(完整版)小学六年级下册经典奥数题及答案(最全)汇总.doc
- 格式:doc
- 大小:186.02 KB
- 文档页数:17
小学六年级奥数题工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?1.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?一.排列组合问题1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A 768种B 32种C 24种D 2的10次方中2.若把英语单词hello的字母写错了,则可能出现的错误共有 ( )A 119种B 36种C 59种D 48种二.容斥原理问题1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )A 43,25B 32,25 C32,15 D 43,112.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )A,5 B,6 C,7 D,83.一次考试共有5道试题。
一、拓展提优试题1.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.2.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?3.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.4.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.5.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.6.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.7.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.8.已知A是B的,B是C的,若A+C=55,则A=.9.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?10.能被5和6整除,并且数字中至少有一个6的三位数有个.11.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.12.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.13.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.14.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.15.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.16.若(n是大于0的自然数),则满足题意的n的值最小是.17.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.18.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.19.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.20.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.21.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.22.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.23.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.24.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.25.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.26.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.27.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.28.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.29.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).30.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.31.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.32.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.33.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.34.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.35.已知自然数N的个位数字是0,且有8个约数,则N最小是.36.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)37.若质数a,b满足5a+b=2027,则a+b=.38.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.39.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.40.图中的三角形的个数是.【参考答案】一、拓展提优试题1.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.2.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.3.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.4.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.5.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.6.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.7.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.8.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.9.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.10.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.11.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%12.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.13.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.14.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4015.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.16.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:317.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.18.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.19.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.20.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.21.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.22.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.23.