1,0),C (3,0),交y 轴于点B ,抛物线的对称轴与x 轴相交于点D . 点P 为线段OB 上的点,点E 为线段AB 上的点,且PE ⊥AB. (1)求抛物线的表达式; (2)计算PE PB的值;(3)请直接写出12PB +PD 的最小值为 .2018门头沟一模26.有一个二次函数满足以下条件:①函数图象与x 轴的交点坐标分别为(1,0)A ,22(,)B x y (点B 在点A 的右侧); ②对称轴是3x =;③该函数有最小值是-2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象2x x >的部分图象向下翻折与原图象未翻折的部分组成图象“G ”,平行于x 轴的直线与图象“G ”相交于点33(,)C x y 、44(,)D x y 、55(,)E x y (345x x x <<),结合画出的函数图象求345x x x ++的取值范围.2018大兴一模26. 在平面直角坐标系xOy 中,抛物线22(31)2(0)y x m x m m m =-+++>,与y 轴交于点C ,与x 轴交于点A 1(,0)x ,B 2(,0)x ,且12x x <.(1)求1223-+x x 的值;(2)当m=1223-+x x 时,将此抛物线沿对称轴向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边),求n 的取值范围(直接写出答案即可).2018顺义一模26.在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是-1,且与y 轴交于点B (0,-1),点P 为抛物线上一点.(1)求抛物线的表达式;(2)若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q .如果OP =OQ ,求点Q 的坐标.2018通州一模26. 在平面直角坐标系xOy 中,点C 是二次函数2441y mx mx m =+++的图象的顶点,一次函数4+=x y 的图象与x 轴、y 轴分别交于点A ,B .(1)请你求出点A ,B ,C 的坐标;(2)若二次函数2441y mx mx m =+++与线段AB 恰有一个公共点,求m 的取值范围.。
压轴题专题东城区28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN +∠MON=180°时,则称点 P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,2222M⎛⎫⎪⎪⎝⎭,2222N⎛-⎝⎭.在A(1,0),B(1,1),)2,0C三点中, 是线段MN关于点O的关联点的是;(2)如图3, M(0,1),N312⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E)3,m m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线323y x=-+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.28. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为);--------------5分③ 直线32y x =+交 y 轴于点K (0,2),交x 轴于点()3T ,0. ∴2OK =,23OT =. ∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG . ∵()M 0,1, ∴OM =1. ∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG 3∴33.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒, ∴ 90GON ∠=︒. 又3OG 1ON =, ∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点. 经验证,点)31E,在直线32y =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意. ∵G F E x x x ≤≤, ∴33F x ≤分 西城区28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k r 的取值范围.(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 3b 的取值范围.图1CyxO A 1A 2Q【解析】(12(2)①如图,当1r =时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理), 连接CM ,则QM CM ⊥,x∵(1,0)Q -,(1,0)C ,1r =, ∴2CQ =,1CM =,∴MQ = 此时23MQk CQ== ②如图,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,x∴()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=, ∵2CQ =, ∴2MQ NQ DQk DQ CQ CQ+===,∴当k 3DQ = 此时221CD CQ DQ -, 假设⊙C 经过点Q ,此时2r =, ∵点Q 早⊙C 外,∴r 的取值范围是12r <≤. (3)33b <. 海淀区28.在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围.28.解(1)①A 的反射点是M ,N . ………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图.可求得点D 的横坐标为32. 同理可求得点E ,F ,G 的横坐标分别为2232 点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x的取值范围是≤xx .………………4分 (2)圆心C 的横坐标x 的取值范围是44≤≤x -. ………………7分 丰台区28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________; (2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.54411231213xOy6654327654326528.解:(1)点A 和线段BC(2)点A 和⊙G 的“中立点”在以点O 为圆心、半径为1的圆上运动. 因为点K 在直线y =- x +1上, 设点K 的坐标为(x ,- x +1),则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点K 的坐标为(0,1)或(1,0). ………5分(3)(说明:点N 与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分石景山区28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... AB(1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线33y =+ 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.xy xy①当0b >时,则点B 在第二象限.过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴322BE AE ==.∴323222B -(,. ②当0b <时,则点'B 在第四象限. 同理可得3232'22B -(. 综上所述,点B 的坐标为323222-(,或323222-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分朝阳区28. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为 线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ;②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =b 的取值范围; (2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28. 解:(1)①线段AB的伴随点是:23,P P. …………………2分②如图1,当直线y=2x+b经过点(-3,-1)时,b=5,此时b取得最大值.…………………………………………4分如图2,当直线y=2x+b经过点(-1,1)时,b=3,此时b取得最小值.……………………………………………5分∴b的取值范围是3≤b≤5. ……………………………………6分(2)t的取值范围是-12.2t≤≤…………………………………………8分燕山区28.在Rt△ABC中, ∠ACB=90°,CD是AB边的中线,DE⊥BC于E, 连结CD,点P在射线CB上(与B,C不重合).(1)如果∠A=30°①如图1,∠DCB= °②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;( 2 )如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连结DP, 将线段DP绕点逆时针旋转α2得到线段DF,连结BF, 请直接写出DE、BF、BP三者的数量关系(不需证明).图1图228.解:(1) ①∠DCB=60°…………………………………1′②补全图形CP=BF …………………………………3′△ DCP ≌△ DBF …………………………………6′(2)BF-BP=2DE ⋅tan α…………………………………8′门头沟区28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标; ②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意..图直接...写出半径r 的取值范围.备用图1 备用图228.(本小题满分8分)解: (1)①)5,3()5,1(21C C 或. ……………………………………………2分②由图可知,B )3,5( ∵A (1,3) ∴AB =4∵ABC ∆为等腰直角三角形 ∴BC =4∴)1,5()7,5(21-C C 或设直线AC 的表达式为(0)y kx b k =+≠ 当)7,5(1C 时,⎩⎨⎧=+=+753b k b k ⎩⎨⎧==∴21b k2+=∴x y …………………………………3分 当)1,5(2-C 时,⎩⎨⎧-=+=+153b k b k ⎩⎨⎧=-=∴41b k4+-=∴x y …………………………………4分 ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y(2)当点F 在点E 左侧时: 大兴区28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图图2如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点与x 轴分别交于点B (3-,(0,)F m ,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”, 若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围. 28.(1)9 ………………………………………………………………… 1分 (2)方法一:MK ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r ,29<∴m .又0>m , 290<<∴m . ………………………………………………4分 方法二:0>m ,∴点K 在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 CW =OC -OW =3,WM =9x -. 由△MOK ∽△NWM , 得,∴9y x x m=-. ∴x mx m y 912+-=.当m y =时,219m x x m m=-+, 化为0922=+-m x x . 当△=0,即22940m -=, 解得92m =时, 线段OC 上有且只有一点M ,使相应的点K 与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,m 的取值范围为290<<m . ………………………………………………………………………………4分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ),a m 36-=∴.m a 361-=∴.m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴. …………………………………5分过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴∴∠QRH =90°tan BG BQG QG∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,………………………………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………………………7分m ∴的取值范围为2424355m ≤≤…………………………………8分 平谷区28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”. (1)已知点A (2,0),B (3,则以AB 为边的“坐标菱形”的最小内角为_______;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式; (3)⊙O 2P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.28.解:(1)60; ····························· 1 (2)∵以CD 为边的“坐标菱形”为正方形, ∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. ............. 3 ∴直线CD 的表达式为1y x =+或3y x =-+. (5)(3)15m ≤≤或51m -≤≤-. ···················7怀柔区28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PAPB≤3,则点P 为⊙C 的“特征点”.(1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.yx–1–2–3–4–512345–1–2–3–4–512345O28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分yxE Hy=x+b 2y=x+b1–1–2–3–41234–1–2–3–41234OD②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt△DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22-≤b ≤22. …………………………………………………6分 (2)x>3或 3-<x . …………………………………………………………………………8分 延庆区28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点; D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.28.(1)F ……1分(2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分顺义区点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与图2C 2C 1N MO'直线BC 相切?若存在,求出k 的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.28.(1)是.。