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.24.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.25.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.26.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.27.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.28.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.29.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.30.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.31.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.32.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.33.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.34.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.35.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.36.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.37.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.38.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.39.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.40.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.。
小学六年级下册的奥数题及答案工程问题1 .甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2 .修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3 .一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4 .一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5 .师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6 .—批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7 .一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8 .某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1 小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二. 鸡兔同笼问题1 .鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三. 数字数位问题1 .把1至2005 这2005 个自然数依次写下来得到一个多位数123456789..…2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
小学六年级下册的奥数题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
小学六年级奥数题及答案(全面)【注意】本文仅供参考学习使用,严禁用于商业目的。
小学六年级奥数题及答案(全面)第一题:计算题1. 求100以内所有偶数的和。
解答:要求100以内所有偶数的和,我们可以从2开始,每次递增2,直到100。
然后将这些偶数相加即可。
2 + 4 + 6 + 8 + ... + 98 + 100 = 2550因此,100以内所有偶数的和为2550。
第二题:几何题2. 在平面直角坐标系内,A(2, 3)和B(-1, -5)为两个点,求线段AB 的长度。
解答:根据两点间距离公式,可以计算出线段AB的长度。
线段AB的长度= √((x2 - x1)² + (y2 - y1)²)代入点的坐标:线段AB的长度= √((-1 - 2)² + (-5 - 3)²)= √((-3)² + (-8)²)= √(9 + 64)= √73因此,线段AB的长度为√73。
第三题:代数题3. 若x² + 5x + 6 的值为15,求x。
解答:根据题意,我们可以列出方程:x² + 5x + 6 = 15将方程转化为标准形式:x² + 5x + 6 - 15 = 0x² + 5x - 9 = 0然后,我们可以使用因式分解或配方法求解此方程。
通过因式分解,可以得到:(x + 3)(x - 2) = 0根据零乘法,我们可以得到两个解:x + 3 = 0 或 x - 2 = 0解方程得到:x = -3 或 x = 2因此,方程的解为x = -3 或 x = 2。
第四题:逻辑题4. 小明、小李、小张三人坐在一个长凳上,从左到右依次是:小明、小李、小张。
已知:- 小明比旁边坐的人大一岁;- 小李比小张大两岁;- 小明的年龄是10岁。
问:小张的年龄是多少岁?解答:根据题意,我们可以列出以下等式:小明的年龄 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2小明的年龄 = 10带入已知条件,我们可以得到以下等式:10 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2根据第一个等式,可以得到:小明旁边坐的人的年龄 = 10 - 1= 9根据第二个等式,可以得到:小张的年龄 = 小李的年龄 - 2此时,我们需要知道小李的年龄。
练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
---------------------考试---------------------------学资学习网---------------------押题------------------------------小学六年级下册的奥数题及答案一.工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
【word直接打印】小学六年级下册数学奥数题带答案一、拓展提优试题1.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.2.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.3.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.4.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.5.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.6.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.7.若质数a,b满足5a+b=2027,则a+b=.8.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?9.根据图中的信息可知,这本故事书有页页.10.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.11.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.12.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.13.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.14.若(n是大于0的自然数),则满足题意的n的值最小是.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.2.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.3.