代几综合2018西城一模28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQkCQ ,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ ,2AQk CQ (或2BQCQ ).已知在平面直角坐标系xOy 中,(1,0)Q ,(1,0)C ,⊙C 的半径为r .(1)如图1,当2r 时,①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(12,0)A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”).(2)若⊙C 上存在“k 相关依附点”点M ,①当1r,直线QM 与⊙C 相切时,求k 的值.②当3k 时,求r 的取值范围.(3)若存在r 的值使得直线3y x b 与⊙C 有公共点,且公共点时⊙C 的“3相关依附点”,直接写出b 的取值范围.备用图C yxO Q 图1C y x OA 1A 2Q2018平谷一模28. 在平面直角坐标系xOy 中,点M 的坐标为11,x y ,点N 的坐标为22,x y ,且12x x ,12y y ,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (0,23),则以AB 为边的“坐标菱形”的最小内角为_______;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O 的半径为2,点P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.。
代数综合专题东城区20. 已知关于x 的一元二次方程()2320x m x m -+++=.(1) 求证:无论实数m 取何值,方程总有两个实数根;(2) 若方程有一个根的平方等于4,求m 的值.20. (1)证明:()()2=+3-42m m ∆+()2=+1m∵()2+10m ≥,∴无论实数m 取何值,方程总有两个实根. -------------------2分(2)解:由求根公式,得()()1,231=2m m x +±+, ∴1=1x ,2=+2x m .∵方程有一个根的平方等于4,∴()2+24m =.解得=-4m ,或=0m . -------------------5分西城区20.已知关于x 的方程2(3)30mx m x +--=(m 为实数,0m ≠).(1)求证:此方程总有两个实数根.(2)如果此方程的两个实数根都为正整数,求整数m 的值.【解析】(1)2222(3)4(3)691269(3)0m m m m m m m m ∆=--⨯-=-++=++=+≥ ∴此方程总有两个不相等的实数根.(2)由求根公式,得(3)(3)2m m x m --±+=, ∴11x =,23x m=-(0m ≠). ∵此方程的两个实数根都为正整数,∴整数m 的值为1-或3-.海淀区20.关于x 的一元二次方程22(23)10x m x m --++=.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数..,判断方程根的情况. 20.解:(1)∵m 是方程的一个实数根,∴()222310m m m m --++=. ………………1分 ∴13m =-. ………………3分 (2)24125b ac m ∆=-=-+.∵0m <,∴120m ->.∴1250m ∆=-+>. ………………4分∴此方程有两个不相等的实数根.丰台区20.已知:关于x 的一元二次方程x 2 - 4x + 2m = 0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数....,且该方程的根都是整数..,求m 的值.20.解:(1)∵方程有两个不相等的实数根,∴Δ>0.∴Δ=24421680m m --⋅=->().∴2m <. ………………………2分(2)∵2m <,且m 为非负整数,∴=0m 或1. ………………………3分当m =0时,方程为240x x -=,解得方程的根为01=x ,24x =,符合题意;当m =1时,方程为2420x x -+=,它的根不是整数,不合题意,舍去.综上所述,m =0. ………………………5分石景山区20.关于x 的一元二次方程2(32)60mx m x +--=.(1)当m 为何值时,方程有两个不相等的实数根;(2)当m 为何整数时,此方程的两个根都为负整数.20.解:(1)∵24b ac ∆=-2(32)24m m =-+2(32)0m =+≥∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分 (2)解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数,∴1m =-或2m =-.∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分朝阳区20. 已知关于x 的一元二次方程0)1(2=+++k x k x .(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k 的取值范围.20. (1)证明:依题意,得k k 4)1(2-+=∆ …………………1分.)1(2-=k …………………………………2分∵0)1(2≥-k ,∴方程总有两个实数根. ………………………3分(2)解:由求根公式,得11-=x ,k x -=2. …………………………4分∵方程有一个根是正数,∴0>-k .∴0<k .………………………………5分燕山区21.已知关于x 的一元二次方程22(21)0x k x k k -+++=.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k 的值.21.(1) 证明:因为[])(14)12(4222k k k ac b +⨯⨯-+-=- 01〉=所以有两个不等实根 …………3′..(2)当x=1 时,01)12(12=++⨯+-k k k 02=-k k ′1021==k k 或 ………5′门头沟区22. 已知关于x 的一元二次方程22410x x k ++-=有实数根.(1)求k 的取值范围;(2)若k 为正整数,且方程有两个非零的整数根,求k 的取值.22(本小题满分5分)解:(1)由题意得,168(1)0k ∆=--≥.………………………………………1分∴3k ≤. ………………………………………2分(2)∵k 为正整数,∴123k =,,.当1k =时,方程22410x x k ++-=有一个根为零;……………………3分当2k =时,方程22410x x k ++-=无整数根; ……………………4分当3k =时,方程22410x x k ++-=有两个非零的整数根.综上所述,1k =和2k =不合题意,舍去;3k =符合题意.……………5分大兴区20. 已知关于x 的一元二次方程01632=-+-k x x 有实数根,k 为负整数.(1)求k 的值;(2)如果这个方程有两个整数根,求出它的根.20.解:(1)根据题意,得Δ=(-6)2-4×3(1-k )≥0.解得2≥-k .……………………………………………………………1分∵k 为负整数,∴k =-1,-2.……………………………………… 2分(2)当1=-k 时,不符合题意,舍去; ………………………………… 3分当2=-k 时,符合题意,此时方程的根为121==x x .………… 5分平谷区20.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.20.解:(1)∵关于x 的一元二次方程有两个不相等的实数根.∴()2Δ2410k =-->····················· 1 =8-4k >0.∴2k < (2)(2)∵k 为正整数,∴k =1. ··························· 3 解方程220x x +=,得120,2x x ==-. ············· 5 怀柔区20.已知关于x 的方程226990-+-=x mx m .(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x 1,x 2,其中x 1>x 2,若x 1=2x 2,求m 的值.20.(1)∵△=(-6m)2-4(9m 2-9) ……………………………………………………………………1分=36m 2-36m 2+36=36>0.∴方程有两个不相等的实数根……………………………………………………………2分(2)66332m x m ±===±.……………………………………………………3分 ∵3m+3>3m -3,∴x 1=3m+3,x 2=3m-3, …………………………………………………………………………4分 ∴3m+3=2(3m -3) .