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.4.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.5.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.6.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.7.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.8.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.9.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.10.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.11.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.12.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.13.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.14.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:315.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。
小学六年级奥数题工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成;如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九;现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成;现在先请甲、丙合做2小时后,余下的乙还需做6小时完成;乙单独做完这件工作要多少小时4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天;已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成5.师徒俩人加工同样多的零件;当师傅完成了1/2时,徒弟完成了120个;当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个1.如果现在是上午的10点21分,那么在经过28799...99一共有20个9分钟之后的时间将是几点几分一.排列组合问题1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有A 768种B 32种C 24种D 2的10次方中2.若把英语单词hello的字母写错了,则可能出现的错误共有A 119种B 36种C 59种D 48种二.容斥原理问题1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是A 43,25B 32,25 C32,15 D 43,112.在多元智能大赛的决赛中只有三道题.已知:1某校25名学生参加竞赛,每个学生至少解出一道题;2在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:3只解出第一题的学生比余下的学生中解出第一题的人数多1人;4只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是A,5 B,6 C,7 D,83.一次考试共有5道试题;做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%;如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少三.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同如果能请说明具体操作,不能则要说明理由四.路程问题1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它;问:狗再跑多远,马可以追上它2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒米,两人起跑后的第一次相遇在起跑线前几米6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,轨道是直的,声音每秒传340米,求火车的速度得出保留整数7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子;8.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟9.甲乙两车同时从AB两地相对开出;第一次相遇后两车继续行驶,各自到达对方出发点后立即返回;第二次相遇时离B地的距离是AB全程的1/5;已知甲车在第一次相遇时行了120千米;AB两地相距多少千米10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时;如果水流速度是每小时2千米,求两地间的距离11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程;12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米五.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分快快快2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几3.甲乙两车分别从两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么两地相距多少千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨;橘子正好占总数的13分之2;一共运来水果多少吨小学六年级下册的奥数题答案一.工程问题1.解: 1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷9/80-1/10=35表示还要35小时注满答:5小时后还要35小时就能将水池注满;2.解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/204/5+1/309/10=7/100,可知甲乙合作工效>甲的工效>乙的工效; 又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成;只有这样才能“两队合作的天数尽可能少”;设合作时间为x天,则甲独做时间为16-x天1/2016-x+7/100x=1x=10答:甲乙最短合作10天3.解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量1/4+1/5×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量;根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1;所以1-9/10=1/10表示乙做6-4=2小时的工作量;1/10÷2=1/20表示乙的工作效率;1÷1/20=20小时表示乙单独完成需要20小时;答:乙单独完成需要20小时;4.解:由题意可知 1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×=1 1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多天1/甲=1/乙+1/甲×因为前面的工作量都相等得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=天5.答案为300个120÷4/5÷2=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个;6.答案是15棵算式:1÷1/6-1/10=15棵7.答案45分钟;1÷1/20+1/30=12 表示乙丙合作将满池水放完需要的分钟数;1/1218-12=1/126=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水;1/2÷18=1/36 表示甲每分钟进水最后就是1÷1/20-1/36=45分钟;8.答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷3-2×2=6天,就是甲的时间,也就是规定日期方程方法:1/x+1/x+2×2+1/x+2×x-2=1 解得x=69.答案为40分钟;解:设停电了x分钟根据题意列方程 1-1/120x=1-1/60x2解得x=40二.鸡兔同笼问题:1.解: 4100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只;400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只从400只变为396只,鸡的总脚数就会增加2只从0只到2只,它们的相差数就会少4+2=6只也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数三.抽屉原理、奇偶性问题1.解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套;这时拿出1副同色的后4个抽屉中还剩3只手套;再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推;把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套;这时拿出1副同色的后,4个抽屉中还剩下3只手套;根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的;以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9只答:最少要摸出9只手套,才能保证有3副同色的;2.答案为21解:每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样:当有21人时,才能保证到少有3人取得完全一样.3.解:需要分情况讨论,因为无法确定其中黑球与白球的个数;当黑球或白球其中没有大于或等于7个的,那么就是: 64+10+1=35个如果黑球或白球其中有等于7个的,那么就是: 65+3+1=34个如果黑球或白球其中有等于8个的,那么就是: 65+2+1=33如果黑球或白球其中有等于9个的,那么就是:65+1+1=324.不可能;因为总数为1+9+15+31=5656/4=14 14是一个偶数而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数14个;四.路程问题1.解:根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米;根据“狗跑5步的时间马跑3步”,可知同一时间马跑37x米=21x米,则狗跑54x=20米;可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷21-20×21=630米2.答案720千米;由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份总路程为18份,两车相差2份;又因为两车在中点40千米处相遇,说明两车的路程差是40+40千米;所以算式是40+40÷10-8×10+8=720千米;3.答案为两人跑一圈各要6分钟和12分钟;解:600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和50+150÷2=100,表示较快的速度,方法是求和差问题中的较大数150-50/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间4.答案为53秒算式是140+125÷22-17=53秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和;5.答案为100米300÷=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇;6.答案为22米/秒算式:1360÷1360÷340+57≈22米/秒关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程;也就是1360米一共用了4+57=61秒;7.正确的答案是猎犬至少跑60米才能追上;解:由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米;由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a3=5/3a米;从而可知猎犬与兔子的速度比是2a:5/3a =6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完8.答案:18分钟解:设全程为1,甲的速度为x乙的速度为y列式40x+40y=1 x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解 189.答案是300千米;解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍;即甲共走的路程是1203=360千米,从线段图可以看出,甲一共走了全程的1+1/5;因此360÷1+1/5=300千米10.解:1/6-1/8÷2=1/48表示水速的分率2÷1/48=96千米表示总路程11.解:相遇是已行了全程的七分之四表示甲乙的速度比是4:3时间比为3:4所以快车行全程的时间为8/43=6小时633=198千米12.解:把路程看成1,得到时间系数去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30 两者之差:3/5÷12+2/5÷30-1/3÷12+2/3÷30=1/75相当于1/2小时去时时间:1/2×1/3÷12÷1/75和1/2×2/3÷301/75路程:12×〔1/2×1/3÷12÷1/75〕+30×〔1/2×2/3÷301/75〕=千米五.比例问题1.答案:甲收8元,乙收2元;解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元;又因为“甲钓了三条”,相当于甲吃之前已经出资36=18元,“乙钓了两条”,相当于乙吃之前已经出资26=12元;而甲乙两人吃了的价值都是10元,所以甲还可以收回18-10=8元乙还可以收回12-10=2元刚好就是客人出的钱;2.答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份;增加的成本2份刚好是下降利润的2份;售价都是25份; 所以,今年的成本占售价的22/25;3.解:原来甲.乙的速度比是5:4现在的甲:5×1-20%=4现在的乙:4×1+20%甲到B后,乙离A还有:=总路程:10÷×4+5=450千米4.答案为64:27解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16;根据“体积增加1/3”,可知体积是原来的4/3;体积÷底面积=高现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27或者现在的高:原来的高=64/27:1=64:275.第二题:答案为65吨橘子+苹果=30吨香蕉+橘子+梨=45吨所以橘子+苹果+香蕉+橘子+梨=75吨橘子÷香蕉+苹果+橘子+梨=2/13说明:橘子是2份,香蕉+苹果+橘子+梨是13份橘子+香蕉+苹果+橘子+梨一共是2+13=15。
小学六年级下册的奥数题及答案一.工程问题:1. 甲乙两个水管单独开,注满一池水,分别需要20 小时,16 小时 . 丙水管单独开,排一池水要10 小时,若水池没水,同时打开甲乙两水管,5 小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划 16 天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4 小时完成,乙、丙合做需5 小时完成。
现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需 17 天完成,甲单独做这项工程要多少天完成?5. 师徒俩人加工同样多的零件。
当师傅完成了1/2 时,徒弟完成了120 个。
当师傅完成了任务时,徒弟完成了 4/5 这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽 6 棵;如果单份给女生栽,平均每人栽 10 棵。
单份给男生栽,平均每人栽几棵?7. 一个池上装有 3 根水管。