∴m=3. …………………………………………………………………………………………5分 延庆区20.已知:∠AOB 及边OB 上一点C .求作:∠OCD ,使得∠OCD=∠AOB .要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个..即可) 2.请你写出作图的依据.C B O A20. (1)作图(略) ……2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角. ……5分顺义区20.已知关于x 的一元二次方程()21260x m x m --+-=.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m 的取值范围.20.(1)证明:∵()214(26)m m ⎡⎤∆=----⎣⎦221824m m m =-+-+21025m m =-+ ()25m =-≥0 …………………………………………………… 2分 ∴ 方程总有两个实数根. ………………………………………………… 3分(2)解:∵1(5)2m m x -±-==, ∴ 13x m =-,22x =. ……………………………………………… 4分 由已知得 30m -<.∴ 3m <. ………………………………………………………………… 5分。
28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的附点”,直接写出b 的取值范围.x28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (,则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O 点P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线y x = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28.P是⊙C外一点,若射线..PC交⊙C于点A,B两点,则给出如下定义:若0<PA PB≤3,则点P为⊙C的“特征点”.(1)当⊙O的半径为1时.①在点P1(2,0)、P2(0,2)、P3(4,0)中,⊙O的“特征点”是;②点P在直线y=x+b上,若点P为⊙O的“特征点”.求b的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=x+1与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是...⊙C的“特征点”,直接写出点C的横坐标的取值范围.28.在平面直角坐标系xOy 中,对于点P 和⊙C ,给出如下定义:若⊙C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在⊙C 上,则称P 为⊙C 的反射点.下图为⊙C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),⊙A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,⊙A 的反射点是____________; ②点P 在直线y x =-上,若P 为⊙A 的反射点,求点P 的横坐标的取值范围; (2)⊙C 的圆心在x 轴上,半径为2,y 轴上存在点P 是⊙C 的反射点,直接写出圆心C 的横坐标x 的取值范围.28. 对于平面直角坐标系xOy中的点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为线段AB的伴随点.(1)当t=-3时,①在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是;②在直线y=2x+b上存在线段AB的伴随点M、N,且MN=b的取值范围;(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针旋转30°得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围.28.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2,22M ⎛⎫ ⎪ ⎪⎝⎭,22N ⎛- ⎝⎭.在A (1,0),B (1,1),)C 三点中,是线段MN 关于点O 的关联点的是;(2)如图3,M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段MN 关于点O 的关联点.①∠MDN 的大小为°;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线23y x =-+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y =-x +1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y =2x +4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.28. 在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”. (1)已知⊙O 的半径为1. ①在点E (1,1),F (-22 ,-22),M (-2,-2)中,⊙O 的“梦之点”为; ②若点P 位于⊙O 内部,且为双曲线ky x=(k ≠0)的“梦之点”,求k 的取值范围. (2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11Ax ,y ,()22B x ,y ,且122x x -=,求二次函数图象的顶点坐标.28.在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图...直接..写出半径r 的取值范围. 备用图1 备用图22018大兴一模28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.1如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N . (1)点N 的横坐标为;(2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.图22018顺义一模28.如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.2L 1图22018通州一模28.在平面直角坐标系xOy 中有不重合的两个点()11,y x Q 与()22y x P ,.若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和定义为点Q 与点P 之间的“直距PQ D ”.例如在下图中,点()1,1P ,()3,2Q ,则该直角三角形的两条直角边长为1和2,此时点Q 与点P 之间的“直距”=3PQ D .特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”.(1)①已知O 为坐标原点,点()2,1A -,()2,0B -,则_______=AO D ,_______=BO D ;② 点C 在直线3y x =-+上,请你求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点;点F 是直线24y x =+上一动点.请你直接写出点E 与点F 之间“直距EF D ”的最小值.2018燕山一模27.如图,抛物线)0(2>++=a c bx ax y 的顶点为M ,直线y=m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是 (2)抛物线221x y =对应的准蝶形必经过B (m ,m ),则m = ,对应的碟宽AB 是 (3)抛物线)0(3542>--=a a ax y 对应的碟宽在x 轴上,且AB =6. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (p x ,p y ),使得∠APB 为锐角,若有,请求出p y 的取值范围.若没有,请说明理由.,备用图准蝶形AMB A BM。