甲管为进水管,乙管为出水管,20 分钟可将满池水放完,丙管也是出水管,30 分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙 , 丙两管用了 18 分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要 2 小时,而点完一根细蜡烛要 1 小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的 2 倍,问:停电多少分钟?二.鸡兔同笼问题1. 鸡与兔共 100 只 , 鸡的腿数比兔的腿数少28 条 , 问鸡与兔各有几只 ?三.数字数位问题1.把 1 至 2005 这 2005 个自然数依次写下来得到一个多位数123456789.....2005, 这个多位数除以 9 余数是多少 ?2. A 和 B 是小于 100 的两个非零的不同自然数。
求 A+B分之 A-B 的最小值?3. 已知 A.B.C 都是非 0 自然数 ,A/2 + B/4 + C/16 的近似值市 6.4, 那么它的准确值是多少 ?4.一个三位数的各位数字之和是 17. 其中十位数字比个位数字大 1. 如果把这个三位数的百位数字与个位数字对调 , 得到一个新的三位数 , 则新的三位数比原三位数大198, 求原数 .5.一个两位数 , 在它的前面写上 3, 所组成的三位数比原两位数的 7 倍多 24, 求原来的两位数 .6.把一个两位数的个位数字与十位数字交换后得到一个新数 , 它与原数相加 , 和恰好是某自然数的平方 , 这个和是多少 ?7.一个六位数的末位数字是 2, 如果把 2 移到首位 , 原数就是新数的 3 倍, 求原数 .8.有一个四位数 , 个位数字与百位数字的和是 12, 十位数字与千位数字的和是 9, 如果个位数字与百位数字互换 , 千位数字与十位数字互换 , 新数就比原数增加2376, 求原数 .9.有一个两位数 , 如果用它去除以个位数字 , 商为 9 余数为 6, 如果用这个两位数除以个位数字与十位数字之和 , 则商为 5 余数为 3, 求这个两位数 .10.如果现在是上午的 10 点 21 分 , 那么在经过 28799...99( 一共有 20 个 9) 分钟之后的时间将是几点几分 ?四.排列组合问题1. 有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A 768 种B 32种C 24种D 2的10次方中2.若把英语单词 hello 的字母写错了 , 则可能出现的错误共有 ( ) A119 种 B 36 种 C 59 种 D 48 种五.容斥原理问题1.有 100 种赤贫 . 其中含钙的有 68 种, 含铁的有 43 种, 那么 , 同时含钙和铁的食品种类的最大值和最小值分别是 ( )A 43,25B 32,25C32,15 D 43,112.在多元智能大赛的决赛中只有三道题 . 已知 :(1) 某校 25 名学生参加竞赛 , 每个学生至少解出一道题 ;(2) 在所有没有解出第一题的学生中 , 解出第二题的人数是解出第三题的人数的 2 倍:(3) 只解出第一题的学生比余下的学生中解出第一题的人数多 1 人;(4) 只解出一道题的学生中 , 有一半没有解出第一题 , 那么只解出第二题的学生人数是 ( )A,5B,6C,7D,83.一次考试共有 5 道试题。
做对第 1、2、3、、4、5 题的分别占参加考试人数的95%、 80%、79%、74%、85%。
如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有 3 副同色的?2.有四种颜色的积木若干,每人可任取 1-2 件,至少有几个人去取,才能保证有3 人能取得完全一样?3.某盒子内装 50 只球,其中 10 只是红色, 10 只是绿色, 10 只是黄色, 10 只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7 只同色的球,问:最少必须从袋中取出多少只球?4.地上有四堆石子,石子数分别是 1、 9、15、31 如果每次从其中的三堆同时各取出 1 个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同 ?(如果能请说明具体操作,不能则要说明理由)七.路程问题1.狗跑 5 步的时间马跑 3 步,马跑 4 步的距离狗跑 7 步,现在狗已跑出 30 米,马开始追它。
问:狗再跑多远,马可以追上它?2.甲乙辆车同时从 a b 两地相对开出,几小时后再距中点 40 千米处相遇?已知,甲车行完全程要 8 小时,乙车行完全程要 10 小时,求 a b 两地相距多少千米?3.在一个600 米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12 分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔 4 分钟相遇一次,两人跑一圈各要多少分钟?4.慢车车长 125 米,车速每秒行 17 米,快车车长 140 米,车速每秒行 22 米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5.在 300 米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5 米,乙平均速度是每秒 4.4 米,两人起跑后的第一次相遇在起跑线前几米?6. 一个人在铁道边,听见远处传来的火车汽笛声后,在经过57 秒火车经过她前面,已知火车鸣笛时离他1360 米,( 轨道是直的 ), 声音每秒传 340 米,求火车的速度(得出保留整数)7.猎犬发现在离它 10 米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑 5 步的路程,兔子要跑 9 步,但是兔子的动作快,猎犬跑 2 步的时间,兔子却能跑 3 步,问猎犬至少跑多少米才能追上兔子。
8.AB 两地, 甲乙两人骑自行车行完全程所用时间的比是4:5, 如果甲乙二人分别同时从 AB 两地相对行使 ,40 分钟后两人相遇 , 相遇后各自继续前行 , 这样,乙到达 A 地比甲到达 B 地要晚多少分钟 ?9.甲乙两车同时从 AB两地相对开出。
第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离 B 地的距离是 AB 全程的 1/5 。
已知甲车在第一次相遇时行了 120 千米。
AB两地相距多少千米?10. 一船以同样速度往返于两地之间,它顺流需要 6 小时 ; 逆流 8 小时。
如果水流速度是每小时 2 千米,求两地间的距离?11. 快车和慢车同时从甲乙两地相对开出,快车每小时行33 千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8 小时,求甲乙两地的路程。
12.小华从甲地到乙地 ,3 分之 1 骑车 ,3 分之 2 乘车 ; 从乙地返回甲地 ,5 分之 3骑车 ,5 分之 2 乘车 , 结果慢了半小时 . 已知 , 骑车每小时 12 千米 , 乘车每小时 30 千米 , 问: 甲乙两地相距多少千米 ?八.比例问题1.甲乙两人在河边钓鱼 , 甲钓了三条 , 乙钓了两条 , 正准备吃 , 有一个人请求跟他们一起吃 , 于是三人将五条鱼平分了 , 为了表示感谢 , 过路人留下 10 元 , 甲、乙怎么分?快快快2. 一种商品,今年的成本比去年增加了 10 分之 1,但仍保持原售价,因此,每份利润下降了 5 分之 2,那么,今年这种商品的成本占售价的几分之几?3.甲乙两车分别从 A.B 两地出发 , 相向而行 , 出发时 , 甲 . 乙的速度比是 5:4, 相遇后 , 甲的速度减少 20%,乙的速度增加 20%,这样 , 当甲到达 B 地时 , 乙离 A 地还有10千米 , 那么 A.B 两地相距多少千米 ?4.一个柱的底面周减少 25%,要使体增加 1/3 ,在的高和原来的高度比是多少?5.某市运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共 30 吨香蕉、橘子和梨共 45 吨。
橘子正好占数的 13 分之 2。
一共运来水果多少吨?小学六年级下册的奥数题答案一.工程1.解: 1/20+1/16 =9/80 表示甲乙的工作效率9/80 ×5= 45/80 表示 5 小后水量 1-45/80=35/80 表示要的水量35/80 ÷( 9/80-1/10 )= 35 表示要 35 小注答: 5小后要 35 小就能将水池注。
2.解:由意得,甲的工效1/20 ,乙的工效 1/30 ,甲乙的合作工效1/20*4/5+1/30*9/10 = 7/100 ,可知甲乙合作工效 >甲的工效 >乙的工效。
又因,要求“两合作的天数尽可能少”,所以做的快的甲多做, 16 天内在来不及的才甲乙合作完成。
只有才能“两合作的天数尽可能少”。
合作 x 天,甲独做( 16-x )天1/20* (16-x )+7/100*x = 1 x= 10答:甲乙最短合作 10 天3.解:由意知, 1/4 表示甲乙合作 1 小的工作量, 1/5 表示乙丙合作 1 小的工作量(1/4+1/5 )× 2= 9/10 表示甲做了 2 小、乙做了 4 小、丙做了 2 小的工作量。